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During an immune response, B cells that encounter 
their cognate antigen become activated and migrate to 
the centre of the B cell follicle, where they form struc-
tures known as germinal centres (GCs)1. Within the GC, 
B cells compete for a limiting amount of T cell-derived 
signals, such as cytokines and CD40 ligand, that promote 
their migration from the light zone to the dark zone2. 
The magnitude of T cell help received by a B cell in the 
light zone dictates the extent of cell division and somatic 
hypermutation that occurs within the dark zone3,4. B 
cells that accrue productive mutations within their  
B cell receptor preferentially capture and present antigens  
to T cells upon their return to the light zone, facilitat-
ing their eventual differentiation into memory B cells 
or plasma cells2,5,6.

Data generated in mouse models suggest that mem-
ory B cells tend to emerge from the GC before plasma 
cells and, accordingly, display reduced levels of somatic 
hypermutation7–9. Memory B cells persist for years to 
decades and rapidly differentiate into antibody-secreting 
cells upon antigen re-encounter10,11. Following antigen 
re-encounter, memory B cells can also re-enter the 
GC, where they undergo further affinity maturation11. 
The reduced mutational load of memory B cells could 
facilitate their ability to recognize and respond to viral 
variants, with the memory B cell population in humans 
containing clones that are broadly reactive to several 
pathogens, including influenza virus and HIV12,13. By 
contrast, plasma cells are a terminally differentiated pop-
ulation of cells that tend to be specific for the subtype 
of virus previously encountered. Plasma cells persist in 
sites such as the bone marrow and serve as a first line of 

defence against pathogen reinfection through constitu-
tive secretion of antibodies14–16. In this manner, memory 
B cells and plasma cells cooperate to provide overlapping 
layers of protection against reinfection by the pathogen 
or related variants.

The quality of the B cell response following severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
infection determines the duration and breadth of protec-
tive immunity. While SARS-CoV-2 infection induces a 
durable B cell response, antibody levels decay over time, 
raising the risk that immunity may wane as the neu-
tralizing antibody titre decreases below the threshold 
needed to protect against reinfection17–21. SARS-CoV-2  
reinfection has been observed among some previ-
ously infected individuals, raising the possibility that 
infection-induced immunity against SARS-CoV-2 may be  
short-lived, as is the case for seasonal coronaviruses22–28. 
However, it is not yet clear whether the dynamics of 
immunity to SARS-CoV-2 will follow the same patterns 
reported for other coronaviruses.

Additionally, the development and widespread use 
of mRNA-based and vector-based vaccines against 
SARS-CoV-2 is likely to profoundly impact the duration 
of protective immunity29–32. It is particularly important 
to determine the B cell response following mRNA-based 
and adenovirus vector-based vaccinations considering 
that these platforms have not previously been widely 
used in humans33 (Box 1). mRNA-based vaccines against 
SARS-CoV-2 have shown 94–95% efficacy against symp-
tomatic disease and 90% efficacy in preventing asympto
matic infection at 12 weeks after vaccination29,30,34–37.  
While total SARS-CoV-2-specific antibody titres wane 
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over time following vaccination, neutralizing antibody 
titres and protection against hospitalization and death 
persist at high levels for at least 6 months38,39. However, 
key questions remain regarding the duration of protec-
tive immunity following mRNA-based vaccination and 
whether antibodies induced by vaccination will protect 
against reinfection by SARS-CoV-2 variants.

Considerable progress has been made in elucidating 
the B cell response following SARS-CoV-2 infection and 
vaccination. Here we examine emerging evidence that 
establishment of a robust GC response is critical for the 
induction of durable protective immunity. We also sum-
marize new data showing that SARS-CoV-2 vaccination 
induces a GC B cell response that persists for at least 
6 months in some individuals. Finally, we discuss the 
importance of the memory B cell response in protecting 
against newly emerging viral variants and examine how 
the GC response can be modulated to induce a more 
broadly protective B cell response.

B cell response to SARS-CoV-2 infection
SARS-CoV-2 infection induces a robust humoral 
immune response in most individuals17,40,41. While 
the magnitude of the serum antibody response 
against SARS-CoV-2 is heterogeneous, it generally 
declines rapidly over the first 4 months after infec-
tion, with a more gradual decline evident from that  
point onwards17–19,40,42–48. Conversely, the SARS-CoV-2- 
specific memory B cell response increases over the  
first 4–5 months after infection before plateauing17,40,49. 
We found that SARS-CoV-2-specific plasma cells are 
stably maintained in the bone marrow between 7 and 
11 months after infection, consistent with a model in 
which long-lived bone marrow plasma cells maintain 
serum antibody levels at later time points39,42.

