
Research Article

Liver Cancer 2021;10:572–582

Evolutionary Learning-Derived Clinical-Radiomic 
Models for Predicting Early Recurrence of 
Hepatocellular Carcinoma after Resection

I-Cheng Lee 

a, b    Jo-Yu Huang 

c    Ting-Chun Chen 

c    Chia-Heng Yen 

c, d     

Nai-Chi Chiu 

e    Hsuen-En Hwang 

e    Jia-Guan Huang 

f    Chien-An Liu 

e     

Gar-Yang Chau 

g    Rheun-Chuan Lee 

e    Yi-Ping Hung 

h    Yee Chao 

h     

Shinn-Ying Ho 

c, i, j, l    Yi-Hsiang Huang 

a, b, k

aDivision of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, 
Taiwan; bFaculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan; 
cInstitute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; 
dInstitute of Computer Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan; 
eDepartment of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan; fNational Taiwan University School of 
Medicine, Taipei, Taiwan; gDepartment of Surgery, Taipei Veterans General Hospital, Taipei, Taiwan; hCancer Center, 
Taipei Veterans General Hospital, Taipei, Taiwan; iDepartment of Biological Science and Technology, National Yang 
Ming Chiao Tung University, Hsinchu, Taiwan; jCenter for Intelligent Drug Systems and Smart Bio-Devices (IDS2B), 
National Yang Ming Chiao Tung University, Hsinchu, Taiwan; kInstitute of Clinical Medicine, National Yang Ming 
Chiao Tung University, Taipei, Taiwan; lCollege of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan

Received: April 20, 2021
Accepted: July 24, 2021
Published online: September 20, 2021

Correspondence to: 
Shinn-Ying Ho, syho @ nctu.edu.tw
Yi-Hsiang Huang, yhhuang @ vghtpe.gov.tw

© 2021 The Author(s).
Published by S. Karger AG, Basel

karger@karger.com
www.karger.com/lic

DOI: 10.1159/000518728

Keywords
Hepatocellular carcinoma · Evolutionary learning · Machine 
learning · Recurrence · Surgery

Abstract
Background and Aims: Current prediction models for early 
recurrence of hepatocellular carcinoma (HCC) after surgical 
resection remain unsatisfactory. The aim of this study was to 
develop evolutionary learning-derived prediction models 
with interpretability using both clinical and radiomic fea-
tures to predict early recurrence of HCC after surgical resec-
tion. Methods: Consecutive 517 HCC patients receiving sur-
gical resection with available contrast-enhanced computed 
tomography (CECT) images before resection were retrospec-
tively enrolled. Patients were randomly assigned to a train-
ing set (n = 362) and a test set (n = 155) in a ratio of 7:3. Tumor 

segmentation of all CECT images including noncontrast 
phase, arterial phase, and portal venous phase was manu-
ally performed for radiomic feature extraction. A novel evo-
lutionary learning-derived method called genetic algorithm 
for predicting recurrence after surgery of liver cancer (GARSL) 
was proposed to design prediction models for early recur-
rence of HCC within 2 years after surgery. Results: A total of 
143 features, including 26 preoperative clinical features, 5 
postoperative pathological features, and 112 radiomic fea-
tures were used to develop GARSL preoperative and postop-
erative models. The area under the receiver operating char-
acteristic curves (AUCs) for early recurrence of HCC within 2 
years were 0.781 and 0.767, respectively, in the training set, 
and 0.739 and 0.741, respectively, in the test set. The accu-
racy of GARSL models derived from the evolutionary learn-
ing method was significantly better than models derived 
from other well-known machine learning methods or the 
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early recurrence after surgery for liver tumor (ERASL) preop-
erative (AUC = 0.687, p < 0.001 vs. GARSL preoperative) and 
ERASL postoperative (AUC = 0.688, p < 0.001 vs. GARSL post-
operative) models using clinical features only. Conclusion: 
The GARSL models using both clinical and radiomic features 
significantly improved the accuracy to predict early recur-
rence of HCC after surgical resection, which was significantly 
better than other well-known machine learning-derived 
models and currently available clinical models.

