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Increased lymphangiogenesis and lymph node metastasis, the important prognostic indicators of
aggressive hepatobiliary malignancies such as hepatocellular cancer and cholangiocarcinoma, are asso-
ciated with poor patient outcome. The liver produces 25% to 50% of total lymphatic fluid in the body and
has a dense network of lymphatic vessels. The lymphatic system plays critical roles in fluid homeostasis
and inflammation and immune response. Yet, lymphatic vessel alterations and function are grossly
understudied in the context of liver pathology. Expansion of the lymphatic network has been documented
in clinical samples of liver cancer; and although largely overlooked in the liver, tumor-induced lym-
phangiogenesis is an important player, increasing tumor metastasis in several cancers. This review aims to
provide a detailed perspective on the current knowledge of alterations in the hepatic lymphatic system
during liver malignancies, as well as various molecular signaling mechanisms and growth factors that may
provide future targets for therapeutic intervention. In addition, the review also addresses current
mechanisms and bottlenecks for effective therapeutic targeting of tumor-associated lymphangiogenesis.
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With >780,000 deaths occurring each year worldwide,
liver cancer is the fourth leading cause of cancer-related
deaths.1 Incidence rates of liver cancers have been
increasing in the United States since 1980, with an esti-
mated 42,810 new cases of primary liver cancer and
intrahepatic cholangiocarcinoma (iCCA) to be diagnosed
in 2020 (30,170 estimated in men, and 12,640 estimated in
women) (American Cancer Society, Cancer Statistics
Center, http://cancerstatisticscenter.cancer.org, last
accessed September 13, 2020). Depending on the cellular
origin and anatomic location, liver cancers can be
broadly divided into two types: primary, those that start
in the liver; and secondary, those that start in another
organ and metastasize to the liver.2

Types of Liver Cancer

Depending on the cellular origin and anatomic location,
primary liver cancers are as follows:
stigative Pathology. Published by Elsevier Inc
Hepatocellular Carcinoma

Hepatocellular carcinoma (HCC) accounts for >90% of all
primary liver cancers.3 It is also a leading cause of death in
many parts of the world, especially in low-resource coun-
tries.3 Several studies looking at prognostic signatures and
cellular markers have identified hepatocytes and hepatic
progenitor cells as the primary cells of origin of HCC. Risk
factors identified for HCC involve: i) nonalcoholic fatty
liver disease, caused by metabolic syndromes, such as
. All rights reserved.
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Role of Lymphatics in Liver Cancer
obesity and diabetes mellitus, resulting in steatosis, which
ultimately causes nonalcoholic steatohepatitis; ii) hepatitis B
and C infection; and iii) excessive alcohol consumption,
leading to cirrhosis. Fatty liver disease, diabetes, and alco-
holic cirrhosis are also well-documented risk factors for
HCC in the United States and Europe.4 In addition, genetic
diseases, such as a-1 antitrypsin deficiency, hemochroma-
tosis, and Wilson disease, can also independently predispose
an individual toward HCC.5
Intrahepatic Cholangiocarcinoma

iCCA, originating in the biliary epithelial cells (ie, chol-
angiocytes) inside the liver, accounts for 10% to 20% of
primary liver cancer cases worldwide. It represents the
second most common, but the most lethal form of primary
liver cancer. Most cases present at late stage of progression,
and surgical resection remains the only option for cure, with
post-surgery survival time ranging from 27 to 36 months.6

Thus, iCCA is considered as one of the most aggressive
forms of cancer, with only 15% of all cholangiocarcinoma
(CCA) patients with resectable tumors during diagnosis.
Risk factors for CCA are similar to those of HCC. However,
biliary inflammation and fibrosis observed in liver diseases,
such as primary biliary cholangitis, primary sclerosing
cholangitis, and hepatolithiasis, have also been noted to be
risk factors for CCA.7,8
Hepatic Angiosarcoma

Primary hepatic angiosarcoma is a relatively rare but
aggressive form of liver cancer and represents 0.1% to 2%
of all primary liver cancers. It is considered the third most
common liver malignancy and originates in the endothe-
lial cells lining the blood vessels and lymphatic vessels
(LVs) of the liver.9 The risk factors for hepatic angio-
sarcoma are similar to those of HCC and CCA but also
include epithelioid hemangioendothelioma, Kaposi sar-
coma, and fibrosarcoma.10 Because of the lack of specific
symptoms and the rarity of cases, the diagnosis of hepatic
angiosarcoma remains a challenge. There is a poor
prognosis associated with surgical resection, which is the
only option for treatment; only 3% of patients live >2
years after surgery, whereas most die within 6 months of
diagnosis.11
Secondary Liver Cancer

Cancers originating in other organs metastasize to the liver
to form secondary liver cancer. Incidence rates of secondary
liver cancers are higher than primary liver cancers in the
United States, Europe, Asia, and Africa.2
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Lymphatic Involvement in Precancerous Liver
Disease and Contribution to Disease
Progression
Human liver produces 25% to 50% of the body’s total
lymph fluid.12 The LVs of the liver can be divided into two
types: intrahepatic LVs, which lack muscle cells; and
extrahepatic muscular collecting LVs.13,14 Recent evidence
from murine models suggests that the lymphatics are orga-
nized segmentally, and collecting lymphatics drain to hilar
nodes.15 Furthermore, the intrahepatic lymphatic vessels are
exclusively located near the portal triads.15e17 Lymphatic
capillaries in the portal tract coalesce into collecting vessels
and drain to lymph nodes (LNs) at the hepatic hilum.18