Severe SARS-CoV-2 infection is associated with an 
elevated antibody and memory B cell response com-
pared with milder infections17,50,51 (Fig. 1a). This could 
be explained by the fact that severely ill individuals gen-
erate a robust extrafollicular B cell response that corre-
lates with an increase in proinflammatory cytokine levels 
and neutralizing antibody titres52. Severely ill individuals 
may also be failing to form functional GCs as evidenced 

by the marked decrease in the number of T follicular 
helper T (TFH cells) present in the draining lymph nodes 
and spleen53. The low levels of somatic hypermutation 
among responding B cells following severe infection 
is consistent with an impaired GC response and may 
lead to the production of antibodies that are unable to 
mediate disease resolution. However, a robust circulat-
ing TFH cell response is detectable in the blood of many 
severely infected individuals, suggesting that the GC 
response is not defective in all cases54–56. Impaired dis-
ease resolution in severely infected individuals may also 
be caused in part by impaired T cell-mediated clearance 
of virally infected cells19,52,57–60.

Mild SARS-CoV-2 infection also induces an early 
extrafollicular response in which naive and seasonal 
coronavirus-specific memory B cells differentiate 
into activated B cells and short-lived plasmablasts61,62 
(Fig. 1b). While early SARS-CoV-2-specific memory 
B cells have near germ line sequences, these cells pro-
gressively accrue somatic mutations in their Vh genes, 
suggesting that they are a product of an ongoing GC 
response40,41,61,63 SARS-CoV-2 nucleic acids have been 
detected in the intestine of some individuals for at least 
3 months after mild infection and may fuel an ongoing 
GC response40. The presence of long-lived plasma cells 
in the bone marrow of SARS-CoV-2-infected individu-
als further supports this model, as high-affinity plasma 
cells are predominantly derived from GCs42,64. Indeed, 
a robust GC and TFH cell response that persists for up 
to 6 months has been identified in humans and rhesus 
macaques following SARS-CoV-2 infection65,66.

Antibodies expressed from somatically mutated 
SARS-CoV-2-specific memory B cells display enhanced 
antigen binding, neutralizing potency and neutralizing 
breadth relative to those from memory B cells present at 
earlier time points40,61,63,67. B cells encoding SARS-CoV-2- 
specific antibodies that fail to neutralize the virus, 
including those that cross-react with seasonal coronavi-
ruses, are less detectable at later time points40,41,48,61,68,69. 
Somatic mutations of the Vh genes in memory B cells are 
associated with a sustained antibody response and rapid 
recovery from SARS-CoV-2 infection40,46. Additionally, 
SARS-CoV-2-specific antibodies in the serum at  
10 months after infection display enhanced neutralizing 
activity and breadth48. Together, these data suggest that 
the GC response, which is necessary for the develop-
ment of affinity-matured memory cells and plasma cells, 
is important for the development of B cells capable of 
protecting against SARS-CoV-2 infection70–72 (Fig. 1c).

Numerous monoclonal antibodies have been derived 
from responding B cells in convalescent patients that 
are capable of neutralizing SARS-CoV-2, with some of 
these monoclonal antibodies already being used ther-
apeutically to resolve SARS-CoV-2 infection. An anti-
body titre of 20% of the mean convalescent level has 
been proposed as sufficient for 50% protection against 
detectable SARS-CoV-2 infection, while only 3% is 
necessary for 50% protection from severe infection73. 
Therefore, an individual who starts with 80% protection 
against mild disease will have more than 50% protec-
tion against severe infection with an antigenically simi-
lar strain of SARS-CoV-2 for at least 3 years73. However, 

