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Abstract

Histopathological analysis is the present gold standard for precancerous lesion diagnosis. 

The goal of automated histopathological classification from digital images requires supervised 

training, which requires a large number of expert annotations that can be expensive and time-

consuming. Meanwhile, accurate classification of image patches cropped from whole-slide images 

are essential for standard sliding window based histopathology slide classification methods. 

To mitigate these issues, we propose a carefully designed conditional GAN model, namely 

HistoGAN, for synthesizing realistic histopathology image patches conditioned on class labels. 

We also investigate a novel synthetic augmentation framework that selectively adds new synthetic 

image patches generated by our proposed HistoGAN, rather than expanding directly the training 

set with synthetic images. By selecting synthetic images based on the confidence of their assigned 

labels and their feature similarity to real labeled images, our framework provides quality assurance 

to synthetic augmentation. Our models are evaluated on two datasets: a cervical histopathology 

image dataset with limited annotations, and another dataset of lymph node histopathology images 

with metastatic cancer. Here, we show that leveraging HistoGAN generated images with selective 

augmentation results in significant and consistent improvements of classification performance 
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(6.7% and 2.8% higher accuracy, respectively) for cervical histopathology and metastatic cancer 

datasets.
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histopathology image classification; medical image synthesis; synthetic data augmentation

1. Introduction

Image analysis of digitized histopathological slides can contribute significantly to cancer 

diagnosis [21]. For instance, the diagnosis of cervical cancer and its precancerous stages 

can be accomplished through assessment of histopathology slides of cervical tissue by 

pathologists. An important outcome of the assessment is the cervical intraepithelial 

neoplasia (CIN) grade, an essential indicator for abnormality assessment identified by 

the abnormal growth of cells on the surface of the cervix. Over the past decade, 

computer-assisted diagnosis (CAD) algorithms have been developed for histopathology 

images to complement the opinion of the pathologist for accurate disease detection, 

diagnosis, and prognosis prediction [15]. Considering the shortage of pathologists, automatic 

histopathology image classification systems have great potential in underdeveloped regions 

for its low cost and accessibility. Moreover, such a system can help pathologists with 

diagnosis and potentially mitigate the inter- and intra- pathologist variation.

The supervised training of image recognition systems often requires huge amounts of expert 

annotated data to reach a high level of accuracy. However, for many practical applications 

using histopathology images, only small datasets of labeled data are available due to 

annotation cost and privacy concerns, and the labels are often imbalanced between grades 

and subtypes. While traditional data augmentation can increase the amount of training 

data to some degree, commonly employed random transformations or distortions (such 

as cropping and flipping) lack flexibility and cannot fill the entire data distribution with 

missing data samples.

Motivated by the aforementioned difficulties in creating sufficiently large training sets for 

histopathology image recognition systems, we focus on the problem of expanding training 

sets with high-quality synthetic examples. Recently, several works in medical image analysis 

have leveraged unsupervised learning methods, more specifically, Generative Adversarial 

Networks (GANs) [11], to mitigate the effects of small training sets on network training 

[24, 9]. These works show that carefully designed GANs can generate visually appealing 

synthetic images, but two major issues remain insufficiently investigated for generalized 

and robust synthetic augmentation: 1) how to mitigate label ambiguity of generated images; 

and 2) how to ensure the feature quality of synthetic images used for data augmentation. 

In other words, blindly incorporating synthetic samples into the original training set, 

even if they are visually realistic, is not guaranteed to improve the classification model 

performance. Synthetic images without quality assurance can potentially adversely alter 

the data distribution and downgrade model performance. We provide a detailed analysis in 

Section 4.3.
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In this paper, we aim at solving these two issues by designing a novel conditional GAN 

(cGAN) [31] framework, termed as HistoGAN, for high-fidelity histopathology image 

synthesis, then selectively adding synthetic samples generated by His-toGAN to the original 

training set. Our proposed HistoGAN model consists of multiple progressive generation and 

refinement modules which gradually generate images with better quality. To encourage the 

diversity of synthetic images, we incorporate the minibatch discrimination [36] to reduce the 

closeness between examples inside a minibatch. Self attention [39] is employed to capture 

relationships between pixels inside an image. Such relationships contain crucial information 

about histopathology images, including the density distribution of nuclei and color changes 

in different locations. Class conditional batch normalization [7] and spectral normalization 

[32] are also utilized to stabilize the adversarial training process and improve the quality of 

synthetic images. Further, during HistoGAN training, we calculate a smoothed version of 

Frchet Inception Distance (FID) [17] score after each epoch of training so that the trained 

models can be compared and the model with weights that give rise to the best FID score can 

be selected. Our proposed HistoGAN consistently generates realistic histopathology image 

patches on two different datasets, which shows the robustness and generality of the model.

Our proposed selective synthetic augmentation framework consists of two steps. First, we 

select generated images that can be classified into some class with certainty, by calculating 

the expectation of predictive entropy of each sample and keeping those samples with 

relatively low entropy (i.e., high label confidence). Second, we compare the features of 

real images and synthetic images where the ground truth label of the real images matches 

the conditional label used to generate the synthetic images, and only select those synthetic 

images that are sufficiently close to the real-image centroid in feature space. The features 

of the images are extracted by a feature extractor pre-trained with Monte Carlo dropout 

(MC-dropout) [10]. This second step of selection is to ensure that a selected synthetic image 

indeed belongs to the class that corresponds to the conditional label used to generate it. 