Anatomically, hepatic lymphatic system has three distinct
locations in the liver: portal, sublobular, and superficial
LVs, all originating from hepatic sinusoids. About 80% of
the hepatic lymph is carried by portal LVs, whereas sub-
lobular and superficial LVs carry the rest. An excellent
summary of the site of origin and anatomic distribution of
the hepatic LVs can be found in the review by Ohtani and
Ohtani.13 The plasma components of blood filtered by he-
patic sinusoidal endothelial cells enter the space of Disse
that produces hepatic lymph. This lymph then travels
through the space of Mall and is finally carried by the portal
LVs.13,19 The portal LVs, consisting of interconnecting
branches, form a network where the portal tract splits and
extends until the terminal portal tract. The sublobular LV is
distributed throughout the hepatic sinusoids, space of Disse,
and connecting channels between space of Disse and peri-
hepatic interstitial tissue.20 As in LNs, the liver provides a
space for antigen recognition in interstitial fluid and by
immune cells carried by the lymph. The liver also plays a
critical role in immune cell trafficking to the lymph nodes
via lymphatic fluid.13,14 The frequency of lymph node
metastasis (LNM) in patients of hepatic malignancy un-
dergoing hepatic resection ranges from 5% to 50%.21

Hence, it is crucial to consider the extent and role of
lymphatic dysfunction in precancerous liver diseases.
However, these mechanisms are not well characterized, and
only a handful of studies have reported lymphatic
dysfunction in chronic liver diseases.22 Inflammation is one
of the prime modulators of cholestatic liver disease and is
often associated with viral infection of the liver and drug-
related toxicity.23 One of the less common but potentially
lethal forms of lymphatic dysfunction occurring after liver
injury is fulminant hepatic failure, which is believed to be a
manifestation of Hodgkin lymphoma. About 90% of pa-
tients experiencing this devastating condition die before
liver transplant.24 In fulminant hepatic failure, lymphocytes
are hyperactivated and coupled with massive hepatocyte
apoptosis and necrosis. In patients with fulminant hepatic
failure, coagulopathy and encephalopathy set quickly after
the liver insult in the absence of any previous liver condi-
tion. An increased lymphatic flow and a large number of
2053
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LVs have also been reported in cirrhosis and hepatic
fibrosis. This is maybe due to increased expression of
lymphangiogenic growth factors, such as vascular endo-
thelial growth factor (VEGF)-C and VEGF-D during the
progression of the pathology.25 Increased lymphangio-
genesis observed during inflammatory liver diseases has
been shown to have a direct correlation with disease
severity.24,26 In vivo high-resolution fluorescence micro-
scopy in rat models of liver fibrosis and cirrhosis demon-
strated that delay of macromolecular blood hepatocytic
exchange is associated with increased lymphatic drainage,
and lymphatic drainage functions as a compensatory
mechanism.24

Most cholestatic liver diseases, such as primary scle-
rosing cholangitis, cirrhosis, and cholelithiasis, are major
risk factors for liver cancer development.27 Cholestasis is
defined as the obstruction of bile flow from the liver. The
presence of an inflammatory microenvironment in several
liver diseases, such as cirrhosis, fibrosis, primary biliary
cholangitis, and primary sclerosing cholangitis, induces
infiltration of cytokines such as chemokine (C-C motif)
ligand (CCL) 21, by several immune cells, which further
causes an increased flow of immune cells to nearby draining
LNs.28 Given their involvement in a vast range of liver
pathologies, lymphatic endothelial cells (LECs) in the liver
are believed to participate in different physiological func-
tions.28 Levels of lipopolysaccharide are significantly
elevated in portal vein circulation during cirrhosis, which
induces the expression of NF-kB in LECs, thus up-
regulating lymphangiogenesis by increasing Prospero ho-
meobox 1 protein (Prox1) and VEGF receptor (VEGFR)-3
expression.29 Cancer cells expressing CCR7 migrate toward
CCL21, produced by inflamed LECs, whereas in certain
cancers, such as gliomas, CCL21 chemokine gradients drive
tumor cell dissemination. LECs also regulate immune
evasion, where LECs recruit regulatory T cells known to
cause clonal anergy and death of CD8þ T cells that kill
cancer cells.30,31 Hence, to identify lymphatic infiltration
and early stages of cancer-related lymphangiogenesis, the
establishment of molecular markers becomes necessary to
precisely recognize lymphangiogenesis in liver.
Lymphatic Markers in Liver Pathologies and
Tumor-Related Lymphangiogenesis

