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Review

Introduction: Proteases and the 
Proteolytic System

To date, 884 known and putative protease genes have 
been annotated in the human genome (https://www.ebi.
ac.uk/merops/).1 According to the chemical mechanisms 
of catalysis, proteases are grouped into five major 
classes: serine proteases, cysteine proteases, threonine 
proteases, aspartic proteases, and metalloproteases. In 
addition, there are proteases of mixed and unknown 
catalytic types. Based on similarities in their primary 
amino acid sequences, proteases are grouped into fami-
lies that are further combined into structural clans.1

Metalloproteases are characterized by the presence 
of a catalytic metal ion in the active site of the enzyme 
and represent the largest protease group in humans. The 
family includes matrix metalloproteases (MMPs),2–4  
a disintegrin and metalloproteases (ADAMs),5 and 

ADAMs with a thrombospondin motif (ADAMTSs).6–8 In 
humans, 24 MMPs have been characterized, some of 
which are secreted, whereas others are anchored in the 
cell membrane. MMPs are best known for their role in 
remodeling the extracellular matrix (ECM).3,4 They 
degrade structural components of the ECM, including 
different types of native collagens, fibronectin, elastin, 
laminin, and proteoglycans, and proteolytically activate 
pro-MMPs. Their activity also results in the release and 
activation of matrix-bound growth factors and/or their 
precursors, for example, transforming growth factor-β 
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Summary
Proteolytic activity is perturbed in tumors and their microenvironment, and proteases also affect cancer stem cells (CSCs). 
CSCs are the therapy-resistant subpopulation of cancer cells with tumor-initiating capacity that reside in specialized tumor 
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with a focus on brain tumor glioblastoma. A plethora of proteases and their inhibitors participate in CSC invasiveness and 
affect intercellular interactions, enhancing CSC immune, irradiation, and chemotherapy resilience. Apart from their role in 
degrading the extracellular matrix enabling CSC migration in and out of their niches, we review the ability of proteases to 
modulate CSC properties, which prevents their elimination. When designing protease-oriented therapies, the multifaceted 
roles of proteases should be thoroughly investigated. (J Histochem Cytochem 69: 775–794, 2021)
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(TGF-β) and vascular endothelial growth factor (VEGF).9 
Based on their protein structure and in relation to their 
substrate specificity, MMPs are divided into six groups: 
collagenases (MMP1, MMP8, MMP13), gelatinases 
(MMP2, MMP9), stromelysins (MMP3, MMP10, 
MMP11), matrylysins (MMP7, MMP26), membrane-
type MMPs (MMP14, MMP15, MMP16, MMP17, 
MMP24), and other non-classified MMPs.10,11

Half of the 22 known ADAMs possess enzymatic 
activity. These transmembrane proteins shed the 
ectodomains of other transmembrane proteins, includ-
ing growth factor and cytokine precursors, their recep-
tors, and adhesion proteins.5,12 On the contrary, all 19 
ADAMTSs are secreted enzymes involved in proteo-
lytic processing of ECM proteoglycans, procollagens, 
and other substrates.6–8

Another important group of proteases are cathep-
sins, that is, lysosomal proteases primarily responsible 
for intracellular protein catabolism.13,14 However, under 
certain conditions, cathepsins are released from lyso-
somes or even out of cells, where they perform other 
functions.14,15 According to the catalytic amino acid 
residue, cathepsins are divided into cysteine prote-
ases (cathepsins B, C, F, H, K, L, O, S, V, W, and X), 
aspartic proteases (cathepsins D and E), and serine 
proteases (cathepsins A and G).14

Proteases, their substrates, and endogenous pro-
tein inhibitors form a complex network called the 
degradome.16–18 Proteolytic processing is tightly regu-
lated and both directly and indirectly involved in virtu-
ally all biological processes, including cell proliferation, 
differentiation, death, and migration, and, importantly, 
in tissue remodeling.16,17,19,20