The total number of selected samples is determined according to the augmentation ratio 

r (i.e., the proportion of the number of augmented samples to the number of original 

training samples). Experimental results show that our proposed HistoGAN model along 

with selective synthetic augmentation significantly outperforms the baseline ResNet34 [16] 

model with traditional augmentation, and also outperforms the synthetic augmentation 

methods without selection.

To validate the effectiveness and generality of our proposed selective synthetic augmentation 

framework, we conduct extensive experiments on two histopathology datasets. We first 

study the 4-class (Normal, CIN 1-3) cervical histopathology image classification problem 

and evaluate our models on a heterogeneous epithelium image dataset [45] with limited 

and highly unbalanced numbers of patch-level annotations per class label. The second 

dataset we use is a small subset of the PCam dataset [40], consisting of lymph node 

histopathology images. We compare our proposed selective synthetic augmentation method 

with baseline methods including baseline classification models, models trained with 

traditional augmentation, and models trained with synthetic augmentation but without 

quality-assuring selection. Experimental results show that our model achieves significant 
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improvements with 6.7% and 2.8% higher accuracy than baseline classification models on 

cervical and lymph node datasets, respectively.

The main contributions of this work are as follows:

• We design a novel conditional GAN model architecture for synthesizing realistic 

histopathology image patches. A smoothed version of FID score is used as 

a metric to select the best cGAN model during training. With only a limited 

amount of training data, our GAN model can generate synthetic images with 

high fidelity and diversity.

• We propose a selective synthetic augmentation method that actively selects 

synthetic samples with high confidence of matching to their conditional label 

and are close to real images in feature space. By only adding selected 

synthetic samples instead of arbitrary synthetic samples to augment the limited 

training set, our proposed method can significantly outperform other baseline 

augmentation methods in improving classification performance. The proposed 

selective synthetic augmentation is general and can also be used in conjunction 

with other augmentation methods.

• We conduct extensive experiments on both a cervical histopathology dataset and 

a lymph node histopathology dataset. Compared with baseline models, including 

our previous state-of-the-art synthetic augmentation model [45], our proposed 

method improves the augmented classification performance.

2. Related Work

2.1. Histopathology Image Classification

Machine learning, especially deep learning methods have achieved promising results on 

general histopathology image classification. While whole slide images (WSI) are often with 

unusually high resolutions, commonly used methods [19, 43, 38] alleviate this issue by 

applying patch-level image classification on cropped image patches or sliding windows 

rather than the original WSI. Individual classification results on cropped patches are 

aggregated to infer the final image-level label for the WSI. In such methods, accurate patch-

level image classification is fundamental to reach the accuracy level of human pathologists.

In the area of cervical histopathology analysis, existing literature [5, 13] have studied 

various supervised learning methods for nuclei-based cervical cancer classification. 

Chankong et al. [5] proposed automatic cervical cancer cell segmentation and classification 

using fuzzy C-means (FCM) clustering and various types of classifiers. Guo et al. [13] 

designed hand-crafted nuclei-based features for fusion-based classification on digitized 

epithelium histopathology slides with linear discriminant analysis (LDA) and support 

vector machines (SVM) classifier. While accomplishments have been achieved with fully-

supervised learning methods, the training of models require large amounts of expert 

annotations of cervical histopathology images. Since the annotation process can be 

expensive, tedious, and time-consuming, it often results in limited or insufficient number 

of labeled data available for supervised learning models.
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2.2. Conditional Image Synthesis

Generative adversarial networks (GANs) [11] as an unsupervised learning technique, has 

enabled a wide variety of applications including image synthesis, object detection [23] and 

image segmentation [44]. Among variants of GANs, conditional GAN (cGAN) generates 

[31,34] more interpretable results with conditional inputs. For instance, images can be 

generated conditioning on class labels, which enables cGAN to serve as a tool to generate 

labeled samples for synthetic augmentation. Current state-of-the-art cGAN models often 

breaks the task into smaller gradual generation or refinement sub-tasks [47, 22], or employs 

large scale training [4], which enable them to generate high fidelity images. In this work, 

we use our proposed HistoGAN, which is inspired by state-of-the-art cGANs [47, 46, 

4], to generate high-fidelity synthetic images to augment classification model training. 

To improve the quality of synthetic images and stabilize the training process, our model 

utilizes numerous techniques including minibatch discrimination [36], self attention [39], 

class conditional batch normalization [7], and spectral normalization [32] following prior 

art. While generating visually appealing histopathology images, HistoGAN serves as an 

essential prerequisite for the synthetic data augmentation.

2.3. Synthetic Data Augmentation

To better utilize training data and reduce over-fitting during the training process, data 

augmentation has become a common practice for training deep neural networks. The 

objective of augmentation is to add to the original training set new samples that follow the 

original data distribution. Therefore, a good augmentation scheme should generate samples 

that follow the original data distribution but are different from those in the original training 

set. On the other hand, a bad augmentation scheme can generate samples that deviate from 

the original data distribution thus can mislead training when added to the training set.

Traditional data augmentation [41] often involves transformations applied directly on 

original training data, such as cropping, flipping and color jittering. While serving as 

an implicit regularization, straightforward data augmentation techniques are limited in 

augmentation diversity. To overcome the limitation of traditional augmentation, several 

works have been done to improve the effectiveness of data augmentation. Rather than 

using a pre-defined augmentation policy, Auto Augmentations [6, 18] use hyper-parameter 

searching to automatically find the optimal augmentation policy.