Traditionally, lymphatic markers of LECs have been used to
determine lymphatic dysfunction and tumor-related lym-
phangiogenesis. In the liver, pinpointing a specific lymphatic
marker is complicated because several lymphatic markers are
expressed by different hepatic and biliary cell types, espe-
cially during pathologic conditions. At present, a combina-
tion of other markers specific to a pathologic liver condition
seems to be the best way for identifying hepatic dysfunction
of the lymphatic system. Some of the lymphatic-specific
markers that are also expressed by other liver cells are
2054
lymphatic vessel hyaluronan receptor 1 (Lyve1), Prox1,
podoplanin, and VEGFR-3. An excellent summary of these
markers commonly used in other organs along with their
expression in different hepatic cell types has been previously
provided.16,18 Given this complicated scenario, for immu-
nofluorescence analysis and identification of lymphatic
infiltration in liver tumors, an effective combination could be
the use of one of the lymphatic markers (like LYVE1 or
podoplanin) along with a cholangiocyte-specific marker:
cytokeratin 19.17
Lymphatics and Liver Cancer

Although the role of lymphatics in hepatic abnormalities
remains primarily unexplored, several correlation studies in
the two primary liver malignancies, HCC and CCA, have
demonstrated that patients with increased LNM and
enhanced lymphatic infiltration have significantly poor
prognosis and poor patient outcome. Herein, the review
summarizes some of the current findings in both HCC and
CCA.
Lymphatic Involvement in HCC

Limited reports in literature provide detailed accounts of
lymphatic involvement in HCC.32 Furthermore, LNM is a
relatively rarer occurrence in HCC. However, several recent
studies have found that LN metastasis was correlated with
low survival and aggressive disease progression in HCC.21,33

In a population of HCC patients, worst prognosis was
observed in patients with LNM, suggesting that liver resec-
tion coupled with lymphadenectomy could have larger pa-
tient benefit.34 In a study of 403 patients of HCC, regional
lymph node metastasis was found in 41% of patients,
whereas periceliac node involvement was observed in 33% of
patients and 23% had portohepatic lymph node infiltration.35

Increased lymphangiogenesis is reported in the intratumoral
septa as well as within the bulk of tumor cells in HCC and
corelates with significantly lower survival.36 HCC patient
samples have increased lymphatic vessels (that are Lyve1þ-

Prox-1þ), which are pronounced in fibrotic areas surrounding
primary tumor.37 Cirrhosis, viral hepatitis, and opportunistic
infections following orthotopic liver transplantation show
enlarged benign lymph nodes in patients.38 Because cirrhosis
and viral hepatitis are considered to be risk factors for HCC,
it is often difficult to assess the main contributing factor
behind inflammation and LN remodeling and enlargement
observed in such patients. However, the autopsy of HCC
patients indicates 27% to 42% lymphatic spread.39 Three
chief prognostic factors of HCC include localized tumor
growth, vascular invasion, and LNM.40 Furthermore, multi-
ple lymphatic regulators, like hypoxia-inducible factor-1⍺
and VEGFR-3, have been identified to be biomarkers for
HCC LNM.41 Analysis of serum long noncoding RNA
determined three predictive long noncoding RNAs
ajp.amjpathol.org - The American Journal of Pathology
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(ENST00000418803, long noncoding ZNF35-4:1, and long
noncoding EPS15L1-2:1) that could be predictive of the
HCC LNM status.42 HCC cases that show increased
expression of VEGF-C are predisposed to increased LNM.
VEGF-Deoverexpressing HCC tumor cells promote lym-
phangiogenesis and lymphatic metastasis and these effects
are inhibited in presence of soluble VEGFR-3 that seques-
tered VEGF-D produced by the tumor cells.4 These obser-
vations point toward a critical need to address LNM in HCC
using lymphatic-targeted molecular therapies.

Lymphatic Involvement in CCA

CCA or biliary epithelial cancer is a rare but highly
aggressive hepatic biliary malignancy, with approximately
5000 new cases being registered each year in the United
States alone.43 The devastating aggressiveness of CCA is
represented by the fact that only 2% of patients survive 5
years after detection of LNM.44 There are three chief types
of CCA: iCCA (formerly described), perihilar CCA (iden-
tified as the most common type of CCA, representing 50%
to 60% of all CCA cases), and distal CCA. iCCA originates
in the intrahepatic bile ducts close to the liver lymphatics.
Perihilar CCA involves tumor development in the origin of
left and right hepatic ducts near the hepatic hilum at the
junction of the cystic duct and common hepatic duct.45

Distal CCA represents 20% to 30% of all CCA cases and
arises in the cholangiocytes of extrahepatic bile ducts.45

Risk factors of CCA are similar to those of HCC and
include primary sclerosing cholangitis, cirrhosis, liver fluke
infections, hepatitis B virus and hepatitis C virus infections,
choledocholithiasis, and hepatolithiasis, as well as chronic
pancreatitis.46 Almost all of these risk factors for HCC
contribute to the development of an inflammatory micro-
environment in the liver, which augments CCA growth and
metastasis.43 As a result, the CCA tumor microenvironment
(TME) is proinflammatory, desmoplastic, and has a dense
stroma involving a large number of cell types, such as
carcinoma-associated fibroblasts, T cells, macrophages, and
others, which interact closely with CCA cells.47 The posi-
tive correlation between poor patient prognosis and LNM
indicates that tumor-related lymphangiogenesis is a critical
determinant of CCA progression.48,49 The interaction be-
tween carcinoma-associated fibroblasts and CCA is thought
to play a role in lymphangiogenesis in the prolymphangio-
genic CCA TME.47 For instance, CCA cells secrete platelet-
derived growth factor (PDGF)-D, which binds to PDGF
receptor-b on carcinoma-associated fibroblasts and stimu-
lates carcinoma-associated fibroblasts to secrete VEGF-C.50