© 2021 The Author(s).
Published by S. Karger AG, Basel

Introduction

Hepatocellular carcinoma (HCC) is the sixth most 
commonly diagnosed cancer and the fourth leading cause 
of cancer death globally [1]. For patients with early stage 
HCC, surgical resection remains the most widely applied 
curative treatment for HCC [2, 3]. However, tumor re-
currence may occur in nearly 70% of patients after resec-
tion, while early recurrence within 2 years of resection 
accounts for >70% of recurrence [4, 5]. Tumor burden, 
microvascular invasion, and liver function reserve have 
been reported to be risk factors associated with early HCC 
recurrence [4–7].

To decrease the risk of recurrence after resection, there 
are several ongoing clinical trials of adjuvant immuno-
therapy but the inclusion criteria for those with high-risk 
of recurrence varied among the trials [8]. Improvement 
in the prediction of patients with high-risk of recurrence 
is required urgently for the development of future thera-
peutic strategies and may help to identify potential can-
didates who may benefit from adjuvant systemic thera-
pies. Recently, the preoperative and postoperative early 
recurrence after surgery for liver tumor (ERASL) models 
have been proposed based on routine clinical parameters 
to classify patients with high-, moderate-, and low-risk of 
early recurrence [7]. Nevertheless, the discriminatory 
ability of ERASL models remains unsatisfactory, and ra-
diomic information, which may provide crucial informa-
tion [9], was not included in the model. For clinical deci-
sion-making, it is still necessary to further improve the 
prediction model.

Machine learning is a discipline that uses computa-
tional modeling to learn from data, meaning that perfor-
mance at executing a specific task would be improved us-
ing experience [10]. Radiomics coupled with machine 
learning has been applied to HCC patients with promis-
ing results of predicting microvascular invasion before 
surgical resection [11]. The incorporation of radiomics 

and machine learning could improve the prediction ac-
curacy of response to transarterial chemoembolization 
[12] and tumor recurrence in patients with solitary HCC 
using contrast-enhanced computed tomography (CECT) 
images [13]. Furthermore, various deep learning-based 
radiomics methods have been proposed to design predic-
tion models in medical applications [14]. The deep learn-
ing-based fusion model used clinical features and CECT 
images to predict early HCC recurrence [15]. However, 
the high-level radiomic features extracted by the convo-
lutional layers may suffer from low medical interpretabil-
ity and high overfitting probability, especially when the 
training dataset is not large enough, not conducive to un-
derstanding, and making diagnostic decisions.

For clinical decision-making before surgical resection, 
it is desirable to accurately predict the early HCC recur-
rence. To design a personalized prediction model, it is 
necessary to identify the risk factors and biomarkers for 
improving interpretability and clinic practicality. Evolu-
tionary learning means that the parameter values of ma-
chine learning methods are optimized using evolutionary 
algorithms. The aim of this study was to develop evolu-
tionary learning-derived preoperative and postoperative 
models by combining clinical and radiomic features to 
predict early recurrence within 2 years after curative re-
section for HCC.

Materials and Methods

Patients
From October 1, 2007, to April 30, 2018, 1,352 consecutive 

HCC patients receiving surgical resection in Taipei Veterans Gen-
eral Hospital were retrospectively screened. Patients were exclud-
ed by the following criteria: (1) without CECT images within 3 
months prior to surgery (n = 569), (2) lost to follow-up within 2 
years after surgery (n = 144), (3) without curative surgery (n = 25), 
and (4) without complete dynamic CECT images including non-
contrast phase, arterial phase, and portal venous phase (n = 97). 
Finally, 517 HCC patients with complete dynamic CECT images 
were enrolled in this study. The diagnosis of HCC and resectabil-
ity was assessed before surgery by CECT images or magnetic reso-
nance imaging (MRI), which fulfilled the diagnostic criteria of the 
American Association for the Study of Liver Diseases treatment 
guidelines for HCC [16], and was confirmed pathologically after 
surgery. Curative surgical resection was confirmed by CECT im-
ages or MRI after surgery. Patients were followed every 2–3 months 
with measurement of serum alpha-fetoprotein (AFP), ultrasound, 
CECT images, or MRI after the surgery. Recurrence-free survival 
was defined as the time from the date of curative surgery to the 
time of recurrence. Early recurrence was defined as tumor recur-
rence within 2 years after the surgery [4–7].