Among the numerous functions of proteases, there 
is evidence on their role in specialized anatomically 
delineated tissue microenvironments called niches that 
host and sustain certain cell types, such as stem cells 
(SCs).21–23 Different cell types within SC niches provide 
a cocktail of cell-bound and secreted factors that, in 
concert with the niche ECM, shape the fate of resident 
SCs, either maintaining their quiescent state or induc-
ing their proliferation and differentiation.24 Among the 
best characterized SC niches is the bone marrow 
hematopoietic stem cell (HSC) niche,24,25 where prote-
olysis by MMPs23,26,27 and cathepsins27,28 has been 
demonstrated. Proteases regulate SC functions by 
reshaping the extracellular scaffold of the niche, 
degrading cell surface adhesion molecules, and/or reg-
ulating the bioavailability and activity of cytokines and 
growth factors such as stromal cell–derived factor 1α 
(SDF-1α), SC factor, TGF-β, and VEGF (reviewed in 
Tay et al.,24 Saw et al.,26and Maurer et al.27). SCs in the 
niches are mostly in a quiescent/dormant cellular 
state.29 However, upon various endogenous cues, or 

cues from the microenvironment, several types of pro-
teases are induced to release SCs from their niches. 
Secreted by SCs or from various niche-resident cells, 
such as neutrophil granulocytes, osteoblasts, and 
osteoclasts in the HSC niche, MMP830 and MMP931,32 
have been reported to mobilize HSCs via cleavage of 
the cytokine, SDF-1α, thus preventing its binding to 
C-X-C chemokine receptor type 4 (CXCR4). The SDF-
1α–CXCR4 axis and mobilization of HSCs are also 
affected by several cathepsins, including cathepsin 
X28,33 and cathepsin K.34

Role of Proteases in Cancer

To maintain the fine tuning of complex proteolytic net-
works, proteolytic activity is tightly regulated at the 
levels of protease expression, activation, posttransla-
tional modifications, and intercellular and intracellular 
trafficking. Furthermore, protease regulation is 
enhanced by the presence of selective endogenous 
protease inhibitors.19,35–37 Dysregulated proteolysis 
underlies numerous pathologies, including can-
cer,38,39 where proteases are most commonly upregu-
lated and act as protumorigenic factors.40–42 However, 
some proteases are also involved in tumor suppres-
sion and are downregulated in cancer.43–45 By taking 
part in various proteolytic cascades and networks, 
proteases are involved in several processes of tumor 
development and progression,39,46–49 as summarized 
in Table 1. The primary function of proteases derived 
from either cancer or non-cancerous cells in the 
tumor microenvironment (TME)38,39,60 is not only ECM 
degradation, as originally anticipated, but also the 
modulation of other pericellular events, in particular 
the activity and bioavailability of growth factors, cyto-
kines, cell surface receptors, and adhesion mole-
cules, as well as the modulation of intracellular 
signaling pathways.39,49,50 Some proteases or their 
domains also possess non-enzymatic functions,50 
such as the inactive proform of cathepsin X74 and 
several MMPs whose hemopexin domain is involved 
in protein–protein interactions.23

Proteases in Cancer SCs and Their 
Niches

Cancer cells within a tumor are heterogeneous and 
occur in a variety of hierarchically organized and func-
tionally distinct cell states. The modern concept of 
cancer stem cells (CSCs), which reside at the top  
of the tumor hierarchy or, alternatively, at the “bottom” 
of cancer evolution, was first introduced in leukemia75 
and later specified by the Eaves group.76 The concept 
of a pool of CSCs with stemness characteristics has 
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since been confirmed in many other malignancies,77 
for example, in breast,78 colon,79,80 pancreatic,81 and 
brain cancers,82 including glioblastoma83 and medul-
loblastoma.84 CSCs, also called tumor-initiating cells, 
are a small subpopulation of cells within tumors that 
exhibit characteristics reminiscent of normal adult 
SCs. The key common characteristic of normal SCs 
and CSCs is asymmetric division (i.e., the ability to 
self-renew, yet differentiate via generation of proge-
nies to mature, functionally differentiated cell types). In 
cancer, these mature cells comprise the bulk of the 
tumor mass, being initiated and maintained by CSCs, 
enabling fast tumor growth.85 CSCs, like normal SCs, 
are mostly present in a so-called dormant state. In the 
TME, CSCs may undergo epithelial-to-mesenchymal-
like transition (EMT) that allows their migration and, 
through a plethora of proteases, also invasion into the 
surrounding parenchyma and metastasis.86

Apart from sharing the characteristic “stemness,” 
both normal SCs and CSCs reside in distinct microen-
vironments called niches. The niche milieu contains 
different cell types, including endothelial cells, immune 
cells, cancer-associated fibroblasts, and mesenchy-
mal SCs.87–89 In different cancer types, different types 
of niches have been identified.88 They are best charac-
terized in glioblastoma where perivascular, hypoxic, 
and invasive niches have been described.90 A link 
between CSCs and the perivascular niche has also 
been reported in other brain tumors91 and in several 
other cancers,92,93 for example, in colorectal cancer,94 

skin squamous cell carcinoma,95 melanoma,96 and 
head and neck squamous cell carcinoma.97