Another popular trend is to generate synthetic images to increase the amount and diversity 

of original training data, which we denote as Synthetic Augmentation. Along this direction, 

for natural images, Ratner et al. [35] learns data transformation with unlabeled data using 

GANs. GAGAN [1] and BAGAN [30] uses cGANs [31] generated samples to augment 

the standard classifier in the low-data regime. Compared with works done in the natural 

image domain, issues related to insufficient and imbalanced data are more prominent in 

the medical image domain. To mitigate these problems, researchers have been working on 

synthetic augmentation for medical image recognition tasks. Frid-Adar et al. [9] proposes 

to use cGAN generated synthetic CT images to improve the performance of CNN in liver 

lesion classification. Gupta et al. [14] synthesizes lesion images from non-lesion ones using 

CycleGAN [50]. Bowles et al. [3] uses GAN derived synthetic images to augment medical 

Xue et al. Page 5

Med Image Anal. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



image segmentation models. Zhao et al. [49] proposes a GAN model for synthesizing 

retinal images from small sized samples and uses the synthetic images to improve semantic 

segmentation performance. Mahapatra et al. [29] applies a Bayesian neural network (BNN) 

[27] to calculate the informativeness of the synthetic images for improved classification and 

segmentation results. Zhao et al. [48] uses transformations of labeled images for one-shot 

image segmentation. GAN based synthetic augmentation has achieved promising results, but 

typically blindly adds synthetic samples to the original data. Few consider how to assure the 

quality of synthetic images or control the augmentation step after image synthesis.

2.4. Our Previous Work

In our recent work [45], we propose a feature based filtering mechanism for synthetic 

augmentation. While improving classification performance, our previous cGAN generated 

images are not realistic enough and the work lacks rigorous study of its GAN model 

training and feature extractor training processes. In this work, we propose an improved 

GAN model for histopathology image generation, and develop a more general synthetic 

augmentation framework by reducing the randomness in GAN model and feature extractor 

training through MC-sampling and FID score based model selection. Our new contributions 

and differences from previous work are summarized as follows:

• We design and utilize an improved conditional GAN model architecture, namely 

HistoGAN, with a self-attention module among other techniques to stabilize the 

training and improve the quality of synthetic images.

• We propose a more general selective synthetic augmentation method which 

achieves better performances than our previous method.

• We conduct more comprehensive experiments including more ablation study and 

new results on the PCam dataset.

3. Methodology

In traditional fully-supervised training methods, the model is trained on training images and 

the inference is done by feeding the test data to the trained model. In previous GAN-based 

augmentation works [9, 28], a GAN model is first trained to generate some synthetic 

images based on the training data, then the generated images are added to the original 

training data as a data augmentation strategy. However, since the discriminator in GAN only 

outputs a high level judgement (0 or 1) of the fidelity of generated images, such pipelines 

cannot guarantee that the generated data contain meaningful features which contribute 

to improving classification model training. To tackle this issue, we propose a selective 

synthetic augmentation algorithm to evaluate the quality and fidelity of synthetic images and 

select only those samples with high-confidence in label correctness and real-image likeness 

to be added to the training set. The comparison between different training procedures is 

illustrated in Fig. 1.

An overall illustration of our proposed selective synthetic augmentation method can be 

found in Fig. 2. We first train a conditional GAN model based on the labeled training 

images. The optimal model weights is selected based on the smoothed FID score [17]. A 
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pool of synthetic images are then generated using the selected model. All images are then 

passed into the image selection module to filter out the ones that fail to contribute sufficient 

amount of meaningful information. After image selection, a classification model is trained 

with both original and synthetic training data. Trained classification models can then be used 

for inference on test data. More details are introduced in the following subsections.

3.1. HistoGAN Model

In this section, we introduce our proposed HistoGAN architecture and how to select the best 

model with highest synthetic image quality from a set of trained models.

3.1.1. Model Architecture—The conventional cGANs [31] have an objective function 

defined as:

min
θG

min
θD

ℒcGAN = Ex Pdata logD x, y + Ez N log 1 − D G z, y .
(1)

In the equation above, x represents the real data from an unknown image distribution Pdata 

and y is the conditional label (e.g., CIN grades). z is a random vector for the generator 

G, drawn from a standard normal distribution N 0,1 . During the training, G and D are 

alternatively optimized to compete with each other.

Since there is no existing cGAN framework specifically designed for histopathology image 

synthesis, we choose to design a new model, HistoGAN, based on previous state-of-the-art 

conditional GAN models and techniques [47, 4, 46]. We aim to generate synthetic images 

in a coarse-to-fine fashion through multiple stages, where details of images are gradually 

refined to guarantee the fidelity. The training procedure of HistoGAN is similar to Eq. 

1. The generator of the first stage takes a random noise vector and class label as input, 

and the generator of remaining stages will take the output of the previous stage as input 

instead of random noise. To increase diversity among the generated examples and mitigate 

the issue of mode collapse indicated by the high homogeneity of the synthetic image 

pool, we incorporate the minibatch discrimination module [36] into our discriminator. 

Following state-of-the-art works in conditional image synthesis [46, 4], class conditional 

batch normalization is used in both generators and discriminators to enhance the learning 

effectiveness of the inter class feature discrepancy. And spectral normalization [32] is 

utilized in discriminators of all stages to further improve model performance.

