Skip to main content
. 2021 Sep 20;10(6):572–582. doi: 10.1159/000518728

Table 3.

Performance of the GARSL and ERASL models for prediction of early recurrence

Method Feature type Training set (n = 362)
Test set (n = 155)
AUC C-index (SE) AUC C-index (SE) p value
GARSL Preclinical 0.863 0.790 (0.016) 0.679 0.647 (0.034) <0.001*
GARSL Radiomics 0.740 0.518 (0.023) 0.566 0.533 (0.035) <0.001*
GARSL Preoperative 0.781 0.738 (0.018) 0.739 0.695 (0.032) REF
GARSL Postoperative 0.767 0.723 (0.019) 0.741 0.710 (0.031) <0.001*
ERASL-pre Preoperative 0.667 0.659 (0.021) 0.687 0.672 (0.017) <0.001*
ERASL-post Postoperative 0.672 0.656 (0.022) 0.688 0.666 (0.018) <0.001†

C-index, concordance index; AUC, area under the receiver operating characteristic curve; SE, standard error; ERASL, early recurrence after surgery for liver tumor; GARSL, genetic algorithm for predicting recurrence after surgery of liver cancer.

*

p value compared to the GARSL preoperative score. † p value compared to the GARSL postoperative score.