Box 1 | mRNA-based vaccines

mRNA-based vaccines use lipid nanoparticles to transport mRNA encoding viral 
proteins to the cell membrane of host cells123. The nanoparticles are then endocytosed 
into the cell, where they subsequently escape the endosome and release the enclosed 
mRNA into the cytoplasm to be subsequently translated into antigenic protein 
(for example, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike 
glycoprotein). Exogenous mRNA is inherently immunostimulatory and is recognized by 
numerous pattern recognition receptors expressed in different locations in the cell173. 
This allows mRNA-based vaccines to induce a robust T cell and B cell response against 
the viral protein without requiring additional adjuvants. The lipid nanoparticles used in 
mRNA-based vaccines are conjugated to several lipids, including polyethylene glycol, 
to increase their stability and lifespan. The mRNA transcribed by the vaccine has a 
short half-life and remains in human tissues for only a few days174. While the half-life  
of the viral protein produced by mRNA-based vaccines is unclear, the persistence of  
the germinal centre response following vaccination suggests that viral antigen is 
present for at least 30 weeks after vaccination in some individuals99. mRNA-based 
vaccines are easily modifiable, allowing rapid production of vaccines containing mRNA 
encoding proteins expressed by viral variants.
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the widespread emergence of viral variants that evade 
neutralization by preformed antibodies present in con-
valescent serum will likely significantly decrease the 
duration of antibody-mediated immunity elicited by 
SARS-CoV-2 infection74,75. In these cases, protection 
against severe disease will be reliant on the reactivation 
of somatically mutated memory B cells that recognize 
antigenically distinct viral variants, which is discussed 
further in the next section40,76,77.

B cell response to SARS-CoV-2 vaccination
There are several dozen SARS-CoV-2 vaccines that 
are in use globally. Currently, only the mRNA-based 
Pfizer–BioNTech and Moderna vaccines and the viral 
vector-based Johnson & Johnson Janssen vaccine are 
authorized for use in the United States. mRNA-based 
vaccination induces a robust SARS-CoV-2-specific anti-
body response that is strongly enhanced upon admin-
istration of a second dose in individuals who were not 
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Fig. 1 | B cell response to SARS-CoV-2 infection. a | Severe infection with 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces a 
robust extrafollicular response but an impaired germinal centre (GC) B cell 
response in some individuals. Antigen-engaged B cells differentiate into 
memory B cells and short-lived plasmablasts that give rise to antibodies 
with a low level of somatic hypermutation. b | Mild SARS-CoV-2 infection 
induces both an extrafollicular response and GC B cell response. The GC  
B cell response gives rise to affinity-matured memory B cells and long-lived 
plasma cells. c | There is an increase in the number of SARS-CoV-2-specific 
memory B cells over time following mild infection. Memory B cells derived 

from the GC undergo continued clonal evolution for at least 1 year, with 
memory B cells found at later time points displaying increased levels of 
somatic hypermutation and encoding antibodies with enhanced 
neutralizing activity and breadth. The SARS-CoV-2-specific antibody titre 
decreases over the first 6 months following infection owing to the loss of 
antibodies derived from short-lived plasmablasts. The loss in protection 
attributable to this decrease in antibody titre is partially offset by a per 
antibody increase in neutralizing titre and breadth, likely owing the 
emergence of clonally evolved plasma cells from the GC. TFH cell, T follicular 
helper cell.
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previously infected69,78–83 (Fig. 2a). About half of vacci-
nated individuals develop neutralizing antibodies to 
SARS-CoV-2 after a single dose, with almost all indi-
viduals having neutralizing antibodies after the second 
dose78. mRNA-based vaccination also induces a robust 
memory B cell response that is further enhanced after 
the second dose69. There is an increase in the percent-
age of class-switched memory B cells following the 
second dose78.

mRNA-based vaccination also induces a significant 
increase in the numbers of SARS-CoV-2-specific anti-
bodies and memory B cells in individuals who were pre-
viously infected with SAR-CoV-263,78,84,85 (Fig. 2b). The  
magnitude of this increase strongly correlates with  
the number of pre-existing SARS-CoV-2 memory B cells,  
indicating that memory B cells are critical in driving 
a recall response upon re-exposure to SARS-CoV-2 
antigens78. Consistent with this model, vaccination 
results in an increase in the number of all pre-existing 
SARS-CoV-2-specific memory B cell clones63. No fur-
ther increase in the SARS-CoV-2-specific antibody or 
memory B cell response is observed upon administra-
tion of a second dose to previously infected individu-
als, suggesting that only one dose of the mRNA-based 
vaccine is needed to reach peak humoral immunity in 
previously infected individuals78,83,86–88. However, this 
does not exclude a potential beneficial role for the sec-
ond dose in promoting SARS-CoV-2-specific B cell sur-
vival or affinity maturation. Additionally, mRNA-based 
vaccination induces a robust SARS-CoV-2-specific 
T cell response, which could be further boosted upon 
administration of a second dose85,89–91. The importance 
of T cells in the establishment of protective immunity 
against SARS-CoV-2 infection is a subject of active 
investigation (Box 2). While previously infected indi-
viduals have elevated numbers of SARS-CoV-2-specific 
memory B cells at 3 months after vaccination com-
pared with vaccinated uninfected individuals, there 
is a similar number of memory B cells in both groups 
at 6 months92.