This study was approved by the Institutional Review Board, 
Taipei Veterans General Hospital, which complied with standards 
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of the Declaration of Helsinki and current ethical guidelines. Due 
to the retrospective nature of the study, the Institutional Review 
Board waived the need for written informed consent. The identify-
ing information of the enrolled subjects has been delinked and 
therefore authors could not access the information.

Biochemistry, Virological Tests, and Histological Features
The following clinical features and biochemistry were collected 

for analysis: age, sex, the body mass index, the Barcelona Clinic 

Liver Cancer (BCLC) stage, the Child-Pugh score, serum AFP, al-
anine aminotransferase (ALT), aspartate aminotransferase (AST), 
creatinine, albumin, total bilirubin levels, and platelet count. Se-
rum AFP was measured by chemiluminescent microparticle im-
munoassay (ARCHITECT AFP assay, Abbott Ireland Diagnostics 
Division, Sligo, Ireland). Serum biochemistry tests were measured 
by systemic multi-autoanalyzer (Technicon SMAC; Technicon In-
struments Corp., Tarrytown, NY, USA). An albumin-bilirubin 
grade was calculated as previously described [17]. The histological 

Table 1. Baseline characteristics for the 517 HCC patients undergoing surgical resection

Feature Training set (n = 362) Test set (n = 155) p value

Age, years 62±12.3 61±13.1 0.676
Male gender, n (%) 294 (81.2) 123 (79.4) 0.628
BMI, kg/m2 24.5±3.50 25.0±3.82 0.185
Anti-HCV-positive, n (%) 67 (18.5) 19 (12.3) 0.921
HBsAg-positive, n (%) 256 (70.7) 111 (71.6) 0.105
BCLC stage 0/A/B/C, n (%) 35/253/39/35 (9.7/69.9/10.8/9.7) 14/117/18/6 (9/75.5/11.6/3.9) 0.119
Tumor size, cm 5.7±3.72 6.2±4.31 0.703
Tumor number 1/2/>2, n (%) 294/44/24 (81.2/12.2/6.6) 126/21/32 (81.3/13.5/5.2) 0.640
WBC count, /μL 6,162±1,878 6,312±2,138 0.603
Hemoglobin, g/dL 13.5±1.95 13.3±1.82 0.296
Platelet count, ×109/L 184±76 189±82 0.607
Prothrombin time-INR 1.06±0.83 1.06±0.07 0.742
ALB, g/dL 4.0±0.43 4.0±2.67 0.969
Na, mmol/L 140±2.6 140±2.7 0.508
K, mmol/L 4.14±0.47 4.24±0.48 0.021
BUN, mg/dL 16±7.0 15±5.9 0.267
Creatinine, mg/dL 1.02±0.88 1.02±0.89 0.958
Total bilirubin, mg/dL 0.79±0.41 0.84±0.46 0.348
ALT, U/L 48±42 51±38 0.128
AST, U/L 46±31 54±45 0.073
AFP, ng/mL 20.72 (5.17–409.00) 24.37 (6.14–978.84) 0.276
ALK-P, U/L 87±49 96±59 0.157
GGT, U/L 43 (10–702) 41.5 (13–626) 0.518
AAR 1.14±0.79 1.20±0.83 0.662
APRI 0.64±0.52 0.84±1.26 0.491
Tumor grade 1/2/>2, n (%) 39/173/146 (10.9/48.3/40.8) 19/70/65 (12.3/45.5/42.2) 0.473
Microvascular invasion, n (%) 277 (76.5) 105 (67.7) 0.043
Inflammation, n (%)

Mild 16 (4.6) 5 (3.4) 0.825
Moderate 303 (86.8) 129 (88.4)
Severe 30 (8.6) 12 (8.2)

Ishak fibrosis stage, n (%)
0–2 157 (44) 68 (44.1) 0.339
3–4 96 (26.9) 34 (22.1)
5–6 104 (29.1) 52 (33.7)

Hepatic steatosis, n (%)
<5% 146 (48.3) 69 (51.9) 0.404
5–33% 132 (43.7) 58 (43.6)
34–66% 23 (7.6) 5 (3.8)
>66% 1 (0.3) 1 (0.8)

