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Abstract

Diffusion imaging is a critical component in the pursuit of developing a better understanding of 

the human brain. Recent technical advances promises to enable the advancement in the quality 

of data that can be obtained. In this review the context for different approaches relative to the 

Human connectome projects are compared. Significant new gains are anticipated from the use of 

high performance head gradients. These gains can be particularly large when the high performance 

gradients are employed together with ultrahigh magnetic fields. Transmit array designs are critical 

in realizing high accelerations in dMRI acquisitions, while maintaining large FOV coverage, and 

several techniques for optimal signal-encoding are now available. Reconstruction and processing 

pipelines that precisely disentangles the acquired neuro anatomical information are established 

and provide the foundation for the application of Deep learning in the advancement of dMRI for 

complex tissues.

Introduction

The Human Connectome Project (HCP) was planned and initiated nearly a decade 

ago as two multi-institutional undertakings aimed at establishing new benchmarks for 

understanding connectivity in the human brain using neuroimaging. Together, these 

projects produced exquisite magnetic resonance (MR) imaging data on neuroanatomy, 

brain responses to a multitude of tasks and/or stimuli mapped by functional imaging (t/

sfMRI), structural and functional connectivity derived from diffusion weighted imaging 

(dMRI), and correlated spontaneous fluctuations captured by “resting state” fMRI (rfMRI), 

respectively. Over a relatively short period of time, these projects significantly advanced the 

instrumentation as well as image acquisition, reconstruction, and analysis methods in pursuit 

of developing a better understanding of the human brain “connectome” (i.e. the organization 

and interaction of structural and functional networks), much like the Human Genome 
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Projects, (HGP, 1990–2004), or the NIH Advanced Sequencing Technology Development 

(ASTD, 2004–2013) propelled efforts towards unveiling our genetic blueprint (the genome).

Of the two multi-institutional initiatives, the WU-Minn Consortium (with primary 

participants Washington University in St. Louis, University of Minnesota, and Oxford 

University) was responsible for generating a large, 1200 subject imaging database obtained 

at 3 Tesla (3T), complemented with genetic and behavioral measures across subjects (1). A 

smaller database was also generated at 7 Tesla (7T) (2,3), using ~180 individuals from the 

1200 subject pool of the 3T database. Following an approximately three-year period focused 

on advancing hardware, image acquisition, data collection protocols, and image analysis 

pipelines, the WU-Minn consortium established a new imaging standard for large population 

studies (e.g. (1,4–8)). The 3T component of this major effort included dMRI acquisitions 

that utilized three shells with b=1000, 2000, 3000 s/mm2 exploiting a gradient set with 

high maximal strength of 100 mT/m. The number of shells and the b values employed 

were decided upon subsequent to extensive technical developments and piloting on subjects 

similar to the targeted population (6,7).

The second HCP initiative, the MGH-USC Consortium, focused almost exclusively on 

establishing a unique 3T instrument with 300 mT/m maximal gradient strength (Gmax) 

specifically for dMRI, and generated a 35 subject dMRI data set using a 4 shell acquisition, 

with b=1000, 3000, 5000 and 10000 s/mm2 (9); the significantly higher Gmax of this 

instrument permitted the use of b values greater than 3000 s/mm2.

Achieving substantial accelerations was a central target in the WU-Minn Consortium and 

this was attained through slice acceleration using simultaneous multi-slice (SMS)/multiband 

(MB) approach for the 3T and using both slice and phase encoding accelerations in the 

7T components of their effort. In contrast, MGH-USC consortium, acquiring data at 3T, 

only relied on acceleration along the phase encode direction (Table 1). There were other 

major differences in the 3T dMRI acquisition parameters of the two different consortia: For 

example, nominal resolution was 1.25 mm isotropic in the WU-Minn data (7), whereas it 

was 1.5 mm isotropic in the MGH-USC effort (Table 1); this difference, together with the 

choice of accelerations led to different TRs and TE’s in the two databases (TR/TE= 5900/89 

ms for WU-Minn (7) and 8800/57 ms for MGH-USC (Table 1)). These projects have been 

previously reviewed and described in detail (1,4,6–10).