SARS-CoV-2 mRNA-based vaccines induce a robust 
GC and TFH cell response in mice93,94. However, the 
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Fig. 2 | Germinal centre B cell response to SARS-CoV-2 
vaccination. a | The first dose of the severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) 
mRNA-based vaccine induces a robust germinal centre 
response that gives rise to plasma cells and memory B cells 
in previously uninfected individuals. Primary immunization 
induces a significant increase in the number of SARS-CoV-2- 
specific antibodies, with about half of individuals 
developing neutralizing antibodies. However, these 
antibodies are largely unable to neutralize SARS-CoV-2 
variants. b | The second dose of the SARS-CoV-2 
mRNA-based vaccine induces a significant increase in the 
antibody response in previously uninfected individuals. 
Antibodies derived from the secondary immunization have 
robust neutralizing activity, although there is a decrease in 
the ability to neutralize SARS-CoV-2 variants compared 
with the wild-type (D614G) virus. c | The first dose of the 
SARS-CoV-2 mRNA-based vaccine induces a significant 
increase in the antibody response in individuals who have 
recovered from previous SARS-CoV-2 infection. Antibodies 
induced by primary immunization have robust neutralizing 
activity, with equivalent ability to neutralize wild-type and 
variant viruses. The number of pre-existing SARS-CoV-2- 
specific memory B cells strongly correlates with the 
magnitude of the antibody response following vaccination. 
d | The second dose of the SARS-CoV-2 mRNA-based 
vaccine does not induce any further increase in antibody 
titre or neutralizing activity in individuals who have 
recovered from previous SARS-CoV-2 infection. TFH cell,  
T follicular helper cell.
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role of the GC response in the human B cell response 
to vaccination was until recently unclear owing to an 
inability to directly sample draining lymph nodes fol-
lowing vaccination. We used ultrasound-guided fine 
needle aspiration to serially sample the draining lymph 
node following influenza vaccination and found that 
vaccination induced a robust GC response in which 
B cells undergo somatic hypermutation95,96. We then 
used this approach to assess the B cell response in the 
draining axillary draining lymph nodes of individu-
als who received the Pfizer–BioNTech SARS-CoV-2 
vaccine97. We found that vaccination induced a robust 
SARS-CoV-2-specific GC B cell and TFH cell response, 
with administration of a second dose further increasing 
the percentage of GC B cells97,98. The GC response was 
composed of both pre-existing memory B cell clones 
specific for seasonal coronaviruses and newly recruited 
naive B cells that were specific for unique epitopes 
within the SARS-CoV-2 spike protein97. Remarkably, 
SARS-CoV-2-specific GC B cells were maintained 
in the lymph node at near peak frequency for at least  
15 weeks following vaccination, indicating that these 
cells are likely undergoing affinity maturation97. Memory 
B cells that bind to SARS-CoV-2 variants display ele-
vated levels of somatic hypermutation compared with 
cells that bind only wild-type SARS-CoV-2, suggesting 
a role for the GC in the acquisition of broadly protective 
immunity92.

We have now extended these findings to assess the 
GC response at 30 weeks following vaccination (Fig. 3). 
We recently reported that 10 of 15 individuals analysed 
displayed a persistent SARS-CoV-2-specific GC B cell 
response in the lymph node, with spike protein-binding 
GC B cells not detected in the other five individuals99. 
These findings indicate that there is heterogeneity in 
the duration of the SARS-CoV-2-specific GC response 
induced by vaccination. It will be important to determine 
whether GC persistence is associated with enhanced 
quality of the B cell response and if spike protein anti-
gen is detectable in individuals with persistent GCs.  

A requirement for antigen in the persistence of the GC 
response would indicate that antigen availability is an 
important mechanism governing the development of 
broadly protective immunity.