2-year recurrence, n (%) 168 (46.4) 71 (45.8) 0.976

HCC, hepatocellular carcinoma; AFP, alpha-fetoprotein; BMI, body mass index; BCLC, Barcelona Clinic Liver 
Cancer; ALT, alanine aminotransferase; AST, aspartate aminotransferase; AAR; AST/ALT ratio; APRI, AST to platelet 
ratio index.
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features including the tumor size, tumor number, Edmonson his-
tological grade, microvascular invasion, hepatic steatosis, and 
Ishak hepatic inflammation and fibrosis scores [18, 19] were added 
into the set of clinical features. A total of 26 preoperative clinical 
features and 5 postoperative pathological features were recorded 
(Table 1). The evolutionary method established 2 prediction mod-

els, preoperative and postoperative models adopting 26 and 31 
clinical features, respectively.

CECT Image Segmentation and Radiomic Feature Extraction
Interpretation and tumor segmentation of all CECT images 

were performed by 3 radiologists who were blinded to the clinical 

Fig. 1. Illustrated flowchart of developing the evolutionary learning-derived method GARSL. GARSL, genetic 
algorithm for predicting recurrence after surgery of liver cancer.
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and pathological data. The 3 radiologists had read >2,000 liver CT 
studies per year. When contouring the tumor, the edge of the ob-
served focal lesion within the liver was defined as an imaging ap-
pearance that is distinctive from the background according to the 
Liver Reporting and Data System [20, 21]. The image processing 
and semiautomatic tumor segmentation were performed using In-
telliSpace Discovery (Philips, Eindhoven, The Netherlands).

For each patient’s CT images of noncontrast phase, arterial 
phase, and portal venous phase, the images with the largest tumor 
diameter for each tumor in 3 phases were used for extracting ra-
diomic features, including morphology, tumor edge, intensity, Ha-
ralick, invariant moment, and discrete wavelet transformed fea-
tures for each phase. The detailed method of radiomic feature ex-
traction is described in online suppl. Methods (for all online suppl. 
material, see www.karger.com/doi/10.1159/000518728).

The coarse-to-fine feature selection from a large number of ra-
diomic features was done as follows. First, coarse feature selection 
was performed by the student’s t test that the features with no sig-
nificant difference among recurrence and nonrecurrence patients 
in 2 years were eliminated. Second, one of a group of features with 
high Pearson correlation coefficients (e.g., r > 0.9 in this study) was 
kept for the fine feature selection. Finally, the remaining features 
were selected using the optimal feature selection of the evolution-
ary method.

Evolutionary Learning-Derived Method Genetic Algorithm for 
Predicting Recurrence after Surgery of Liver Cancer
In this study, a novel evolutionary learning method called ge-

netic algorithm for predicting recurrence after surgery of liver can-
cer (GARSL) is proposed to predict early HCC recurrence within 
2 years after surgery. The illustrated flow chart of the GARSL 
method for predicting the 2-year HCC recurrence is shown in Fig-
ure 1. The whole dataset was divided into training and test datasets 
with the ratio 7:3. The radiomic and clinical features with imputa-
tion using a k-nearest neighbor method were cascaded into a can-
didate feature set. The prediction method GARSL used a well-
known support vector machine (SVM) classifier which is a statis-
tics-based supervised learning model. SVM performs classification 
or regression by mapping data into higher dimension feature space 
using a kernel function.

The determination of both cost (c) and kernel (γ) parameters 
of SVM plays a vital role in modeling. All the optimal feature selec-
tion and parameter settings of SVM were conducted based on an 
intelligent evolutionary algorithm (IEA) [22]. The inheritable bi-
objective combinatorial genetic algorithm (IBCGA) [23] with IEA 
was used to identify a small set of features (risk factors and ra-
diomic features) and determine SVM parameter values while max-
imizing the fitness function. The fitness function is to maximize 
the prediction accuracy of Matthews correlation coefficient (MCC) 
for 10 fold cross-validation (CV) on the training dataset. The MCC 
measurement was used for dealing with the imbalanced dataset, in 
which 46.4% of HCC patients had the 2-year recurrence. The pre-
diction model for the independent test can be trained using the 
output of IBCGA and the whole training dataset.