VEGF-C/VEGFR-3 is up-regulated in the CCA TME and is
also related to poor patient prognosis. Hypoxia-inducible
factor-1⍺, which is considered the master regulator of
hypoxia-related changes in cancer, supports lymphangio-
genesis by promoting expression of angiopoietin (Ang)-1/2,
VEGF-C/D, and PDGF-B from neoplastic cells in TME of
various cancer types.51 Interestingly, the increased
The American Journal of Pathology - ajp.amjpathol.org
expression of hypoxia-inducible factor-1⍺ in CCA TME has
been associated with poor patient prognosis.52 Typically, in
CCA, high lymphatic vessel density is associated with
extensive lymphatic spread and high frequency for CCA
recurrence.53
Molecular Mechanism of Lymph Node
Metastasis in Liver Cancer

Several molecular pathways have been reported in liver
cancers. The following sections highlight some of the
growth factors, chemokines, and cytokines that are associ-
ated with liver cancer metastasis and tumor-associated
lymphangiogenesis.
Growth Factors

Several growth factors have been implicated, such as the
following:

i) Hepatic growth factor: Hepatic growth factor has been
shown to instigate proliferation, tube formation, and
migration of LECs by downstream extracellular signal-
regulated kinase 1/2 and phosphatidylinositol 3-kinase
signaling. Increased expression of c-Met, the receptor
for hepatic growth factor, is associated with poor
prognosis and increased tumor spread.54

ii) Insulin-like growth factor (IGF): IGF-1/2 are poly-
peptide hormones and signal through their receptors,
IGF-1 receptor/IGF-2 receptor. Known as the IGF
system, this group of two growth factors and their
respective receptors also includes six IGF binding
proteins. Previous literature suggests a prominent role
of IGFs in tumorigenesis, cancer proliferation, and
survival.55 Some of the downstream signaling pathways
of IGF include phosphatidylinositol 3-kinase and Akt.
In addition, IGF-1/2 may promote lymphangiogenesis
through VEGF-C/D pathways as well as induce
lymphatic vessel sprouting independent of the VEGF-
C/D/VEGFR-3 axis.55

iii) Fibroblast growth factor (FGF): The FGF family, con-
sisting of structurally similar ligands and receptors
(FGF receptors 1, 2, 3, and 4) expressed in endothelial
cells, has been known to promote angiogenesis and
may also induce lymphangiogenesis either by up-
regulating Prox1 or by the Akt/mechanistic target of
rapamycin/p70S6K pathway.56,57 Increased expression
of FGF receptor-2 has been observed in several cancers
and is a significant therapeutic target in CCA.58 Acti-
vating FGF receptor mutations in cancer cells lead to
activation of rapidly accelerated fibrosarcoma (RAF)/
mitogen-activated protein kinase kinase 1/extracellular
signal-regulated kinase or the AKT/mechanistic target
of rapamycin pathways that are known to directly
stimulate lymphangiogenesis.59
2055
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iv) Angs: Ang-2, a ligand for endothelial TEK (Tie2)
tyrosine kinase receptor, is induced in hypoxic endo-
thelial cells of tumors.60 The Ang family consists of
well-characterized Ang-1 and Ang-2 with their receptor
Tie-2. Limited information is available about Angs in
lymphangiogenesis. Ang-1 is shown to play a role in
LEC proliferation and lymphatic vessel sprouting,
whereas Ang-2 knockout mice exhibited severe
lymphatic dysfunction.60 Ang-1 plays a role in vessel
enlargement and vasculogenesis and also promotes in-
flammatory lymphangiogenesis.61

v) VEGF: Many studies have pointed out the role of the
VEGF-C/D/VEGFR-3 axis in cancer progression, in
LNM, and associated with poor prognosis. VEGF-C
and VEGF-D drive lymphangiogenesis and lymphatic
remodeling in tumors that significantly correlate with
tumor metastasis to LNs and distant organs.62 Notably,
lymphatic vessels closer to the metastatic front of the
tumor were found to be enlarged and dilated, pointing
to the critical regulatory role of VEGFs in mediating
tumor-related lymphangiogenesis and LNM.

vi) Endoglin: Endoglin (CD105) is a transmembrane
glycoprotein coreceptor of transforming growth factor-
b, which was found to be distinctly overexpressed in
tumor LECs isolated from metastatic fibrosarcoma-
based mouse model. The same study showed a
similar overexpression of head and neck squamous cell
carcinoma and colorectal cancer, thus revealing a
possible role for endoglin in the induction of tumor
lymphangiogenesis.63

vii) Neuropilins: Neuropilins are a family of transmembrane
semaphorin and VEGF coreceptors. VEGF-C/D bind to
neuropilin-2 and VEGFR-3 to induce lymphangio-
genesis. In preclinical studies, antibodies targeting
neuropilin-2 have reduced lymphangiogenesis and
metastasis.64 Thus, in addition to VEGF-C/VEGFR-3,
neuropilins can be an essential target for managing
tumor lymphangiogenesis.
Inflammatory Chemokines