B cell response to SARS-CoV-2 variants
Coronaviruses have a reduced mutation rate and fre-
quency of escape from antibody neutralization compared 
with smaller RNA viruses owing to their expression of a 
proofreading 3′-5′ exoribonuclease100,101. Nevertheless, 
thousands of mutations have been identified in circulat-
ing SARS-CoV-2 particles, including a host of mutations 
in the spike protein that impact disease pathogene-
sis and susceptibility to antibody neutralization75,102. 
While convalescent serum is capable of neutralizing 
viruses expressing the wild-type spike protein, there is 
a marked decrease in neutralization sensitivity for sev-
eral of the spike proteins expressing mutations that map 
to the ACE2-binding site and that are found in variant 
viruses75,103–108. High concentrations of convalescent 
serum are still capable of neutralizing viruses expressing 
escape mutations. However, the existence of confirmed 
cases of SARS-CoV-2 reinfection suggests that some pre-
viously infected individuals may not have sufficient anti-
body titres to protect against reinfection by SARS-CoV-2 
variants75,109. It is important to note that there has been 
no evidence of antibody-dependent enhancement fol-
lowing infection of vaccinated individuals by escape 
variants.

Therefore, vaccination is critical to bolster the 
SARS-CoV-2-specific antibody response to a level 
sufficient to protect against infection by emerging 
SARS-CoV-2 variants. One dose of an mRNA-based 
vaccine was sufficient to significantly enhance the 
titre of neutralizing antibodies specific for the Alpha 
(B.1.1.7) and Beta (B.1.351) viral variants in previously 
infected individuals78. Conversely, two vaccine doses 
were required in SARS-CoV-2-naive individuals to 
reliably elicit neutralizing antibodies against the Alpha, 
Beta and Delta (B.1.617) variants78,85,110. The neutralizing 
antibody response to viruses expressing escape muta-
tions is reduced relative to that to the wild-type virus 
in SARS-CoV-2-naive individuals, although it is still 
present at significant levels63,78,110–116. Viruses expressing 
mutations in E484 were particularly adept at escaping 
neutralization from vaccine-induced serum69,105,107,111. 
The E484 mutation is in the receptor-binding domain  
of the spike protein and is important for ACE2 
binding102. Interestingly, antibodies from previously 
infected individuals who were vaccinated did not 
show a reduction in neutralizing titre against the Beta 
variant63,78. The neutralizing titre against both the 
wild-type virus and variant viruses is increased in previ
ously infected individuals who were vaccinated relative 
to vaccinated SARS-CoV-2-naive individuals78,85,117. 
There is not a significant increase in the mutational load 
of memory B cells following vaccination in previously  
infected individuals63. These data suggest that previ-
ously infected individuals who were vaccinated may 
have enhanced immunity to escape variants com-
pared with vaccinated SARS-CoV-2-naive individuals.  
This may be a result of ongoing clonal evolution 

Box 2 | Cellular immunity to SARS-CoV-2

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection induces a 
T cell response in almost all individuals, with the magnitude of this response correlated 
with control of primary infection17,175–177. SARS-CoV-2-specific T cells persist for at least 
6 months following infection and maintain polyfunctionality upon peptide simulation178. 
SARS-CoV-2 vaccination also induces a robust T cell response with broad specificity to 
peptides present in the spike protein, with the magnitude of this response bolstered  
by the administration of a second vaccine dose82,91,179–181. Epitopes recognized by 
SARS-CoV-2-specfic CD4+ T cells and CD8+ T cells were 93% and 97% conserved, 
respectively, in emerging viral variants89,182. Accordingly, the T cell response to peptide 
restimulation was minimally impacted by variant mutations182. T cells recognizing 
conserved epitopes are more abundant in individuals with mild disease and display 
enhanced expression of markers associated with long-lived memory183. While 
SARS-CoV-2-specific T cells alone are not expected to be able to prevent reinfection by 
variant viruses, they may have an important contribution in limiting disease severity184. 
For example, memory CD4+ T cells can provide accelerated help to B cells upon antigen 
re-encounter, facilitating the induction of antibodies capable of mediating viral 
clearance185. Memory T cells that establish residence in mucosal tissues following 
SARS-CoV-2 infection may also contribute to protective immunity by limiting viral 
spread beyond the site of reinfection186. Finally, circulating SARS-CoV-2-specific  
T cells may promote long-term immunity through direct killing of infected cells.
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increasing the breadth of the B cell response following 
infection63,118. Broader and/or more persistent exposure 
to SARS-CoV-2 antigens, as well as differences in the 
specificity and phenotype of the memory T cell response, 
likely contribute to the enhanced protective immunity 
to viral variants in previously infected individuals40,119.