To better capture the distribution of nucleus density and color changes in histopathology 

images of different classes, we leverage self attention [39, 46] at early stages of generation 

and throughout all stages in the discrimination process. The application of self attention 

mechanism enables both generator and discriminator to better learn the dependencies 

between spatial regions by looking at the relationship between one pixel and all other 

positions in the same image. Similar to [46], the image features from the previous hidden 

layer x are first transformed into two feature spaces q, k as query and key in self attention 

[39] to calculate the attention map. Let q(x) = Wqx and k(x) = Wkx, the attention map over 

the ith location when synthesizing the jth region is
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αj, i = exp sji
Σi = 1

N exp sji
, wℎere sji = q xi

T k xj . (2)

The output of the self attention of the jth region oj is calculated by applying attention weight 

over the value v as

oj = Σi = 1
N

αj, iv xi , where v xi = W vxi . (3)

In all transformation matrices Wq, Wk, and Wv, weight matrices are implemented as 1 × 1 

convolutions. Compared with the StackGAN model implemented in our previous work [45], 

our HistoGAN generates more realistic image patches which also benefits the following 

synthetic augmentation step. An example of cGAN result comparison is shown in Fig. 6.

3.1.2. Model Selection—During training of the HistoGAN model, the model weights 

vary from epoch to epoch. A challenge is to determine which model weights gives rise 

to better synthetic image quality. For natural image synthesis tasks, Inception Score [36] 

and Frchet Inception Distance (FID) [17] score are two commonly used metrics. The 

calculation of these two metrics rely on the pretrained Inception V3 [37] model trained 

on ImageNet [8]. However, since the distribution of natural images and that of medical 

images such as cervical histopathology images can be quite different, we can not directly use 

the aforementioned two scores for evaluating our HistoGAN model. Instead, we follow the 

calculation of the original FID score while replacing the Inception V3 model pre-trained on 

ImageNet with a ResNet34 [16] model pre-trained on the cervical histopathology dataset.

To compare the trained models after running different numbers of epochs, we save the 

HistoGAN model after each epoch of training. To estimate the performance of each saved 

model, we calculate the FID score between the feature vectors of real and generated images 

extracted from the pre-trained ResNet34 model as follows:

d x, x = μx Pdataϕ x − μx PGϕ x 2
2

+ Tr Σx Pdata ϕ x + Σx PG ϕ x − 2 Σx Pdata ϕ x + Σx PG ϕ x
1
2 ,

(4)

where x represents synthetic images generated by the saved HistoGAN model being 

evaluated, and ø denotes the features extracted from intermediate layers of the pre-trained 

ResNet34 model. Assume feature vectors follow a multivariate Gaussian distribution, the 

mean and covariance are estimated for the real and fake data [2] for frchet distance 

calculation to measure the visual quality of generated images. Smaller FID scores indicate 

better visual quality. Although the FID score itself cannot guarantee agreement with human 

judgment, trends of FID often provide a reliable estimation of the quality of a GAN model. 

As we can observe from Fig. 4, due to the instability in GAN training, the FID scores of 

each saved epoch fluctuate constantly and fail to provide a distinguishable pattern. Based on 

the unaltered FID scores, one should choose the model saved at epoch 286 or epoch 374. 

However, one can see that images generated by these chosen models are not satisfactory 
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as in Fig. 4. To get a robust estimation of model quality and mitigate the effect caused by 

outliers, we apply the Exponential Moving Average (EMA) [20] algorithm to smooth the 

curve of original FID score. With smoothing, the FID score at time t is:

d =
dt, t = 1

αd t − 1 + 1 − α dt, t > 1
(5)

We monitor the training process with the smoothed FID. As shown in Fig. 4, different 

values of α lead to different levels of smoothing in FID and we observed that the chosen 

model associated with the lowest smoothed FID score has better image quality than the 

model chosen using the lowest original FID score. In our experiments, we set α to 0.5 for 

a medium level of smoothing. One can see that, after smoothing with the EMA algorithm, 

the minimum in smoothed FID score is reached at epoch 634, which is the GAN model we 

chose for the follow-on synthetic data augmentation.

3.2. Image Selection

Given a trained cGAN model, one can sample infinite number of noise-vector inputs from 

the Gaussian distribution and generate infinite number of synthetic images. While a good 

cGAN model can generate images that look real, there are no guarantee that those images 

would be good to be used for augmenting the original training set in visual recognition 

tasks. In current GAN-based data augmentation methods, with different data augmentation 

ratio, different number of generated images are added to the training set. However, the 

effectiveness of such augmentation pipeline is heavily affected by the varying quality of 

synthetic images as well as the diversity of the images. To reduce the randomness in the 

synthetic augmentation process and selectively add in new images, we break the whole 

process into two steps: find samples that can be confidently classified into certain classes 

thus containing enough diagnosable features; then find samples whose features are within 

a certain neighborhood of class centroids in the feature space to assure matching between 

the synthetic image and its assigned label. Such steps are done with a pre-trained feature 

extractor to calculate centroids for real samples and extract features for fake samples. 

Considering that a single feature extractor cannot provide robust feature extraction results, 

we use a feature extractor with Monte Carlo dropout (MC-dropout) [10] and take the 

expectation value of multiple samplings to reduce the uncertainty of feature extraction. A 

depiction of our proposed selective synthetic augmentation algorithm is shown in Fig. 5 and 

a detailed description is given in Algorithm 1.