Intercellular crosstalk and physical components of a 
niche either maintain the quiescent state of CSCs or 
induce their proliferation and differentiation, influence 
their metastatic potential, and play a role in protecting 
CSCs against the immune system.88–90,98 Microenvi- 
ronmental conditions in the niche may also protect 
CSCs against therapeutic intervention. In medulloblas-
toma, CSCs display features imitating those of neural 
progenitor cells and SCs84; they reside in perivascular 
niches and exhibit enhanced radioresistance compared 
with cells of the tumor bulk.99 Similarly, slow-cycling 
perivascular tumor cells were shown to be therapy-
resistant in a mouse model of glioma.100 Due to their 
importance for disease progression and modulation of 
cancer-related processes such as inflammation and 
angiogenesis, stromal factors were proposed as molec-
ular markers for diagnosis, prognosis, and treatment 
selection in prostate cancer.101

Proteases play an important role within the CSC 
niches. Expressed and/or released either by cancer 
(stem) cells or by other cells of the niche, some prote-
ases, such as cathepsins, are activated by the hypoxic 
and acidified TME.102–106 In the following sections, we 
briefly summarize the ways in which proteases affect 
CSCs and their niches (Fig. 1). Specifically, we focus on 
primary brain tumor glioblastoma and glioblastoma stem 
cells (GSCs) that are commonly identified by the expres-
sion of a selected set of biomarkers [CD133, CD44, 

Table 1. Roles of Proteases in Cancer Development and Progression.

Protease/Protease 
Group

Processes in  
Cancer

Mechanism of  
Action References

MMPs Cancer cell migration, invasion, 
EMT, proliferation, angiogenesis, 
inflammation, immune responses

ECM remodeling; processing of cytokines, 
growth factors, and their receptors

42, 45, 50–52

ADAMs Cancer cell adhesion, migration 
and proliferation, inflammation, 
immune responses

Sheddase activity releasing extracellular regions 
of growth factors, cytokines and their 
receptors, and adhesion and signaling molecules

53–57

ADAMTSs Cancer cell adhesion, migration and 
proliferation, angiogenesis

Processing of ECM proteoglycans 7, 55, 58, 59

Cathepsins Cancer cell growth, migration, 
invasion, metastasis, apoptosis 
and therapy resistance, 
angiogenesis, immune responses

ECM remodeling; release and processing of 
growth factors and their receptors; functions, 
independent of the enzymatic activity; 
activation of intracellular signaling pathways

36, 41, 47, 60–66

Kallikreins Cancer cell growth, migration, 
invasion and chemoresistance, 
angiogenesis

ECM remodeling; processing of adhesion 
molecules, cytokines, growth factors, 
and cell-surface receptors; signaling via 
proteinase-activated receptors

48, 67–69

Urokinase-type 
plasminogen activator

Cancer cell proliferation, adhesion, 
migration and invasion

Initiation of proteolytic cascade leading to ECM 
degradation, release, and activation of growth 
factors and cytokines

70–73

Abbreviations: MMPs, matrix metalloproteases; EMT, epithelial-to-mesenchymal-like transition; ECM, extracellular matrix; ADAMs, a disintegrin and 
metalloproteases; ADAMTSs, ADAMs with a thrombospondin motif.
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CD15 (SSEA-1), CD70 (CD27 L), Nestin, Olig2, SOX2, 
ALDH1A3, S100A4, Nanog, and OCT4].107,108 We have 
localized GSCs in hypoxic periarteriolar niches109,110 that 
closely resemble bone marrow HSC niches.111

Proteases and the ECM

As mentioned previously, proteases were first investi-
gated as key enzymes remodeling the ECM, which is 
increasingly recognized as a functional physical and 
biochemically active component of the niche, also with 
direct impact on the regulation of CSCs.112,113 Increased 
expression of several proteases in breast CSCs 

contributes to degradation of the ECM and invasion into 
their surroundings.114–116 On the contrary, ECM compo-
nents provide physical support and CSC anchorage, 
assuring their self-renewal.112,113,117 Furthermore, the 
ECM represents a reservoir of growth factor and cyto-
kine precursors that are activated and released upon 
proteolysis and affect CSCs.112,113 Among these, TGF-
β,118 VEGF,119 and insulin-like growth factors120 can be 
highly protumorigenic in neoplasia. In addition, partial 
proteolytic degradation of certain ECM components 
generates bioactive peptide fragments (so-called 
matrikines) that are able to regulate cellular activi-
ties.121,122 Thus, besides their well-established roles in 