The optimal feature selection problem C (n, m) is to select a 
small number m from a large number n of candidate features in 
which the interaction among features exist. IBCGA aims to effec-
tively solve the large-scale combinatorial optimization problem for 
delivering the value of m, the identified m features, and the values 
of c and γ. For applying IBCGA, all the candidate features were 

encoded into binary variables for optimal feature selection. The 
parameters (c, γ) were also encoded into the chromosome to be 
optimized at the same time. Based on the main effect difference 
(MED), the m features can be ranked according to the prediction 
contribution. The detailed description of the IBCGA and SVM al-
gorithms can be found in supplementary methods. Some applica-
tions of IBCGA and IEA in designing prediction models for bio-
medicine research can refer the studies [24–28].

Statistical Analysis
The descriptive values were expressed as mean ± standard de-

viation or as a median (ranges) when appropriate. The Mann-
Whitney U test was used to compare continuous variables. Pear-
son χ2 analysis or the Fisher’s exact test was used to compare cat-
egorical variables. The Kaplan-Meier method was used to estimate 
survival rates. A 2-tailed p < 0.05 was considered statistically sig-
nificant. The statistical analyses for the descriptive data were per-
formed using the IBM SPSS Statistics V22 (IBM, Armonk, NY, 
USA).

Patient and Public Involvement
Patients or the public were not involved in the design, or con-

duct, or reporting, or dissemination plans of our research.

Results

A total of 517 HCC patients with available CECT im-
ages and 2-year recurrence outcomes were finally en-
rolled in this study. Patients were randomly assigned to 
the training set (n = 362) and the test set (n = 155) in a 
ratio of 7:3. The baseline characteristics of the patients in 
the training and test sets are shown in Table 1. The patient 
characteristics between the 2 groups were generally com-
parable, except that patients in the test set had slightly 
higher serum potassium levels and lower percentage of 
microvascular invasion. During a median follow-up pe-
riod of 47.4 months (range 2.2–162.2 months), 239 
(46.2%) patients developed early recurrence after curative 
surgical resection.

Coarse-to-Fine Feature Selection and Analysis
A total of 6,284 images in the noncontrast phase, 5,919 

images in the arterial phase, and 6,190 images in the por-
tal venous phase were considered. For each of the 517 
patients, there were 1,451 radiomic features extracted for 
1 phase, including 24 morphology features, 6 edge fea-
tures, 11 intensity features, 440 Haralick features, 7 Hu 
moment invariant features, and 963 discrete wavelet 
transformed features. Among the 4,353 (= 1,451 × 3) ra-
diomic features, a total of 112 features after coarse feature 
selection were retained. A total of 138 and 143 features 
were served as the input candidate features of IBCGA to 
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design the preoperative and postoperative models, re-
spectively.

There were 41 features selected for designing the pre-
operative model with the MCC and accuracy of 0.476 and 
69.89% of 10-CV, respectively. The preoperative model 
achieved the test area under the receiver operating char-
acteristic curve (AUC), accuracy, and MCC of 0.739, 
72.90%, and 0.453, respectively (Table 2). The top 20 fea-
tures in the preoperative model ranked by the MED score 
and statistical significance of each feature were shown in 
online suppl. Table 1. The distribution of top 20 features 
in positive prediction and negative prediction and statis-
tical significance of each feature within whole data were 
given in online suppl. Figure 1.

From online suppl. Table 1, there were 5 statistically 
significant clinical features that the tumor size, BCLC 
stage, tumor number, GGT, and AST were ranked at 1, 3, 
9, 12, and 15, respectively, based on the MED score. There 
were 4, 8, and 3 radiomic features from the images of non-
contrast phase, arterial phase, and portal venous phase, 
respectively. The wavelet features with ranks 2 and 4 came 
from the tumor texture of the arterial phase in the presen-
tation of frequency domain. The Haralick feature rank 5 
came from the tumor texture of the noncontrast phase in 
the presentation of spatiality domain. The morphology 
and edge features of tumors ranked 6 and 7 also play an 
important role. It is noted that although some features 
were not significant, they were important in classifying 
samples in the subset of training datasets. Note that the 

feature of tumor intensity was not selected. The experi-
mental results reveal that the clinical and radiomic fea-
tures including texture, morphology, tumor edge features 
in the CECT images of 3 phases are informative. The fea-
tures selected for GARSL preclinical, GARSL radiomics, 
GARSL preoperative, and GARSL postoperative models 
are shown in online suppl. Tables 2–5.