The first step of selection is based on label certainty of a sample. In traditional machine 

learning systems, real samples that lie near the decision boundary are often assumed to 

contain more important features for classification purposes. However, as we conducted 

experiments to select good synthetic images, one interesting finding is that selecting the 

fake samples with more certain labels gives better classification performance than selecting 

those with less certain labels. This may be due to the cGAN model being imperfect and 

conditionally-generated fake examples with less label certainty being more likely to deviate 

from the real data distribution. In our algorithm, we evaluate the label certainty of a fake 

example by calculating the entropy score of its predicted class probabilities. If the feature 
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extractor is certain that a sample can be classified into a certain class, the entropy score 

would be low. We rank the entropy scores of all generated images in ascending order and 

choose the first half of images with lower entropy. The necessity of this entropy-based 

selection is proved by experiments on different datasets, which will later be discussed in 

Section 4.

After the entropy selection step, we further select synthetic images based on their distance 

to class centroids in the feature space. In this second step of selection, all remaining samples 

that have passed the entropy-based selection will have their feature distances to their class 

centroids calculated. All distances will be sorted in ascending order and the first half of 

these samples with smaller distances will be kept. The motivation behind ranking samples 

based on their feature distance to class centroids is to help filter out samples whose assigned 

labels (i.e. the conditional labels used by the cGAN model to generate them) do not match 

their classified labels in feature space so that only samples that confidently match with their 

assigned labels are selected and added to the training set. In our implementation, instead of 

using a single run of the feature extractor to extract features, we run the feature extractor 

multiple times with MC-sampling and then calculate feature distances based on the average 

feature distance from the multiple runs. Similar to [45], the feature distance between image 

x and centroid c is defined as

Algorithm 1

Selective Synthetic Augmentation

Input: a set of trained HistoGAN models {Gt}, number of classes C, augmentation ratio r, number of original training 

samples N = Σi = 1
C Ni .

Output: selected synthetic samples X with |X| = rN.

Initialization: X1 = θ, t = arg min dt , Gt  generated samples X0 = xji : i ≤ C, j ≤ 4rNi , entropy 

ℰi = eji : eji = − Σ pjilogpji, i ≤ C, j ≤ 4rNi .

for xji ∈ X0 do

 if eji < Median ℰi
 then

  X1 = X1 ∪ xji

 end if

end for

class centroid distance Di = dj
i :dj

i = Df xji, ci .

for xji ∈ X1 do

 dj
i = Df xji, ci

if dj
i < Median Di

 then

X = X ∪ xji

 end if

end for

Xue et al. Page 10

Med Image Anal. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Df x, ci = 1
K Σk Σl

1
HlW l

ϕl
k x − ϕl

k ci 2
2

, (6)

where ϕl
k is the unit-normalized activation in the channel dimension Al of the lth layer of 

the k-th MC-sampling feature extraction network with shape Hl × Wl. We denote the total 

sampling time as K. Df (x, ci) can be regarded as an estimated cosine distance between 

sample and i-th centroid in the feature space.

The centroid c is calculated as the average feature of all labeled training images in the same 

class. For class i, its centroid ci is represented by

ci = 1
Ni

Σj = 1

Ni
ϕ1 xj , …, 1

Ni
Σj = 1

Ni
ϕL xj , (7)

where Ni denotes the number of training samples in ith class and xj is the jth training 

sample. Similar to Eq. 6, ϕl is the activation extracted from the lth layer of the feature 

extraction network. L is the total number of layers utilized in the feature distance selection. 

Ci is retained by one time MC-sampling and fixed during the distance calculation.

In conclusion, given augmentation ratio r, we first generate 4rNi images for each class i, then 

select rNi images according to the two-step selection process described above. Regarding the 

choice of r, we provide an ablation study in Section 4.3.

4. Experiments

4.1. Datasets

The first dataset contains labeled cervical histopathology images collected from a 

collaborating health sciences center. All images are annotated by the same pathologist. The 

data processing follows [45], and results in patches with a unified size of 256 × 128 pixels. 

Compared with the dataset used in [45], we include more data for more comprehensive 

experiments. In total, there are 1,284 Normal, 410 CIN1, 481 CIN2, 472 CIN3 patches. 

Examples of the images can be found in the first row of Fig. 6. We randomly split 

the dataset, by patients, into training, validation, and testing sets, with ratio 7:1:2 and 

keep the ratio of image classes almost the same among different sets. All evaluations and 

comparisons reported in this section are carried out on the test set.

To further prove the generality of our proposed method, we also conduct experiments on 

the public PatchCamelyon (PCam) benchmark [40]. PCam consists of 327,680 color patches 

extracted from histopathologic scans of lymph node sections with unified size of 96 × 96 

pixels. The PCam dataset is split into 75%:12.5%:12.5% of training, validation, and testing 

sets, selected using a hard-negative mining regime. Each image is annotated with a binary 

label indicating presence of metastatic tissue. To mimic the situation where only a limited 

amount of training data is available, we use randomly selected 10% of the training set, 

which has 32,768 patches, to train our proposed HistoGAN model and the baseline classifier. 

Trained models are evaluated on the full test set.
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4.2. Implementation Details

4.2.1. HistoGAN Implementation—The proposed HistoGAN model is trained in 

parallel on 4 NVIDIA TITAN Xp GPUs, each with 11G of RAM. We train HistoGAN 

with WGAN-GP [12] loss on the discriminators at all stages. Based on different sizes of 

images in the training set, we construct a 3-stage HistoGAN for cervical histopathology 

images and a 2-stage HistoGAN for the PCam lymph node histopathology images.