Because the TME is predominantly inflammatory in
composition, the role of inflammatory chemokines secreted
by different cellular members of the TME and cancer cells is
fast emerging to be critical in understanding the funda-
mental concepts of cancer progression, such as increased
tumor cell migration and LNM. LECs are critical players in
the inflammatory process and secrete several chemokines,
such as CCL19 and CCL21, which bind to CCR7, and
CXCL12, which binds and signals through C-X-C chemo-
kine receptor type 4 (CXCR4). These chemokines serve
essential functions, such as lymphocyte homing and den-
dritic cell migration to lymphatic vessels. Lymphatics ex-
press several chemokines and cytokines as well as many
receptors that provide a mechanism of interaction with
2056
tumor cells that further contribute to increased LNM.65

Tumor cells drive the formation of a prometastatic niche;
and in response to inflammation and immune response, LN
LECs show a dramatic response that is in tandem with
proliferation of LECs. This further coincides with increased
expression of chemokines by the LNs that promote tumor
migration.62

The overall interaction between the tumor cells and
lymphatic endothelial cells that promote tumor growth and
lymph node metastasis is schematically outlined in Figure 1.
Role of Lymphatics in Cancer
Immunomodulation

In addition to aberrant lymphangiogenesis during malig-
nancy and pathologic infection, lymphatics play a critical
role in regulating some of the vital antitumor responses by
immune cells. As the literature is limited about role of
lymphatics in immune response of liver cancers, herein we
discuss some of the key mechanisms that have been reported
for the lymphatics in immune regulation of other cancers.
One of the chief molecular factors regulating lymphangio-
genesis is VEGF-C. In fact, high serum levels of VEGF-C
have been suggested as a potential biomarker for deter-
mining immunotherapeutic outcome in metastatic mela-
noma. VEGF-C was shown to potentiate immunotherapy by
attracting naïve T cells, and serum levels of VEGF-C could
potentially be a useful biomarker for predicting immuno-
therapy response.66 Murine models lacking dermal LVs lack
an adaptive immune response to tumors, thus highlighting
the critical role of LVs in initiating antitumor immunity.
One way the LVs can mobilize tumor antigens is via den-
dritic cells transported with lymph to the TME and LNs.30

This observation posts a challenge to develop anti-lym-
phangiogenic therapeutic strategy as blocking LV formation
limits adaptive antitumor immunomodulation. In melanoma,
LVs are known to recruit CD8þ T cells to the TME via
CCL21. The increased presence of activated CD8þ T cells
has been found in primary melanoma tumor sites thought to
occur via VEGF-C/VEGFR-3 signaling.67 Contrary to the
positive effects of lymphatics in cancer immunotherapy,
LVs are also known to carry immunosuppressive factors
from solid tumors, thus compromising antitumor immu-
nity.68 Some of the antigens transported via lymph and
scavenged and presented by LECs are used by cancer cells
to develop tolerance against CD8þ T cells.69 LECs show
several similarities to liver sinusoidal endothelial cells with
regard to antigen processing and cross-presenting capacity.
However, they do not show similar immunostimulatory
phenotype, as exhibited by the liver sinusoidal endothelial
cells (SLECs), and have low expression of costimulatory
molecules, such as CD40, CD80, and CD86. This has been
attributed to different levels of endotoxin in the portal blood
compared with peripheral lymph.69 LECs are also known to
ajp.amjpathol.org - The American Journal of Pathology
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Figure 1 Molecular pathways that promote lymphangiogenesis in liver cancers. Under hypoxia, hypoxia-inducible factor-1⍺ (HIF1⍺) increases the
transcription of lymphangiogenic factors, such as angiopoietin-1/2 (ANG1/2), vascular endothelial growth factor (VEGF)-C/D, platelet-derived growth factor
(PDGF)-B, and PDGF-D. PDGF-D secreted from hepatic cancer cells bind to PDGF receptor (PDGFR)-B expressed on the surface of cancer-associated fibroblast
(CAFs), which, in turn, leads to increased transcription of VEGF-C from CAFs. The VEGF-C secreted from CAFs binds to VEGF receptor (VEGFR)-3 on lymphatic
endothelial cells (LECs) and induces lymphangiogenesis. In the background of preexisting liver diseases, such as cirrhosis, NF-kB pathway is stimulated in
LECs, which increases transcription of Prospero homeobox 1 protein (PROX1) and VEGFR-3, thus up-regulating LEC proliferation and lymphangiogenesis. All
these processes lead to a high degree of lymphangiogenesis in the hepatic tumor microenvironment, ultimately aggravating lymph node metastasis. Generated
with BioRender.com (Toronto, ON, Canada).