High neutralizing antibody levels are associated 
with lower infectivity and reduced likelihood of rein-
fection by SARS-CoV-2 (refs73,120,121). However, individ-
uals who do not have a sufficiently high neutralizing 
antibody titre to prevent reinfection may still exhibit 
significant protection from hospitalization and death 
owing to the memory B cell response. Memory B cells 
continue to undergo clonal evolution for at least 1 year 
following infection, with antibodies encoded by these 
cells capable of binding to the Alpha, Beta and Delta 
variants63,92. Antibodies derived from 10 of 15 memory 
B cell clones present at 12 months following infection 
were able to neutralize all variants tested (including 
E484-expressing variants) compared with only 1 of 15 
clones present at 1.3 months63. The rapid differentiation 
of cross-reactive SARS-CoV-2-specific memory B cells 
into antibody-secreting cells may therefore represent a 
critical mechanism limiting disease pathogenesis upon 
reinfection with variant viruses.

The persistence of the GC response induced by 
vaccination suggests that vaccine-induced memory  
B cells may also increase their neutralizing breadth over 
time97. Indeed, memory B cells continue to undergo 
clonal evolution for at least 5 months following vac-
cination and contain levels of mutations in antibody 
genes similar to those of memory B cells present at  
6 months following infection118. However, there was no 
significant increase in the neutralizing activity of anti-
bodies encoded by memory B cells between 1.3 and  
5 months after vaccination118. Additionally, antibodies 
encoded by vaccine-induced memory B cells displayed 
minimal increase in affinity and breadth, with only 4 of 
19 antibody pairs conserved between 1.3 and 5 months 
showing increased potency against pseudotyped viruses 

expressing the spike protein with mutations found in 
the Delta variant compared with 11 of 16 antibody pairs 
conserved between 1.3 and 6 months after infection118. 
It will be important to expand this analysis to consider 
additional antibodies encoded by memory B cells and to 
examine how the duration of the GC response induced 
by vaccination influences the clonal evolution of mem-
ory B cells. The administration of an additional booster 
vaccine encoding a protein expressed by variant viruses 
was effective in increasing neutralizing antibody titres 
against the variant virus in mice and may be neces-
sary to increase the breadth of antibodies encoded by 
vaccine-induced memory B cells122.

Approaches to induce a broadly reactive 
memory B cell response
The efficacy of mRNA-based vaccines in protecting 
against SARS-CoV-2 highlights the importance of con-
tinuing to develop new approaches to combat emerging 
viruses. Development of mRNA-based vaccines was 
initiated as early as 1990 and was intended to protect 
against pathogens such Ebola virus, Zika virus, rabies 
virus and influenza virus before being adapted to target 
SARS-CoV-2 (refs123,124). Given the likelihood that the 
rate at which novel diseases emerge from the environ-
ment will continue to increase, there is an urgent need to 
develop new approaches to proactively combat potential 
sources of future pandemics125. In particular, the devel-
opment of new strategies to drive a broadly protective 
memory B cell response against rapidly mutating path-
ogens would be a valuable tool to combat the threat of 
future pandemics.

Novel vaccination approaches. One approach to drive 
a more broadly reactive memory B cell response is to 
alter the viral regions that are targeted by vaccination. 
Traditional vaccines induce antibodies specific for the 
immunodominant viral regions, which tend to undergo 
frequent mutation to allow the virus to escape antibody 
neutralization126. However, regions that are conserved 
between different viral strains, such as the influenza 
virus haemagglutinin (HA) stalk, undergo much slower 
mutation, with the mutations that do occur less likely to 
result in immune evasion127. Therefore, the development 
of a vaccine that induces antibodies targeting conserved 
viral regions would be an attractive option to elicit  
heterosubtypic immunity.

Multiple approaches have been designed to induce 
broadly reactive memory B cells. A chimeric HA-based 
influenza vaccine recently completed a phase I trial 
and was shown to safely elicit cross-reactive antibodies 
to the HA stalk region expressed by group 1 influenza 
viruses128. This approach relies on sequential administra-
tion of chimeric HA proteins expressing divergent head 
regions but the same stalk regions to selectively boost 
stalk-reactive memory B cells. Antibodies induced in 
humans using this vaccination approach were sufficient 
to protect mice against a lethal challenge with a divergent 
strain of influenza virus128. Alternative approaches under 
development include vaccination with HA proteins in 
which the head region is masked or removed to drive 
stalk-specific B cell responses, as well as vaccination 
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with divergent HA proteins129–133. However, significant 
work remains to optimize these approaches to reliably 
elicit antibodies capable of providing long-term immu-
nity against group 1 influenza, group 2 influenza and 
influenza B viruses. Extending these approaches to other 
pathogens will require identification of surface protein 
regions that are broadly conserved between different 
variants and that lead to viral neutralization upon anti-
body binding. The lack of protective efficacy of antibod-
ies that cross-react between seasonal coronaviruses and 
SARS-CoV-2 highlights the challenge of identifying the 
optimal surface region to target to induce heterosubtypic 
immunity68.