The avalanche of transformative technologies that were brought together in the HCP for 

neuroimaging in general, and for diffusion and functional imaging in particular, provided 

the motivation to adapt these technologies by many other large-scale projects. This was 

also catalyzed by the early, well-supported, and well-documented public availability of the 

HCP methods (e.g. the image acquisition and reconstruction methods from the University 

of Minnesota, Center for Magnetic Resonance Research (CMRR) for SMS/MB technique 

(https://www.cmrr.umn.edu/downloads/), correction and image analysis methods from 

FIMRIB in Oxford (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL), and analysis and visualization 

platform from Washington University in St. Louis (https://www.humanconnectome.org)), 

and recent commercialization of the acquisition techniques by MR vendors. At the very 

least, the success of the original HCP carried out on a young adult population has led 
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to three new HCP projects focused on the human Lifespan (Baby Connectome) (11), HCP-

Lifespan-Development (12), HCP-Lifespan-Aging (13) and numerous Disease Connectome 

projects (see https://www.humanconnectome.org for a list); these projects are focused on 

collecting HCP style data using the methods developed and made available by the WU-Minn 

consortium. The lessons learned from the HCP are similar to those that could be learned 

from the genome mapping project (14), namely: 1. Aggressively encourage technology 
development from; the start; 2. Consider practical applications from the start; 3. The goal 
need not be “simple.” 4. Lack of prior “understanding” should not impede innovation.

dMRI is currently the only imaging method available to map short and long-range brain 

pathways in vivo (for recent collections of reviews see special issue volume edited by 

Alexander Leemans et al. (15)). Although this technique was the subject of transformative 

refinements within the HCP, achieving further substantial advances should remain a major 

research focus since significant inaccuracies remain in tracing connections in the human 

brain with dMRI based tractography. A recent global tractography challenge (16), based 

on a high-quality HCP data yielded a general consensus that 90% of the well-known 

axonal bundles could be correctly determined; however, the same tractograms (i.e. sets of 

tractography outputs) also contained a substantial number of false positive bundles, and 

half of these invalid bundles occurred systematically across the efforts undertaken by the 

different research groups. Moreover, assessment of the volumetric extent of these pathways 

was only about one-third accurate (i.e. 30% spatial agreement). Taken together, these results 

highlight persisting fundamental limitations that justify major efforts in seeking considerable 

new improvements in dMRI in the post HCP era, pursuing higher signal-to noise ratios 

(SNR), higher spatial resolution imaging, faster k- and q-space sampling, and superior 

tractography algorithms. Such pursuits are the subject matter of this review article, and 

are presented in 6 sections covering the MR signal (signal magnitude, SNR efficiency, 

multi-shell and TE choices), the MR system (gradients, and receive and transmit arrays), the 

image reconstruction algorithms, pre-processing pipelines, Q-space sampling and biological 

systems modelling, and imaging techniques different from the HCP approach.

MR Signal and Mono Polar EPI for Diffusion Encoding.

Both HCP projects selected mono-polar spin-echo Echo Planar (SE-EPI) approach that 

employs a single, nominally 180°, refocusing pulse for dMRI to maximize the acquired 

signal. This approach amplifies the magnitude of the deleterious eddy currents induced by 

the diffusion gradients. In addition, single shot k-space encoding by EPI acquisition suffers 

from off-resonance effects due to B0 inhomogeneities as well as the eddy currents that may 

persist onto the EPI readout period. Thus, rigorous methods for correcting eddy-current (17), 

and off-resonance effects (18) had to be developed. Viable alternatives such as STEAM-

dMRI (19) for diffusion contrast were considered, particularly for high magnetic fields, but 

ultimately rejected due to the 2-fold SNR loss suffered in stimulated echoes.

SE-EPI Signal Magnitude and SNR efficiency

The signal S for SE-EPI (20), is described as [Eq. 1]
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S = M0sin θEX sin2 θref /2

1 + (cos(θref) − 1)e − TR − TE /2
T1 − cos(θref)e − TR

T1

1 − cos θref cos(θEX)e − TR
T1

e − TE
T2

[Eq. 1]

where θEX and θref are the excitation and refocusing flip angles respectively, and TE, T1, 

and TR are the relevant MR parameters. S gives amplitude the signal for the center of 

k-space. However the rest of the points during the EPI readout will be affected by T2 and 

T2* decay, and this effect is in addition to [Eq. 1]. The signal behavior under diffusion is 

reflective of the underlying tissue and commonly assessed with a single diffusion encoding 

(21), such that

s(b) = s(0)e−bD with b = (γδ |g|)2 Δ − δ
3 [Eq. 2]

where γ is the gyromagnetic ratio, g the gradient vector defined from the magnetic field 

gradient, δ the gradient pulse length, Δ the diffusion time between gradient pulses and D the 

diffusivity. Of course, D is a scalar in a homogeneous medium but is a tensor in complex 

structures like the brain. Analysis of the SE-EPI signal using [Eq. 1], can elucidate that the 

signal is maximized for long TR, with a 180° refocusing pulse (sin2(θref/2)), and that the 

signal dependence on TE is dominated by an exponential decay model (e − TE
T2 ).