Role of Lymphatics in Liver Cancer
present programmed death-ligand 1 to CD8þ T cells to
cause T-cell clonal anergy.70
Targets and Bottlenecks in Therapeutic
Targeting of Lymphatics and
Lymphangiogenesis in Liver Cancer

Therapies targeting tumor-related neovascularization over the
past two decades have mainly focused on angiogenesis.
Currently,>20 different anti-angiogenic drugs exist that have
been approved by the Food and Drug Administration of the
United States.71 However, despite this growing number of
anti-angiogenic drug discoveries, the impact of these drugs
on cancer patient health has been modest at best, with no
existing drugs targeting lymphangiogenesis. Furthermore, the
mechanisms of lymphangiogenesis remain even more poorly
understood in the context of liver cancers, further challenging
development of effective therapies.46 Because of the grim
The American Journal of Pathology - ajp.amjpathol.org
outcome after LNM in cancer patients, there remains a crit-
ical need to understand the specific molecular mechanisms of
neovascularization while considering tumor-related lym-
phangiogenesis. In most of these cancer types, tumor-related
lymphangiogenesis involves high levels of VEGF-C pro-
duction. VEGF-C, which signals through VEGFR-2/3, in-
duces LEC division, survival, and LV formation.72 Studies
targeting tumor lymphangiogenesis in mouse have had mixed
success. These studies show that although tumor cells exploit
lymphatic drainage to hijack normal immune cell trafficking
and reach LN, antitumor CD8þ T cells also need lymphatic
drainage for active antitumor surveillance, which may
explain the minimal efficacy of this study.73 A recent clinical
study targeting VEGFR-3 was developed, which did not
show heightened reduction of tumor growth.74 Tumor-related
lymphangiogenesis can occur in distant organs and LNs
before LNM, due to preconditioning by primary tumor cells
to form a prometastatic niche.62 Gogineni et al75 showed that
lymphatics of distant organs undergo significant structural
2057
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remodeling that is affected by the stage of cancer progression.
Post-LNM targeting VEGF-C with blocking antibodies
inhibited lung metastasis in murine cancer model.75 Postnatal
lymphangiogenesis, however, is not limited to only VEGF-C,
and cytokines, growth factors, and hormones have been
shown to induce VEGFR-3eindependent lymphangiogenesis
as well.76 The quest for a suitable, robust lymphangiogenic
target is further complicated by active molecular cross talk
between blood and LECs. VEGFR-2, expressed on blood and
lymphatic endothelium, and VEGFR-3, expressed on LECs
and tumor-related blood vessels, are two examples of
angiogenic and lymphangiogenic regulator overlap.77 Inter-
estingly, it has also been observed that LNM can occur in-
dependent of lymphangiogenesis, where cancer cells enter
old LVs rather than producing new ones.78 Critical studies
highlighting the role of tumor-associated macrophages
(TAMs) have shown that VEGFR-3þ TAMs produce VEGF-
C, leading to lymphangiogenesis and ensuing therapeutic
resistance following administration of paclitaxel in breast and
lung cancer patients.79 In murine models of breast cancer
podoplaninþ TAMs in close apposition to lymphatic vessels
via b4-integrin and laminin 5 interaction produced trans-
forming growth factor-b1 that resulted in stronger attachment
of TAMs to LVs and remodeled LVs to increase LNM.80

Multiple routes of tumor dissemination from sentinel lymph
nodes (SLNs) exist. Cancer cells enter blood vessels preex-
isting in sentinel LNs, and from there spread to distant or-
gans, which suggests that lymphangiogenic targeting of
distant tissues could be more promising than targeting lym-
phangiogenesis in SLNs.81,82

Thus, a deeper understanding of molecular mechanisms
of tumor-related lymphangiogenesis and LNM, coupled
with patient-specific TME changes in liver cancers, is
needed to develop anti-lymphangiogenic molecular targets
that can inhibit LNM. The following section discusses some
of the present advances and therapeutics that target
increased tumor vasculature in hepatobiliary cancers. These
include the following categories.

Drugs Targeting Vasculogenesis in Liver Cancer

In HCC, which is characterized by robust angiogenesis in
the TME, the standard treatment regimen of transcatheter
chemoembolization chemotherapy has yielded limited suc-
cess because of intratumoral heterogeneity and the role of
chronic liver diseases that often accompany HCC in
affecting liver parenchyma. Hence, with the approval of
sorafenib, a multitargeting tyrosine kinase inhibitor, the
focus of treatment has shifted to targeting vasculogenesis in
HCC. Different TME cells, including heterogeneous cancer
cells, macrophages, and endothelial cells, are regulated by
the VEGF signaling pathway in HCC.83 Currently, anti-
angiogenic systemic therapies in clinical trials in the
United States, European Union, and China target VEGF and
the corresponding receptors. In addition to VEGF, multi-
targeting tyrosine kinase inhibitors such as the PDGF, FGF,
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angiopoietin, and endoglin also target signaling pathways.
Some examples include the following:

i) Sorafenib: Sorafenib is an oral multikinase inhibitor that
was approved in 2008 to treat inoperable HCC. It targets
VEGF receptors (VEGFR-2/3), RAF proto-oncogene,
serine/threonine kinase (Raf-1), and PDGF receptor-ß,
thus blocking tumor cell proliferation. In spite of different
adverse effects, such as hand-foot syndrome, hyperten-
sion, and diarrhea, associated with sorafenib therapy,
there has been significant progress in effectively treating
these conditions. Hence, in response to this therapy, the
overall survival of advanced-stage HCC patients has
increased significantly in both Asian (from 6.5 to 8.5 to
8.9 months) and non-Asian (from 10.7 to 11.8 to 15.1
months) groups, between 2005 and 2007.84 Because of
improvement of overall survival and higher tolerance to
adverse effects, sorafenib remains to be a first-line drug in
treating HCC. Because VEGF-C and RAF signaling are
important regulators of tumor-related lymphangiogenesis,
sorafenib could also potentially suppress lymphangio-
genesis in liver cancers. Currently, the effects of sorafenib
in reducing lymphatic vessel density in liver cancer pa-
tients remains unexplored. However, one drawback of
such tyrosine kinase inhibitor is the structural similarity
among multiple tyrosine kinase receptors, thus making it
difficult to target a specific pathway. Interestingly, a study
conducted with keratoplastic mice showed reduction of
total lymphangiogenesis, VEGF-C, and VEGFR-3
expression compared with control group.85 Thus, it may
be of significance to explore the role of sorafenib in tar-
geting lymphangiogenesis in liver cancer as well.