Figure 1. Proteases affect CSC functions and their niches. Proteases degrade niche ECM and influence several CSC properties, includ-
ing their retention in the niche, invasion, self-renewal, stemness, immune evasion, and therapy resistance. Proteases either support (+) 
or inhibit (−) CSC-related processes. Created with BioRender.com. Abbreviations: CSC, cancer stem cell; ECM, extracellular matrix.
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ECM degradation and direct promotion of cancer cell 
invasion, proteases also influence CSC self-renewal, 
EMT, chemoresistance, and immune evasion.116,123,124

Proteases and CSC Migration Out of 
Niches

Components of the ECM serve as anchoring sites for 
CSC adherence. CSCs interact with the ECM through 
several cell surface receptors, including integrins, dis-
coidin domain receptors, and CD44, which maintain 
CSCs by inducing intracellular stem and proliferative 
signaling pathways.112 Cathepsin K is an atypical 
papain-clan cysteine cathepsin, originally reported as a 
collagenolytic protease produced by osteoclasts,125 
which appears to be overexpressed in several cancers, 
particularly glioblastoma.126 In addition to various types 
of native collagens, cathepsin K can also hydrolyze var-
ious other fibrillar proteins and proteoglycans.125 In glio-
blastoma, cathepsin K, along with cathepsins B and X, 
is colocalized with GSC markers CD133 and nestin, 
and GSC niche markers osteopontin and SDF-1α and 
its receptor CXCR4.105,127 It was suggested that cathep-
sin K could induce GSCs to migrate out of their 
niches,104,109 and this notion was later supported by Hira 
and coworkers who demonstrated the ability of cathep-
sin K to cleave and inactivate SDF-1α in vitro.128 This 
mechanism was first observed in the HSC niche where 
interactions between SDF-1α, secreted by osteoblasts 
and endothelial cells, and CXCR4, expressed by HSCs, 
retain HSCs,33,34 highlighting the similarity of the GSC 
niche and the physiological HSC niche.110,111 In addition, 
Siney et al.129 suggested a possible role of ADAM17 
and ADAM10 in the retention of GSCs in the tumori-
genic niche, as inhibition of both proteases increased 
CSC migration and differentiation.

Proteases and CSC Invasion

In response to signals from the TME, CSCs can undergo 
the EMT and acquire migratory capacity to initiate the 
first steps in metastasis.86,130 CSCs also contribute to 
tumor spread via enhanced angiogenesis, that is, the 
formation of alternative vascular structures by vasculo-
genic mimicry, which is analogous to the mimicry of 
embryonic vasculogenesis by tumor cells first described 
by the Hendrix group in melanoma131 and later in other 
cancers.132 Vasculogenic mimicry requires activation of 
the transmembrane metalloproteases, MMP14 and 
MMP9, which support the proteolytic cascade in mela-
noma CSC invasion.131 In breast cancer, CSCs line vas-
culogenic mimicry channels and synergize their 
formation in the perivascular niche.133

Westhoff et al.134 showed that invasion of GSCs is 
enhanced by activation of MMPs involved in fibronectin 

processing, thus forming routes facilitating GSC migra-
tion. The invasiveness of GSCs was shown to be sup-
ported by several metalloproteases, such as MMP2, 
MMP9,135 and MMP13,136 as well as ADAM9 and 
ADAM17.137,138 Invasion of GSCs is also directly sup-
ported by stromal cells proteases. Ye and coworkers 
have shown that tumor-associated microglia and mac-
rophages enhance the invasiveness of GSCs via the 
release and activation of the TGF-β1 signaling path-
way, leading to upregulation of MMP9,139 whereas 
microglia-derived MMP14 activates GSC-derived 
MMP2.140 The roles of urokinase-type plasminogen 
activator receptor (uPAR) and cathepsin B in GSCs 
were investigated by Alapati et al.141 who showed that 
simultaneous downregulation of both proteins inhibited 
irradiation-induced integrin signaling to the cytoskele-
ton and to the nucleus via protein kinase C. In addition, 
the complex of mitogen-activated protein kinase kinase 
1 and phospho-c-jun N-terminal kinase was translo-
cated from the cytosol to the nucleus, resulting in 
migratory arrest of GSCs.142