Memory B cell subsets. Another approach to elicit 
broadly reactive memory B cells following vaccina-
tion is to induce an immune response that gives rise 
to more memory B cells capable of undergoing affin-
ity maturation upon re-exposure to viral antigens. 
Memory B cells develop through both GC-dependent 
and GC-independent pathways, with both popula-
tions contributing to protective immunity70,134. Atypical 
memory B cells, which are distinguished on the basis 
of their expression of T-bet and CD11c, are expanded 
following severe SARS-CoV-2 infection and may 
develop independently of the GC50,52,135–138. However, 
GC-independent memory B cells generally do not go 
through class switching or affinity maturation, and may 
not be able to undergo the clonal evolution necessary to 
neutralize emerging viral variants63,71,134. Therefore, the 
GC response is an attractive target for efforts to induce 
a memory B cell response capable of ongoing clonal 
evolution.

The memory B cell population is composed of multi
ple functionally and transcriptionally distinct subsets 
that emerge from the GC at different times9,11,139 (Fig. 4a). 
While the markers used to identify these subsets differ 
between mice and humans, transcriptionally distinct 
memory B cell subsets have been identified in numer-
ous immune contexts, including following SARS-CoV-2 
infection136,138,140–142. Memory B cells expressing CD80 
and PDL2 in mice tend to differentiate into plasma cells 
upon antigen re-encounter, while those lacking CD80 
and PDL2 re-enter the GC and undergo further somatic 
hypermutation11,143 (Fig. 4b). Bolstering the number 
of memory B cells capable of re-entering the GC may 
therefore enhance the capacity of the memory B cell pool 
to evolve to neutralize emerging viral variants (Fig. 4c,d). 
CD80−PDL2− memory B cells display differential expres-
sion of numerous cytokine receptors and downstream 
transcription factors11,143. A better understanding of how 
these pathways shape the composition of the memory  
B cell pool is needed to design vaccines that can modulate  
these pathways to favour the development of a particular 
memory B cell subset.

Mucosal memory B cell response. Many viruses that 
are potential sources of future pandemics, includ-
ing SARS-CoV-2 and influenza virus, primarily 
infect mucosal surfaces and induce a local immune 
response144,145 (Fig.  5). While antibodies present  
in the serum are capable of mediating viral clearance in 

mucosal sites, the establishment of a mucosal memory 
B cell response would enable a rapid increase in local 
antibody titre that could mediate rapid viral clearance 
following reinfection146. Additionally, the induction of a 
robust mucosal antibody response is critical in prevent-
ing viral spread. A subset of SARS-CoV-2-vaccinated 
individuals who were infected by the Delta variant were 
recently found to have a similar level of viral transcripts 
in their upper respiratory tract as infected unvaccinated 
individuals147. While vaccinated individuals who are 
reinfected still display reduced duration of viral shed-
ding and infectivity compared with unvaccinated indi-
viduals, the development of vaccination approaches that 
induce sterilizing immunity at mucosal sites is criti
cal to limit the spread of variants that have increased  
transmission risk148,149.

Memory B cells have been identified in multiple 
mucosal tissues, including in the lungs of mice fol-
lowing influenza virus infection150–152. Lung-resident 
memory B cells were associated with enhanced protec-
tive immunity upon challenge infection and displayed 
increased cross-reactivity relative to cells present in the 
draining lymph node150,153. B cells are found in many 
mucosal tissues in humans154. SARS-CoV-2 infection 
induces virus-specific memory B cells in the bone mar-
row, spleen, lungs and lymph nodes66. Residual antigen 
depots are also present in mucosal tissues, including 
in the gut, following SARS-CoV-2 infection, and may 
fuel the continued clonal evolution of B cells in these 
sites40,63,155. It is currently unclear whether tissue-resident 
memory B cells arise from GC responses occurring in 
the tertiary lymphoid structures of mucosal tissues or 
whether they migrate to the mucosal tissue after devel-
oping in the draining lymph node156–158. Tertiary lym-
phoid structures are induced by inflammation and are 
key sites in which memory B cells become reactivated 
and give rise to antibodies capable of mediating rapid 
viral clearance159,160.