ii) Lenvatinib (E7080): Lenvatinib is another tyrosine kinase
inhibitor that targets VEGFRs (1-3), PDGF receptor, and
FGF receptor. A randomized, open-label, noninferiority
designed trial led to its approval in 2018, as a first-line
treatment of patients with unresectable HCC.86 Lenvati-
nib inhibits LNM of MDA-MB-231 (human breast cancer
cell line) via VEGFR-3 inhibition. In mouse xenograft
model of breast cancer with lenvatinib-treated MDA-MB-
231 cells, there was a significant reduction in lymphatic
vessel density, regional LNM, and lung metastasis. In
addition, lenvatinib also significantly decreased lymphatic
vessel density within metastatic nodules at LNs after pri-
mary tumor resection.87Furthermore, it inhibitsVEGF- and
FGF-driven proliferation and angiogenic mechanisms.88
Antibodies and Decoy Receptors
Because of the importance of the VEGF-C/VEGFR-3
signaling axis in tumor-related lymphangiogenesis, many
studies have explored the application of decoy receptors.
These decoy receptors are soluble forms of VEGFR-3 that
bind to and trap available VEGF-C. For example, He et al89

showed that adenoviral vector-mediated systemic delivery
of soluble VEGFR-3eIgG significantly reduced macro-
metastasis and the population of proliferating LECs.
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Figure 2 Current therapeutic and treatment modalities targeting tumor lymphangiogenesis. Soluble vascular endothelial growth factor receptor (VEGFR)-3
receptors serve as decoy agents that bind and inhibit soluble vascular endothelial growth factor (VEGF)-C, thus keeping them away from VEGFR-3 or neuropilin-
1/2 (NRP1/2) coreceptor on lymphatic endothelial cell (LEC) surface. Multikinase inhibitors, like sorafenib and lenvatinib, bind to and block multiple receptors
(which bind to lymphangiogenic factors), such as platelet-derived growth factor receptor (PDGFR), VEGFR-3, fibroblast growth factor receptor (FGFR), and
rapidly accelerated fibrosarcoma (RAF) kinases. Monoclonal peptibodies, like trebananib, bind to tyrosine kinase with Ig-like and epidermal growth factor
(EGF)-like domains 1/2 (TIE1/2) receptor, thus preventing binding of angiopoietin-1/2 (ANG1/2). Photodynamic therapy takes place through liposome-
mediated, lymphatic-specific delivery of verteporfin, which can kill cancer cells inside lymphatic vessels (LVs), thus reducing cancer metastasis. This spe-
cifically happens only inside the LVs. MEK, mitogen-activated protein kinase kinase; RAS, rat sarcoma. Generated with BioRender.com (Toronto, ON, Canada).

Role of Lymphatics in Liver Cancer
Furthermore, sentinel lymph node metastasis was decreased
in tumor-bearing mice in a different study, where tumor
cells expressing soluble VEGFR-3eIg blocked VEGF-C
while reducing the formation of tumor lymphatics.90

Monoclonal Antibodies
In addition to decoy receptors, monoclonal antibodies
blocking VEGFR-3 have also been used to target lym-
phangiogenesis. Bevacizumab is one such anti-VEGF anti-
body being tested in colon, kidney, and nonesmall-cell lung
cancer treatment. The combinatorial therapy of bev-
acizumab with VGX-100 (which is an antieVEGF-C anti-
body) has shown considerable efficacy. However, one of the
limitations of antieVEGF-C therapies is the existence of
other signaling pathways activating lymphangiogenesis.
Another peptibody targeting lymphangiogenic or angio-
genic factors is trebananib (AMG-386), which is an
angiopoietin-1/2 neutralizing agent. Trebananib consists of
Ang-1/2 binding sequence and Fc region of Ang-1/2 anti-
body. By preventing Tie-2 receptor binding by Ang-1/2,
tumor growth has been shown to reduce in mouse xenograft
models.91 In addition to targeting VEGF-C/VEGFR-3,
VEGFR-2 has also been shown to play an important role
in lymphangiogenesis. Ramucirumab, a human monoclonal
antieVEGFR-2 antibody, may be important in targeting
VEGFR-2emediated lymphangiogenesis.92
The American Journal of Pathology - ajp.amjpathol.org
Photodynamic Therapy
Photodynamic therapeutic regimens have shown prom-
ising results for liver malignancies, such as CCA, that
often present at inoperable stages.93 Photodynamic
therapy involves using visible light of a specific
wavelength and has been used to target metastatic
cancer cells in transit through LVs. Tammela et al94