The input of the generator at the first stage is the concatenation of random noise and 

class label (e.g., CIN1-3, Normal) that are first one-hot encoded and then embedded by 

a transposed convolution layer. The first stage generator consists of 4 up-sampling blocks 

with 3 × 3 conv kernels. Each block contains an upsample layer with bilinear interpolation 

followed by a combination of a convolutional layer with 3 × 3 kernel size. The output then 

goes through a conditional batch normalization [7] layer to modulate convolutional feature 

maps based on the corresponding assigned labels of the images generated. Blocks of the 

same architecture but different in and out channels are employed in generators of the next 

stages respectively, after a set of residual blocks.

Considering the future stages are learning the features from a more granularized level 

based on the output of the first stage, we employ self attention right after the first stage to 

facilitate the learning and focus on the desired features that are decisive for classification. 

Next, together with the real images from the original dataset with the same resolution, 

synthetic images of each scale are fed into corresponding stages of discriminators. Inside 

each discriminator, the main structure contains several down-sampling layers with 4 × 

4 conv kernels. Similar to the aforementioned blocks in the generator, class-conditional 

batch normalization are used after each convolutional layer to embed more class specific 

information. The down-sampling layers are followed by a 3 × 3 conv layer, a spectral 

normalization layer, a batch normalization layer, a Leaky ReLU activation layer, a minibatch 

discrimination [36] block for preventing mode collapse during GAN training, and a fully 

connected layer for the final output.

Regarding the hyperparameters, the HistoGAN model used for generating cervical 

histopathology and PCam images are trained with batch size set to 64 for the cervical 

and 256 for the PCam dataset for 1000 training epochs with fixed learning rate 2e – 4. The 

parameter 6 for WGAN-GP loss is set to 50.

4.2.2. Model and Image Selection Framework—In the next step, GAN models at 

each epoch are saved after the 100th epoch for model selection. For reasons mentioned 

in Section 3.1.2, the feature extractor used for FID score calculation is the same as our 

baseline classifier (ResNet34), followed by EMA-based smoothing to accentuate the pattern 

of synthetic image quality trend during the GAN training process. The optimal GAN model 

weights selected for further stages of our purposed sample selection corresponds to the 

epoch with the lowest adjusted FID score. Next, we generate 4rNi synthetic images for each 

class i with the chosen GAN, on which the same feature extractor is run for 5 times in order 

to extract the predicted probability from the softmax layer for entropy calculation, and also 

extract feature vectors after each residual block to obtain distance to centroids of ground 

truth. A dropout layer of rate 0.5 is inserted before the last residual block right above the 
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fully-connected layer of the feature extractor (ResNet34) for Monte Carlo sampling. Then 

the generated images are ranked based on the mean of entropy across 5 runs in ascending 

order, of which half images in each class are kept. The selected pool of synthetic images are 

further ranked based on the mean of cosine distance to the centroid that corresponds to the 

assigned label of each image over 5 runs also in ascending order. Similarly, half are filtered 

out, leaving the rest for the final augmentation.

4.3. Results Analysis

4.3.1. Evaluation by Expert Pathologists—To evaluate the quality of images 

generated by the proposed HistoGAN and validate the effectiveness of the selective synthetic 

augmentation method, we invited two pathologists to conduct expert evaluation on the 

cervical histopathology dataset. To prepare for the pathologist evaluation, we randomly 

chose 100 synthetic images where half of them are before selection and the other half 

are after selection. These images are then divided into 10 groups. Within each group of 

10 images, there are two subgroups of 5 images where one subgroup is from the before-

selection set and the other one is from the after-selection set. The 10 groups of images 

were then presented to the two pathologists who evaluated their quality independently. For 

each group, a pathologist was asked to choose one subgroup that has better quality, without 

knowing which subgroup corresponds to the one after selection; if the two subgroups 

were considered to have similar quality, the pathologist chose a tie. After the pathologists 

completed their evaluation, we compared their selected subgroups with the ground truth 

about which subgroups are from the after-selection image set. The comparison result 

shows that the two pathologists were able to differentiate before-selection subgroups from 

after-selection subgroups with high consistency: among the 10 groups, they chose the after-

selection subgroup as having better quality 7 times, they chose a tie 2 times, and only 

once they chose the before-selection subgroup as having better quality. This evaluation 

result demonstrates that our image selection method is highly effective, since the expert 

pathologists consistently chose the after-selection images as having better quality.

Besides the group-level evaluation of our image selection method, the two pathologists also 

assessed the quality and realism of the individual synthetic images. They highlighted some 

realistic characteristics of the synthesized images, such as correct orientation, cell polarity, 

clear borders, and correct color of the cytoplasm. They also pointed out some unrealistic 

characteristics that repeatedly appeared in the generated image, such as smudged chromatin, 

missing nuclear details for large dark nuclei, and incorrect texture of large sheets of keratin. 

Despite the unrealistic aspects that they saw in the images, the pathologists actually view 

most of the images as containing meaningful features that make the images diagnosable. 

We are encouraged by these findings and plan to incorporate such expert knowledge in our 

future work to further improve our image synthesis model.