Comparison of the GARSL Model with Machine 
Learning Methods
The evolutionary learning-derived method GARSL 

designed prediction models with interpretable features 
using an optimization approach to feature selection. The 
same training dataset and 138 features (26 preclinical fea-
tures and 112 radiomic features) were used to design pre-
operative models for performance comparison between 
GARSL and other well-known machine learning meth-
ods using the WEKA software [29] (Table 2). The 4 kinds 
of decision tree methods were compared. C4.5 is a statis-
tical classifier and is probably the most widely used ma-
chine learning method to date. Random tree is a decision 
tree with stochastic process. Hoeffding tree is an incre-
mental decision tree designed for large dataset. Logistic 
model tree is a combination of logistic regression and de-
cision tree. Logistic regression is a statistical model for 
predicting a binary dependent variable. The naïve Bayes 
classifier is a probabilistic machine learning method 
based on the Bayes theorem. Among the 7 prediction 
models, the GARSL model has the highest accuracy 
(69.89%) and MCC (0.476) of 10-CV, and test AUC 
(0.739), accuracy (72.90%), and MCC (0.453), and is sig-
nificantly better than other 6 prediction models.

Comparison between GARSL and ERASL Models
The performance comparison between the GARSL 

and ERASL models for prediction of early recurrence on 
the test set is shown in Table 3 and Figure 2. The ERASL-
pre model composed of gender, ABLI grade, AFP, tumor 
size, and tumor number, while the ERASL-post model 
had the addition of microvascular invasion. Compared to 
other preoperative prediction models, the GARSL preop-
erative model using both preclinical features and ra-
diomic features from CECT images had the best C-index 
of 0.695 and AUC of 0.739, which was significantly better 
than the GARSL using preclinical features (p < 0.001), 
GARSL using radiomic features (p < 0.001), and ERASL 
using preclinical features (p < 0.001). After incorporation 
of 5 postoperative pathological features, the GARSL post-
operative model had further improved C-index of 0.710 
and AUC of 0.741, which was significantly better than the 

Table 2. Performance comparison of GARSL with other well-known 
machine learning models to predict early recurrence using both 
clinical and radiomic features

Method 10-CV (n = 362) Test set (n = 155)

accuracy, 
%

MCC accuracy, 
%

MCC AUC

GARSL 69.89 0.476 72.90 0.453 0.739
C4.5 56.35 0.119 57.42 0.172 0.610
Random tree 51.93 0.038 61.29 0.228 0.615
Hoeffding tree 61.33 0.216 68.39 0.361 0.718
Logistic model tree 63.54 0.262 67.74 0.346 0.716
Logistic regression 54.14 0.085 60.65 0.212 0.642
Naïve Bayes 61.05 0.211 67.10 0.335 0.716

Formulas, indexes, and modeling details of every method are 
described in the online suppl. File. CV, cross-validation; MCC, 
Matthews correlation coefficient; AUC, area under the receiver 
operating characteristic curve; GARSL, genetic algorithm for 
predicting recurrence after surgery of liver cancer.
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GARSL preoperative model (p < 0.001) and the ERASL-
post model (p < 0.001).

The 2 year recurrence rates in the high- and low-risk 
groups on the test set were 75% and 38% for GARSL pre-
operative model (Fig.  3a) and 73 and 29% for GARSL 
postoperative model (Fig. 3b), whereas the 2-year recur-
rence rate in the high-, medium-, and low-risk groups 
were 86, 59, and 34% for the ERASL pre model (Fig. 3c), 
and 70, 61, and 27% for ERASL-post model (Fig. 3d).