In terms of defining optimal acquisition parameters, the concept of SNR efficiency, defined 

as SNR/√TR, is introduced since a shorter TR leads to larger number of scans within a total 

acquisition period and hence to improved SNR due to increased averaging while at the same 

time leading to decreases in SNR due to incomplete relaxation. For a 90° excitation and 

180° refocusing pulses, and TE/T1=65ms/1200ms the relative SNR efficiency (independent 

of the e − TE /T2  term in Eq. 1) is plotted as a function of TR in Figure 1A; this is the source 

of the frequently expressed notion that the SNR is maximized at a TR of 1.2×T1 (22) for 

a spin-echo sequence with a single refocusing pulse. At TR’s longer than the optimal TR, 

SNR efficiency decreases slowly with increases in TR. Given that white matter T1 is ~900 

ms at 3T and ~1200 ms at 7T (23), the optimum TR for a dMRI acquisition using a single 

refocusing pulse would be ~1 to ~1.5 s for 3T and 7T, respectively, and somewhat longer 

at higher magnetic fields. Because of the broad maxima in this SNR efficiency curve, one 

can even tolerate TR’s of ~2.5 s before significant degradation begins to occur. Achieving 

such TRs for high resolution imaging is highly challenging in whole brain studies due to 

the large amount of data that needs to be collected (i.e. large number of slices and k-space 

points needed for each slice). The delay period TE imposed by the diffusion encoding also 

adds to the challenge of reducing TR. Consequently, the HCP dMRI data were obtained 

with repetition times far away from this optimal TR range, ranging from 5500 ms in the 3T 

component of the WU-Min HCP (7) to 8900 ms in the MGH-USC consortia (Table 1). The 

HCP Lifespan, where the dMRI resolution is 1.5 mm isotropic and 4-fold slice acceleration 

is employed, achieves a shorter TR (3200 ms) (Table 1) (12), which is still longer than the 

optimal TR.
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Thus, TR and volume acquisition times (VAT)1, which are the same in a slice based imaging 

approach, are suboptimal in the HCP; reducing this parameter towards the optimal value 

requires both reducing TE and increasing image accelerations, irrespective of the imaging 

approach used, whether slice based as in the HCP or segmented 3D EPI or spiral trajectory 

acquisitions (e.g. (20,24–26)) that are gradually being explored as an alternative. This 

in turn requires major new developments in hardware as well as image acquisition and 

reconstruction strategies, which are increasingly a major focus of the post HCP era in the 

development of dMRI as well as fMRI techniques.

MR Systems

Pursuit of Shorter TE using High Performance Gradients

For a multi-shell dMRI, such as those used in the HCP projects, diffusion modelling pre-

supposes the use of the same TE for all shells; this TE is determined by the highest b value, 

which penalizes the SNR for lower shells. In the case of the young adult HCP, the SNR 

loss due to fixed TE is plotted in Figure 1B for the WU-Minn consortium data, showing 

that as much as 16% signal loss is encountered for the b=1000 s/mm2 shell when the TE 

is set by the b=3000 s/mm2 shell. This SNR reduction is further aggravated due to the 

diffusion weighting itself, which inherently decreases the measured signal with increasing 

b values (Figure 1C). Consequently, dMRI studies aiming for high resolution and/or carried 

out at high magnetic fields, employ relatively low diffusion weighting, such as b=1000 

s/mm2 or less, and only one shell (e.g. (27–29)). While such low b values do permit the 

construction of some fibers through tractography which may look pleasing to the eye, they 

are significantly suboptimal with respect to capturing multiple fiber crossings (6).

Therefore, developments towards achieving relatively high b values with short TEs as well 

as TR’s that optimize SNR remain a critical need in the post HCP era. The dominant 

determinant of the TE is gradient performance. Hence, the drive towards establishing high 

performance gradients in the HCP naturally continues in the post HCP era.

HCP Gradients—SNR in a dMRI acquisition strongly depends on gradient performance. 