The development of vaccination approaches that 
induce a mucosal GC and memory B cell response may 
therefore significantly enhance the development of 
protective immunity against newly emerging viruses. 
For example, an intranasal adenovirus-based vaccine 
against SARS-CoV-2 that induced mucosal B cells had 
an enhanced ability to prevent upper and lower airway 
infection in mice and hamsters compared with the same 
vaccine administered intramuscularly161,162. An intra-
nasal adenovirus vaccine also induced a cellular and 
humoral immune response in rhesus macaques and was 
protective against SARS-CoV-2 infection163. Intranasal 
delivery of SAR-CoV-2-specific IgM was also effective 
in protecting against infection in mice164. Together, 
these studies indicate that vaccines that induce immune 
responses at mucosal surfaces (that is, vaccines delivered 
orally or intranasally) may represent an effective strategy 
to induce protective immunity165.

Concluding remarks and perspective
Remarkable progress had been made in elucidating 
the B cell response following SARS-CoV-2 infection. 
However, there remain many key knowledge gaps that 
will shape the public health response in the years ahead. 
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One central question is whether additional ‘booster’ 
vaccines expressing mRNA from variant strains will 
be necessary to induce a B cell response with sufficient 
breadth and affinity to neutralize future SARS-CoV-2 
variants. While the administration of a third vaccine 
dose of the same formulation will likely result in an 
increase in antibody titres, it is unlikely to profoundly 
alter the specificity of the memory B cell response92. 
Variant-based booster vaccines may be necessary to 

engage naive B cells that recognize variant-specific 
epitopes and reshape the composition of the memory 
B cell response. The memory B cell response contin-
ues to undergo clonal evolution even 12 months after 
SARS-CoV-2 infection, with these mutations critical 
in increasing the potency and breadth of antibod-
ies derived from these cells63. While vaccine-induced 
B cells also undergo clonal evolution, likely owing to 
the persistence of the GC response, it is unclear whether 
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mutations that accumulate over time lead to enhanced 
neutralizing activity118. It is important to note that vacci
nation is still essential to bolster the infection-induced  
B cell response to levels sufficient to protect against 
reinfection. Determining whether the persistence of the 
GC following vaccination is associated with enhanced 
protective immunity as well as understanding the 
mechanisms underlying the persistence of the GC will 
be important in evaluating the necessity of additional 
booster vaccines.

Another key unanswered question is whether 
SARS-CoV-2 vaccination induces a B cell response in 
mucosal tissues. While SARS-CoV-2-specific antibod-
ies are detectable in mucosal compartments such as the 
saliva and breast milk following vaccination, it is unclear 
whether these antibodies are a product of a local B cell 
response or how long they persist166–168. SARS-CoV-2 
vaccines are administered intramuscularly and there-
fore are unlikely to induce sufficient levels of antigen 
expression or inflammation in mucosal tissues to sup-
port a local GC response. In the absence of a mucosal 
B cell response, protection from reinfection will be reli-
ant on maintaining a high enough titre of circulating 
antibodies to neutralize viruses that infect the airways. 
The reduced capacity of serum antibodies induced 
solely by vaccination to neutralize variant viruses rela-
tive to antibodies induced by vaccination of previously 
infected individuals is therefore a significant concern 

for the long-term prospect of maintaining a sufficient 
neutralizing antibody titre at mucosal sites to prevent 
SARS-CoV-2 reinfection, especially against variants 
such as the Delta variant that induce a significantly 
higher viral load63,78,148.

Relatedly, understanding how the SARS-CoV-2- 
specific IgA response differs between vaccinated and 
infected individuals will be important going forwards. 
The serum IgA response rapidly declines following both 
SARS-CoV-2 vaccination and SARS-CoV-2 infection 
and is less potent at neutralizing SARS-CoV-2 than 
IgG169,170. However, SARS-CoV-2 infection also elicits a 
virus-specific IgG, IgA and IgE antibody response in the 
saliva and bronchoalveolar fluid. Dimeric SARS-CoV-2- 
specific IgA, the primary form of IgA present in the 
nasopharynx, has an enhanced ability to neutralize 
the virus compared with IgG and may have an impor-
tant role in preventing reinfection171,172. While it is not 
known whether SARS-CoV-2 vaccination induces a 
mucosal IgA response in humans, intramuscular vacci-
nation of mice drove a minimal mucosal IgA response 
and was not as good at mediating viral clearance at 
mucosal sites as intranasal vaccination161. Therefore, 
developing vaccination approaches that induce dimeric 
IgA at mucosal surfaces may be an important tool to 
limit reinfection.

Published online 6 December 2021
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