In breast CSCs, MMP14 is one of the most upregu-
lated proteases, especially under hypoxic conditions 
that trigger its relocalization to the cell surface.143,144 
This enzyme mediates the conversion of stationary 
CSCs into invasive CSCs—the mechanism thought to 
drive CSC metastasis.144 MMP2,145–147 MMP9,148,149 
MMP14,148 ADAM12,150 and ADAM17151 have also 
been shown to govern CSC invasion in other cancers. 
However, as emphasized above, proteases can also 
act as tumor suppressors. For example, in lung adeno-
carcinoma, ADAM23 suppresses migration and metas-
tasis of CSCs by inhibiting integrin αvβ3 function.152

Proteases and CSC Self-renewal and 
Stemness

CSC characteristics are maintained by a plethora of 
microenvironmental cues, including autocrine and 
paracrine growth factors (TGF-β, fibroblast growth fac-
tor, epidermal growth factor, VEGF), cytokines (inter-
leukin [IL]-1β, IL-6, IL-8, tumor necrosis factor-α), and 
specific ligands that promote Hedgehog, Wnt, and 
Notch signaling pathways, leading to activation of 
NF-κB, JAK-STAT, GLI, β-catenin, LEF/TC, and NIC-
CSL families of transcription factors.153–156 Proteases 
play a crucial role as part of the signaling cascades in 
CSCs that sustain their self-renewal and stemness.

Metalloproteases

The metalloprotease ADAM17 assists in processing of 
Notch1 receptors and solubilization of the Notch ligands, 
Jagged-1 and Jagged-2.157 In glioblastoma, ADAM17 
has been identified as a mediator of stemness158 and 
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invasion of U87 GSCs137; similar effects were proposed 
in colorectal CSCs157 and in colorectal carcinoma CSC 
crosstalk with endothelial cells.94 ADAM17-mediated 
activation of Notch1 was also detected in liver CSCs 
where the enzyme was activated by overexpression of 
inducible nitric oxide synthase.159 Another protease 
secreted by GSCs, a disintegrin and metalloproteinase 
domain–like protein decysin 1, has been linked recently 
to the maintenance of GSCs, primarily via activation of 
an autocrine fibroblast growth factor signaling loop.160 In 
addition, the claudin-low breast CSC phenotype was 
promoted by ADAM12, a protease induced during the 
EMT.150 ADAMTS1 was recently associated with induc-
tion of stemness in uveal melanoma.161 However, the 
tumor suppressor protease, ADAM23 (see above), was 
downregulated in the lung adenocarcinoma CSC sub-
population, which likely contributes to the stemness 
phenotype.152

The maintenance of stemness of lung CSCs162 and 
epithelial ovarian CSCs163 was associated with MMP10, 
which inhibited the non-canonical Wnt signaling ligand, 
Wnt5a, and activated the canonical Wnt signaling path-
way. MMP14 promoted the EMT and induced CSC 
properties in an oral squamous cell carcinoma cell 
line.164 Consistent with these results, knockdown of 
MMP14 strongly affected CSC properties in breast car-
cinoma SCs.143 In conclusion, metalloproteases of dif-
ferent classes affect multiple intracellular signaling 
pathways that are central to the maintenance of CSCs.

Cysteine and Serine Proteases

Cathepsin B and uPAR play important roles in regulating 
symmetric GSC division and self-renewal. Their expres-
sion correlates with the expression of the Hedgehog sig-
naling components, SOX2 and BMI1, which are regulated 
by GLI factors, although the mechanisms have not been 
fully explained.165 Wang et al.166 demonstrated downreg-
ulation of the GSC marker, CD133, after knockdown of 
cathepsin L. We and others found that, due to excessive 
mRNA splicing in cancer cells, N-terminally truncated 
cathepsin L diffuses into the nucleus167,168 to proteolyti-
cally modify histones, thus affecting antiapoptotic gene 
expression and differentiation in cancer cells.169

Proteases and SC Immune Evasion

The microenvironment around CSCs contains a broad 
spectrum of immune cells such as macrophages, 
myeloid-derived suppressor cells, natural killer (NK) 
cells, regulatory T-cells, cytotoxic T-lymphocytes (CTLs), 
and T-helper cells.170 However, CSCs have evolved sev-
eral ways to avoid their recognition and destruction by 
the immune system and to shape the TME into an 

immunosuppressive landscape. For example, CSCs can 
transform infiltrating macrophages from the M1 pheno-
type into the tumor-supportive M2 phenotype or tumor-
associated macrophages.170,171 Among other factors, 
proteases and their endogenous inhibitors are involved in 
crosstalk between CSCs and immune cells in the TME.