used liposome-mediated verteporfin delivery to LVs,
which caused a 37.5% reduction of melanoma metas-
tasis in the ears of a mouse melanoma model. One
crucial difference between VEGFR-3 inhibition-based
therapies and photodynamic therapy is the specific
reduction of preexisting lymphatic vessels, whereas
with decoy receptors and antibodies, only new
lymphatic growth can be targeted. Lymphatic ablation
occured at low dose of verteporfin (25 ng); however,
the blood vessels were not affected At a higher dose
(100 ng) of verteporfin, local blood vessels were
affected as well. Thus, with photodynamic therapy, it is
possible to perform site-specific lymphatic ablation,
which, in a dose- and intensity-dependent manner, can
be used to target lymphatic versus blood vessels.95

The different strategies and therapies used to target
various facets of LEC activation or metastatic target
cells in hepatobiliary malignancies are shown in
Figure 2.
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Molecular Mechanisms of Therapeutic
Resistance in Liver Cancer

One critical limitation to primary liver cancer management is
that it is often completely nonresponsive to traditional phar-
macologic treatments. Several experimental models are
currently in use for developing a better understanding of drug
resistance in liver cancers. These include both in vitro
culture-based models, multicellular three-dimensional models
(spheroids and organoids)96 that mimic the TME, and several
in vivo orthotopic mouse tumor xenografts or chemically or
genetically induced liver carcinogenesis in mouse models.
These are extensively reviewed by Marin et al.97 Critically
important regulators of therapeutic resistance in liver cancers
are the ATP-binding cassette (ABC) transporters, such as
multidrug resistance protein 1/P-glycoprotein (ABCB1),
multi-drug resistance protein 2 (MRP2; ABCC2) in hepato-
blastoma and HCC, and MRP3 (ABCC3) in CCA.98 Plasma
membrane vesicles used in several assays have revealed
important information regarding drug development in liver
cancers. One such assay is the ATPase assay, which uses
inside-out plasma membrane vesicles as well as leaky plasma
membrane vesicles to determine if a potential drug candidate
can serve as a substrate and/or inhibitor.99 Mechanisms of
chemoresistance (MOC) have been recently established in
CCA, which are as follows: decreased drug uptake, leading to
changes in intracellular circulating drug (MOC-1a); enhanced
drug efflux (MOC-1b); altered relative concentration of
prodrug, active drug, and inactive metabolites (MOC-2);
changes in the molecular targets of antitumor drugs (MOC-
3); enhanced DNA damage repair due to drug in tumor cells
(MOC-4); and impaired apoptosis, leading to prolonged
tumor cell survival (MOC-5).100 Although these mechanisms
have been studied in liver cancer cells, to develop anti-lym-
phangiogenic drugs, the role of these molecular resistance
mechanisms in LECs, TAMs, or various other cellular TME
members also needs to be explored.

Conclusion and Future Directions

The role of lymphatics in the context of chronic and acute
liver diseases, including hepatic cancers, has been grossly
understudied. The poor patient outcome associated with
enhanced lymphatic infiltration in different hepatobiliary
malignancies, as highlighted above, warrants studies dedi-
cated to understanding the following: i) identification of
robust LEC markers for liver, ii) determination of the spe-
cific role of LECs in progression of various liver disease,
and iii) identification of molecular lymphatic targets for
improved therapeutic outcomes.

i) Identification of robust LEC markers for the liver:
Currently, the known molecular markers of LECs are
expressed by one or more hepatic cell types, such as
cholangiocytes, hepatocytes, or liver sinusoidal endo-
thelial cells. Therefore, a combination of markers has
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been used in some recent studies concerning hepatic cell
type and disease variant. For instance, podoplanin/
Lyve1 and cytokeratin 19 have been used to distinguish
LECs and cholangiocytes.16

ii) Determination of the specific role of LECs in the pro-
gression of various liver diseases: Up-regulation of
different molecular factors, such as VEGF-C, multiple
cytokines, and chemokines, has been correlated with
increased LNM and poor patient prognosis in other
cancer types. However, the role of these molecular
factors in the context of LEC involvement in hepatic
cancers needs to be primarily evaluated to unravel new
interaction pathways that govern the cross talk of LEC
and primary/secondary hepatic cancer cells. Some of
these molecular cues can be derived from the proteins
responsible for inducing an inflammatory stroma, which
also increases lymphangiogenesis.

iii) Identification of molecular lymphatic targets for
improved therapeutic outcomes: The involvement of
lymphatics in shaping the chemotherapeutic outcomes
of hepatic cancers is of high clinical significance due to
patients’ poor prognosis with LNM. Because pro-
grammed death-ligand 1ebearing LECs modulate
immunologic responses to cancer, identifying new mo-
lecular targets can help improve the response to tech-
niques, like cancer immunotherapy. Furthermore, most
traditional therapies preclude the lymphatics, thereby
keeping an active channel of metastasis.

To develop targeted therapeutic approaches for LNM,
tumor-related lymphangiogenesis, and immune alteration by
lymphatics, the necessary evil of LV formation during
cancer must be addressed. Therefore, future studies with a
greater attention to the area of lymphatic involvement in
liver malignancy are in dire need.
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