4.3.2. Qualitative Evaluation—The image synthesis results for cervical and lymph 

node datasets are demonstrated in Fig. 6 and Fig. 7, respectively. In Fig. 6, we also show a 

comparison of synthetic images generated by our previous work [45] and by our proposed 

HistoGAN in this work. In both datasets, as we have already achieved promising image 

generation results, determining whether those samples can be used for data augmentation 
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or not cannot be easily done by human observations. However, the discrepancy between 

images with and without selection is much more prominent in the feature space. In order 

to visualize such differences, after training a baseline ResNet34 classifier with the original 

training data, we use the pre-trained ResNet34 model as the feature extractor to extract 

features from the last convolutional layer in the ResNet model. We explore the distribution 

of training samples, including both original images and synthetic images, in the feature 

space using t-SNE [26]. In Fig. 10, without image selection, samples from different classes 

are entangled together, introducing obscuring noise that disrupts the data distribution that 

real data presents. On the contrary, selected images have clearly more distinguishable 

features and can potentially help with improving the classification model performance. 

Similar phenomenon is also observed with more noticeable pattern in Fig. 11: while 

data augmentation without image selection increases the number of training samples, the 

original data distribution is distorted. After image selection, the original data distribution is 

recovered along with more number of data points.

The self attention mechanism (Sec. 3.1.1) is a core improvement of our proposed HistoGAN 

model in this work as compared to the GAN model used in our previous work [45]. In order 

to examine the role of self attention, we visualize the conditional attention maps for images 

from different classes in Fig. 9. From the figure, one can see that HistoGAN with self 

attention successfully learns meaningful features by attending to important areas containing 

patterns most useful in distinguishing images of different disease grades.

4.3.3. Quantitative Comparisons—We report quantitative evaluation scores between 

all baseline augmentation models and our models including the accuracy, area under the 

ROC curve (AUC), sensitivity and specificity to provide a comprehensive comparison. All 

models are run for 5 rounds with random initialization for fair comparison. The mean and 

standard deviation results of the 5 runs are reported.

In Table 1, we compare quantitative results with different baseline augmentation methods. 

We use the same backbone ResNet34 classifier with same hyperparameters setting in all 

experiments to ensure differences only come from the augmentation mechanisms. Beyond 

the backbone baseline model [16] without augmentation, we construct a baseline model with 

traditional augmentation including horizontal flipping and color jittering. Another baseline is 

GAN augmentation without selection where the training set is expanded by blindly adding 

GAN-generated images. We also compare the selective augmentation method proposed in 

this work with our prior work [45]. Since in this work we use HistoGAN, an improved 

cGAN model that generates better synthetic images (as shown in Fig. 6) than the cGAN 

model originally described in [45], we reimplemented [45] to also use HistoGAN generated 

images, for fair comparison of the image selection algorithms. From Table 1, one can see 

that the selective augmentation algorithm brings obvious benefits to all evaluation metrics, 

and our full model with augmentation ratio r = 0.5 achieves best performance in all metrics. 

More specifically, under r = 0.5, our image selection method improves the classification 

result by nearly 2% compared to the method in our prior work [45]. This quantitative result 

demonstrates that our proposed selection method can better select high-quality images for 

augmentation than previous work.
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To provide further insights on how the choice of the augmentation ratio r affects 

augmentation performance, we also conduct an ablation study using different values of 

r, on differentsized candidate pools of HistoGAN-generated images. A summary of the 

ablation study is illustrated in Fig. 12. For this study, we generated synthetic image pools 

of four sizes: 2N, 4N, 6N, and 8N, where N is the size of the original training set. On 

these pools, we tested different values of r, between 0.4 and 1.0. Each test is run for 5 

rounds, and the mean and standard deviation of the 5 runs are reported. From the results 

shown in Fig. 12, one can see that either too small or too large a value of r compromises 

the advantage of synthetic augmentation, and the best and most consistent performance 

gain is achieved at r = 0.5. This observation is true for all four pools of different sizes. 

Our explanation for this phenomenon is related to the motivation behind using selective 

synthetic augmentation: the synthetic images have different levels of quality, and the number 

of images with good quality and meaningful diverse features generated by a trained GAN 

model is limited. While our sample selection can provide quality assurance, the total number 

of diverse, good images that provide complementary information to the existing training set 

is constrained by the GAN model and more relevantly, by the original labeled training data 

used to train the GAN model. Therefore, a larger pool of generated images does not always 

translate to more high-quality images that will be selected by our method, as shown by this 

ablation study. Once our selection method has chosen those good images generated by the 

particular GAN model, adding more images such as images that do not improve diversity 

but may contain artifacts or bad features would indeed add noise to the training set thus 

degrade performance. Since our experiments show that the best augmentation performance 

is achieved at r = 0.5, we use this value for all ours and other baseline models and all 

experiments on the PCam dataset.

In Table 2, we use 3%, 5%, 10% and 20% of the training data in PCam to simulate 

training sets with limited annotations and evaluate our models on the full testing set. 

Compared with the cervical dataset, the baseline classification model achieves higher 

accuracy on the reduced PCam dataset which makes it more difficult to further improve 

the performance. However, our model still outperforms all baseline models using training 

sets of different sizes. For instance, when using 10% of the entire dataset as training data, 

the classification accuracy improved by 1% when using HistoGAN generated images for 

augmentation, without selection. After applying image selection, the accuracy is further 

improved by another 1.7%. By conducting experiments on two histopathology image 

datasets and showing improved classification performances, we prove that our proposed 

HistoGAN model and synthetic augmentation algorithm are general and can be applied to 

various types of histopathology data.