An interesting example is NK cells, cytotoxic lympho-
cytes characterized by their ability to specifically recog-
nize and eliminate target cells that lack the expression 
of major histocompatibility complex (MHC) class I mol-
ecules normally involved in cell surface presentation of 
antigenic peptides to CTLs.172 GSCs have been shown 
to lack active serine cathepsin G, resulting in impaired 
cleavage of MHC class I molecules on these cells, 
thereby escaping recognition by NK cells.173,174 On the 
contrary, cysteine cathepsins normally contribute to  
NK cell cytotoxicity by proteolytically activating effector 
granzymes and perforin that are released by activated 
NK cells to induce target cell death.175 In NK cells cocul-
tured with oral squamous carcinoma CSCs, decreased 
levels of mature cathepsins C and H, and an increased 
level of their inhibitor, cystatin F, were observed, pro-
moting the anergic state of NK cells.176,177 It has been 
proposed that CSCs or other stromal cells secrete cys-
tatin F, which when internalized lowers the cytotoxic 
potential of NK and other cytotoxic cells in the TME.123 
Consistent with this suggestion, uptake of extracellular 
cystatin F by CTLs resulted in decreased activities of 
cathepsins C, H, and L, leading to impaired activation of 
granzymes A and B, and consequently lowered T-cell 
cytotoxicity.178 High levels of proteinase inhibitor 9, a 
potent inhibitor of granzyme B, were detected in breast 
CSCs, most likely providing another means of CSC 
immune escape.179 CSCs have also evolved mecha-
nisms to evade γδ T-cells, a distinct subpopulation of 
T-cells that differ from the more commonly considered 
αβ T-cells in terms of their antigen recognition, activa-
tion, and effector functions.180 In CSCs, increased 
ADAM10 and ADAM17 expression has been associ-
ated with increased shedding of the cell surface MHC 
class I polypeptide-related sequence A, which has been 
proposed as the main mechanism underlying CSC 
resistance to γδ T-cell cytotoxicity.181

Proteases and CSC Therapy 
Resistance

Aside from residing in a quiescent state, being by itself 
protective against drugs that target exposed DNA during 
mitosis, CSCs also exhibit high expression of multidrug 
resistance proteins and enzymatic DNA damage repair 
mechanisms. Safeguarded in the shelter of their niche, 
these cells often represent the main reason for treatment 
failure and cancer recurrence.182–184
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As mentioned previously, active cathepsin B has 
been detected in GSC niches.105 Using fluorogenic met-
abolic mapping, we detected cathepsin B activity in both 
non-irradiated and irradiated GSC NCH644 cells (Fig. 2). 
Expression of this enzyme was upregulated upon irra-
diation of glioblastoma U87 stem-like cells.187 Apart from 
the role of cathepsin B and uPAR in maintaining the 
stemness characteristics of GSCs described above,165 
highly expressed cathepsin B and uPAR also protected 
these cells from irradiation-induced DNA damage, and 
this effect was reversed by silencing of the two genes.187 
Similarly, radiation resistance mediated by cathepsin L 
has been shown.166 The well-known sheddase, ADAM10, 
marks CSCs with active Notch signaling that mediates 
chemoresistance. Targeted inhibition of active ADAM10 
inhibited Notch activity and tumor growth in mouse  
models, particularly regrowth following chemotherapy. 
This suggests targeted inhibition of active ADAM10 is a 
potential therapy for ADAM10-dependent tumor devel-
opment and drug resistance.188 Colorectal CSC chemo-
resistance has been linked to another sheddase, 

ADAM17.157 In oral carcinoma CSCs, overexpression of 
MMP20 supported stemness and was proposed to 
reduce the sensitivity of this cell population to chemo-
therapeutic agents.189 Overall, these studies confirm the 
involvement of proteases in the therapeutic resistance of 
CSCs and support their therapeutic potential.