Discussion

In this study, we developed evolutionary learning-de-
rived GARSL models using both clinical and radiomic fea-
tures for predicting early recurrence of HCC after surgical 
resection. The experimental results showed that the GARSL 
models using additional radiomic features performed well 
and were significantly better than the current clinical model 
ERASL and several well-known machine learning models.

Table 3. Performance of the GARSL and ERASL models for prediction of early recurrence

Method Feature type Training set (n = 362) Test set (n = 155)

AUC C-index (SE) AUC C-index (SE) p value

GARSL Preclinical 0.863 0.790 (0.016) 0.679 0.647 (0.034) <0.001*
GARSL Radiomics 0.740 0.518 (0.023) 0.566 0.533 (0.035) <0.001*
GARSL Preoperative 0.781 0.738 (0.018) 0.739 0.695 (0.032) REF
GARSL Postoperative 0.767 0.723 (0.019) 0.741 0.710 (0.031) <0.001*
ERASL-pre Preoperative 0.667 0.659 (0.021) 0.687 0.672 (0.017) <0.001*
ERASL-post Postoperative 0.672 0.656 (0.022) 0.688 0.666 (0.018) <0.001†

C-index, concordance index; AUC, area under the receiver operating characteristic curve; SE, standard error; 
ERASL, early recurrence after surgery for liver tumor; GARSL, genetic algorithm for predicting recurrence after 
surgery of liver cancer. * p value compared to the GARSL preoperative score. † p value compared to the GARSL 
postoperative score.

Fig. 2. Receiver operating characteristic curves of the GARSL and ERASL models in predicting early recurrence 
in the test set. AUC, area under the receiver operating characteristic curve; ERASL, early recurrence after surgery 
for liver tumor; GARSL, genetic algorithm for predicting recurrence after surgery of liver cancer.
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Fig. 3. Kaplan-Meier curves of the early RFS stratified by the GARSL and ERASL models. GARSL preoperative 
model (a), GARSL postoperative model (b), ERASL-pre model (c), ERASL-post model (d). ERASL, early recur-
rence after surgery for liver tumor; RFS, recurrence-free survival; GARSL, genetic algorithm for predicting recur-
rence after surgery of liver cancer.
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Our novel evolutionary learning-derived method 
GARSL aims to identify a minimal set of features with in-
teraction while maximizing prediction accuracy by con-
sidering all the available candidate features. The feature 
selection of GARSL identifies a set of features with inter-
action at a time rather than individual features one by 
one, which was different from traditional feature selec-
tion methods based on the p value of individual features 
or human domain knowledge without considering fea-
ture interaction. Therefore, some related features such as 
ALT and AST, or tumor factors and BCLC stage, would 
be selected if they could improve the prediction accuracy. 
The situation might occur that the addition of some sig-
nificant features such as AFP (p value = 6.89 × 10−4 using 
the Mann-Whitney U test) could not increase the predic-
tion accuracy. Some features which were not selected did 
not necessarily mean that they were not significant but 
that they did not improve the accuracy of the final model. 
The features usefulness in the prediction of recurrence is 
somewhat different from the aspects of human knowl-
edge.

Most researchers used 70/30 of the training/test ratio 
in separating small datasets [30]. The influence of data 
splitting depends on the dataset and prediction model. 
Generally, a small training dataset (or ratio) would fre-
quently result in overtraining, while the performance 
may be not representative if the test dataset is too small in 
evaluating prediction models. If the dataset is large 
enough, 80/20 is commonly used. If the performance of 
the training set and test set is too different, overtraining 
may exist. When the training dataset is not large enough, 
there is always the possibility of overtraining if the meth-
od aims to maximize the prediction accuracy. Generally, 
the 10 fold CV or 5-CV is utilized in training the model 
to reduce the overtraining degree, which was used in our 
proposed method GARSL. Another approach to reducing 
the possibility of overtraining is to increase the size of the 
training dataset. Learning from the feedback of the pre-
diction model, the test accuracy would be increased and 
close to the training accuracy.