5. Discussion

Our proposed selective synthetic augmentation expands the training dataset by selectively 

adding synthetic images that do not distort the original data distribution, thus providing 

quality assurance in augmentation. The selected synthetic images are shown to improve 

the performance of automated image recognition systems with limited amount of manual 

annotation. We believe our proposed method is applicable to other histopathology image 

recognition tasks with insufficient annotated data. In addition, our proposed image selection 
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algorithm is complementary to existing data augmentation methods, which further indicates 

the generality of our method.

While our selective synthetic augmentation significantly outperforms all baseline models, 

partial credits should go to the high-fidelity images generated by our proposed HistoGAN. 

However, the generated images are still not perfect, especially when viewed by expert 

pathologists, and we expect to further improve our GAN model with help from clinical 

experts. Besides the visual quality of images, the diversity of images also plays a critical 

role in synthetic augmentation. Since synthetic augmentation is imperative in scenarios with 

very scarce training samples, combining our pipeline with a GAN model that can learn from 

limited data [42, 25, 33] would further improve the generality of our method. As we provide 

a solution to assure the synthetic image quality during augmentation, there is still room 

for improvement in selection mechanisms. More advanced methods for model selection and 

image selection, such as an end-to-end method and reinforcement learning based method, 

will be investigated in our future works.

6. Conclusion

In this paper, we design a new cGAN model termed HistoGAN for high-fidelity 

histopathology image synthesis and propose a synthetic augmentation method with quality 

assurance. By selectively adding realistic samples generated by HistoGAN into the original 

dataset, our method remarkably boosts the classification performance of baseline models. 

Experiments on two histopathology image datasets demonstrate the effectiveness and 

generality of our method.
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Highlights

• A novel conditional GAN for synthesizing realistic histopathology images

• Selective synthetic data augmentation with model and image selection

• Extensive experiments show superior results on two histopathology image 

datasets

• Proposed method can be adapted to other histopathology image analysis tasks
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Fig. 1. 
Comparison between different training processes. (a) Traditional training pipeline; (b) 

Conditional GAN augmented training pipeline; (c) Our proposed selective synthetic 

augmentation with quality assurance. The input to the cGAN are noise vector z and label 

condition vector y.
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Fig. 2. 
The architecture of the proposed selective synthetic augmentation algorithm. The ∪ symbol 

indicates that the selected synthetic image set is unioned with the original training set to 

improve classification model training and test performance.
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Fig. 3. 
The architecture of a 3-stage HistoGAN for cervical epithelium synthesis. The number of 

stages can be adjusted according to the desired final image resolution. Detailed features 

such as cytoplasm texture and nuclei shapes get progressively refined in synthetic images 

of higher resolution from stage I to III. The self attention layer is applied after stage I 

generator where the sketch outline and rough pattern of images are shaping up. Self attention 

layers are also incorporated in discriminators at all stages to further enforce the consistency 

of focused local regions more accurately. Conditional batch normalization [7] is used after 

convolutional layers for flexibly modulating convolutional feature maps.
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Fig. 4. 
FID scores (pre-trained ResNet34) of HistoGAN models saved after different number of 

epochs of training. Scores are smoothed with varying EMA parameter α.
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Fig. 5. 
Illustration of the image selection process. r and N represent the augmentation ratio and the 

number of original training data. The same feature extractor runs multiple times through 

MC-dropout for both entropy and class centroid distance calculations to increase robustness.

Xue et al. Page 25

Med Image Anal. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Examples of real images, synthetic images generated from [45], and images generated by 

our HistoGAN model trained on cervical histopathology dataset before and after selection. 

Our HistoGAN generates realistic images with clearly better visual quality than those by 

[45]. Zoom in for better view.
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Fig. 7. 
Examples of real and synthetic images generated by HistoGAN trained on 10% of PCam 

dataset.
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Fig. 8. 
Examples of real and synthetic images generated by HistoGAN trained on 3%, 5%, 10% 

and 20% of PCam dataset. All generated images are chosen from the pool after applying our 

proposed image selection method. Zoom in for better view.
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Fig. 9. 
The attention map extracted from the self attention layer applied after stage I generator as 

illustrated in Figure 2. The first row shows the synthetic images generated by our proposed 

HistoGAN model; the second row gives the most attended regions of each image during the 

GAN training phase by overlaying the attention map on top of the original image. Higher 

attention scores correspond to the highlighted areas where distinguishing patterns like cell 

crowding and nuclei distribution are highlighted. It demonstrates the effectiveness of the 

attention mechanism incorporated in our HistoGAN model.
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Fig. 10. 
t-SNE of the original and augmented cervical histopathology training set before and 

after image selection. The augmented training data after selection clearly have more 

distinguishable features than the ones without selection.
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Fig. 11. 
t-SNE of the original and augmented PCam histopathology training set before and after 

image selection. While data augmentation without image selection increases the number 

of training samples, the original data distribution is distorted. After image selection, the 

original data distribution is recovered along with more number of data points.
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Fig. 12. 
Classification results of the proposed selective synthetic augmentation with different 

augmentation ratios on the cervical dataset. N in candidate pool sizes indicates the number 

of images in the original training dataset. For the same candidate pool size, selected images 

with different ratios are from the same pool. The error bar represents the standard deviation 

of classification accuracy from 5 multiple runs of each setting, the middle dot refers to the 

mean of 5 accuracy scores of the aforementioned multiple runs.
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