Proteases as Therapeutic Targets in 
Cancer

In anticancer therapies, targeting proteases has long 
been a promising therapeutic tool to counteract inva-
siveness of cancer cells. Selective targeting of CSCs in 
their specific niches has recently attracted much atten-
tion in the field of cancer therapy,190,191 and the inclusion 
of proteases as therapeutic targets seems to be an 
option. However, several attempts at protease inhibition 
have failed to deliver the desired outcomes. To date, 
only three proteasome inhibitors have been approved in 
cancer therapy for the treatment of multiple myeloma 
(Table 2).15,35,212 Reasons for the treatment failures with 

Figure 2. Metabolic mapping of cathepsin B activity. Mapping was done in non-irradiated (A) and irradiated (2 Gy) (B) NCH644 cells, 
a glioblastoma stem cell line. Enzymatic activity was detected as green fluorescent dots (marked by white arrows). The method is based 
on the coupling of NSA with 4MbNA, which is cleaved from a protease-specific substrate. Enzymatic release of 4MbNA and its coupling 
with NSA result in the formation of a fluorescent green product. Background fluorescence occurs due to the nonspecific binding of NSA 
to protein NH2 groups. The method was adapted from Van Noorden et al.185 Cells were grown as floating spheres in supplemented 
NB medium as described by Podergajs et al.186 Intact spheroids were irradiated with 2 Gy. Four hours after irradiation, the spheroids 
were washed with Ca2+- and Mg2+-free Hank’s balanced salt solution and with 100 mM sodium phosphate buffer (pH 6.0). Subsequently, 
spheroids were incubated in 100 mM phosphate buffer (pH 6.0) containing 1 mM dithiothreitol, 1.3 mM EDTA, 2.7 mM l-cysteine, 1 mM 
NSA, and 1 mg/ml of a specific substrate of cathepsin B (Z-Ala-Arg-Arg-4MbNA). After 30 min of incubation at room temperature, the 
cell suspension was transferred to a microscopy slide and covered with a coverslip. Images were taken using a FITC filter on an Eclipse 
Ti inverted microscope using NIS-Elements imaging software AR 4.13.04 and an Andor camera. Scale bar = 10 μm. Abbreviations: NSA, 
2-hydroxy-5-nitrobenzaldehyde; 4MbNA, 4-methoxy-b-naphthylamide; NB, Neurobasal.
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other protease inhibitors might, first, be due to inappro-
priate clinical trial designs, for example, including 
cancer patients with advanced disease where a hyper-
mutated state was able to overcome single target ther-
apy. Second, the lack of sufficient selectivity and 
specificity of the protease inhibitors may have led to 
undesired off-target effects by disturbing the normal 
physiological functions of these proteases in adjacent 
tissue or systemically. Finally, due to protease redun-
dancy, the efficiency of selective inhibitors may hinder 
their effectiveness.15,40,212,213

Despite the initial clinical disappointments, novel 
approaches have emerged in which proteases are not 
used as treatment targets, but instead as therapeutic 
triggers (Table 2). These technologies enable the 
delivery of anticancer therapeutics directly to the 
tumor site where their activation or release is medi-
ated by proteases (e.g., MMPs, cathepsins, or uPA) 
within the TME.213–215

Based on current knowledge in the field, targeting 
or exploiting proteases in the CSC niches may  
contribute to the elimination of quiescent CSCs.  
This, arguably, represents the bottleneck in success-
ful tumor eradication. Several examples of such 
approaches have already shown promising 
results,190,216,217 providing hope for future cancer treat-
ments. Nevertheless, deliberate target selection may 
be the key to success. On one hand, proteases bol-
ster CSC proliferation and invasion, whereas, on the 
other hand, they can also induce CSC detachment 
and mobilization out of the niche by modulating cyto-
kines.104,109,128 This may lead to their differentiation 
and higher therapeutic sensitivity. However, CSC 
mobilization may not necessarily present the optimal 
therapeutic intervention because it may lead to 
enhanced aggressiveness of CSCs expressing hybrid 
phenotypes during the EMT.130,218 Hence, continued 
efforts are needed to better characterize the heteroge-
neous and phenotypically distinct CSC pool, and the 
interplay of these cells with the TME in the niches. 
When designing CSC niche protease-oriented thera-
peutic applications, the multifaceted roles of the pro-
teases should be thoroughly examined and modeled 
in experimental animals in terms of the complex and 
dynamic TME, before human studies.
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