Although many factors have been identified to be as-
sociated with early recurrence of HCC in the past de-
cades, currently there are only few prediction models. 
The recently proposed ERASL-pre and ERASL-post 
models, which stratified patients into high-, medium-, 
and low-risk of early recurrence, were derived from inde-
pendent predictors of early recurrence by using the con-
ventional Cox regression hazard model. Experimental re-
sults showed that the GARSL models, which only stratify 
patients into high- and low-risk groups of 2-year early 

recurrence, had better prediction accuracy than the 
ERASL-pre and ERASL-post models. Our data suggest 
that evolutionary learning-derived prediction models 
may significantly improve the predictive accuracy than 
conventional regression models and by input additional 
radiomic features further improves the accuracy than us-
ing clinical features only. Of note, although the accuracy 
of the GARSL postoperative model was significantly bet-
ter than the GARSL preoperative model, the AUC was 
close and recurrence rates between high- and low-risk 
groups of the 2 GARSL models were similar (Table  3; 
Fig. 2). A recent study has shown that some pathological 
features, such as microvascular invasion, might be pre-
dicted by radiomic features [11], which may explain why 
adding postoperative pathological features only slightly 
improve the predictive accuracy.

Currently, several machine learning methods have 
been developed but which method has better perfor-
mance was unclear. In this study, we compared the per-
formance of the GARSL method and other well-known 
machine learning methods using the same feature set, in-
cluding 26 clinical features and 112 radiomic features. 
Our results showed that GARSL achieved the best perfor-
mance in terms of accuracy, MCC, and AUC on both 
training and test datasets (Table 2), suggesting that the 
evolutionary learning method GARSL have the advan-
tages over the compared machine learning methods: (1) 
IBCGA is good at feature selection using the IEA and (2) 
the optimal feature selection and parameter values of 
SVM were simultaneously optimized by maximizing the 
10-CV accuracy.

The machine learning approach has been introduced 
to many aspects of HCC, including the radiomic analysis 
using MRI [31], digital pathology [32], incorporation of 
genomic data [33], and microRNA signature [34]. MRI, 
which includes T1, T2, diffusion-weighted imaging, as 
well as dynamic contrast phases and hepatobiliary phase, 
may provide more radiomic information as compared to 
CECT images. Although tumor segmentation using MRI 
is more complicated, whether MRI radiomics have more 
prognostic value than CT radiomics warrants further re-
search. By incorporation of more comprehensive data in 
machine learning models, such as other imaging modali-
ties, digital pathology, and genomics, would further im-
prove precision medicine in the future.

Our GARSL models would assist physicians and sur-
geons on treatment decision and follow-up program for 
patients with resectable HCC. For patients with low-risk 
of HCC recurrence, surgical resection would be highly 
encouraged, whereas for patients with high-risk of early 
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recurrence after surgical resection, a more stringent sur-
veillance strategy might be given and clinical trials of ad-
juvant or neoadjuvant systemic therapies could be con-
sidered [8]. Nevertheless, the feasibility of applying this 
model in real-world practice remains challenging given 
the complexity of the model. The successful deployment 
of the artificial intelligence-driven health technologies, 
including auto-segmentation for liver tumor, requires in-
vestment to strengthen the underlying health system in 
the future [35].

This study has some limitations. First, this is a single-
center study. The accuracy of the GARSL model needs 
further external validation from other institutions in the 
future. Second, the impact of viral load or antiviral ther-
apy in patients with HBV or HCV infection was not ana-
lyzed in the current model. The input of more clinical 
parameters might further improve the accuracy of the 
model. Third, the input of CECT radiomics needs manu-
al segmentation of HCC by experienced radiologists. 
More efforts are required for the development of auto-
mated tumor segmentation to facilitate future application 
of radiomics analysis.

In conclusion, we developed an evolutionary learning-
derived method GARSL for designing prediction models 
with interpretable features by incorporation of clinical 
and radiomic features of CECT images to predict early 
recurrence of HCC after surgical resection. The experi-
mental results showed that the well-known clinical fea-
tures (tumor size, BCLC stage, and tumor number) and 
radiomic feature types (texture, morphology, and edge of 
tumors) in 3 phases of CECT images play important roles 
with quantitative assessment in predicting early recur-
rence of HCC through an optimal feature selection. The 
GARSL models had significantly better prediction perfor-
mance than some typical machine learning models and 
currently available clinical models. Our study shows po-
tential for use of this approach in designing and guiding 
patient care in the future.
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