During the delay time TE where diffusion encoding takes place, the MR signal decays 

exponentially with T2 leading to SNR losses (Eq. 1). For a given b-value, decreasing the 

duration of the diffusion gradients by increasing their amplitude and slew rates reduces 

the TE and increases the SNR. Therefore, the two original young adult HCP efforts used 

modified custom gradient systems, as previously mentioned. The connectome scanner for 

the MGH-USC project was a 3T Siemens Skyra outfitted with a custom gradient set that 

achieved a Gmax of 300 mT/m with a slew rate of 200 T/m/s when driven by 4 Siemens 

Aera gradient amplifiers. The scanner for the WU-Minn project was also a 3T Siemens 

Skyra; this instrument was outfitted with the SC72 Siemens gradient coil normally used 

on the 7T Siemens scanners, and driven by a single Aera gradient amplifier to achieve 

Gmax of 100 mT/m and 200 T/m/s slew rate. The WU-Minn HCP project also had a 7T 

1Note that while TR and volume acquisition time (VAT) are the same in a slice based imaging approach, this is not the case in 
segmented 3D imaging where k-space is sampled in 3 dimensions. For the latter, TR is used as the time between two consecutive RF 
pulses exciting the same spatial volume (e.g. slice or slab) and TR<<VAT.
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component, which employed a standard Siemens 7T instrument equipped with the SC72 

Siemens gradient coil driven by an Avanto gradient amplifier to achieve 70 mT/m gradient-

strength and 200 T/m/s slew rate. At the time, commercial 3T instruments typically provided 

maximal gradient strength of ~40 mT/m with 200 T/m/s slew rate.

None of the gradient sets available in clinical or connectome scanners could fully utilize the 

slew rates the hardware can achieve. They were all limited by peripheral nerve stimulation 

(PNS) and, in case of the two 3T connectome gradients, also by cardiac stimulation. 

Especially the Gmax=300 mT/m connectome set encounters the cardiac limitation since this 

limit is kicked in at approximately 100 mT/m (9,30). At the hardware slew rate limit, the 

300 mT/m can be reached in 1.5 ms; with the cardiac limitation, it takes ~6 ms to achieve 

it (9,30), thus diminishing the impact of the high Gmax values for decreasing the TE in 

diffusion encoding. Nevertheless, the high maximal strength HCP gradients operating in 3T 

scanners clearly provided significant SNR gains for dMRI acquisitions compared to what 

was available at the time (6,9).

For the two HCP gradients, the similar slew-rates up to ~100 mT/m imply that for low 

b-values the two systems yield similar SNR in dMRI, while for high b-values the stronger 

gradients permit shorter TEs thus retaining more image SNR, despite having to employ 

slower slew rates. The calculated relative SNR gain between the two systems are shown 

in Figure 1D for a b-value less than and equal to 3000 s/mm2 for different maximal 

gradient strengths without taking into account the slew rate (i.e. assuming infinitely fast 

slew rate) (7). Similar calculations were provided in (4). Experimental gains in reducing 

the TE and increasing SNR were shown for the 300 mT/m gradient set of the MGH-USC 

consortium scanner (9) illustrating major improvements especially for high b- values of 

10,000 or 20,000 s/mm2; such high b-values are not practical even for the Gmax= 100 mT/m 

Connectome gradient, but achievable with a Gmax of 300 mT/m despite the slower slew rates 

that must be employed in reaching that maximal strength, yielding numerous advantages in 

dMRI based tractography or microstructure determination (e.g. see review (30)).

Head only Gradients—Overcoming the slew rate limitation at the present requires head 

only gradient systems (31–34) and/or possibly new designs that take into account PNS 

in defining the gradient wiring (35). The higher slew rates have an additional significant 

benefit besides their contribution to achieving high b values; namely they allow smaller 

echo-spacings in fast acquisition schemes like EPI and spiral trajectories that are employed 

in dMRI, further contributing to SNR gains, and suppression of off-resonance distortions 

and blurring. Among the recent efforts, a head-only 42 cm internal diameter (ID) gradient 

designed for a compact 3T system achieves 80 mT/m peak gradient amplitude with a slew 

rate of 700 T/m/s on each gradient axis using readily available 1-Mega Volt-Amp (MVA) 

gradient drivers (34). It is able to achieve similar diffusion encoding as the WU-Minn HCP 

system, benefiting from the higher slew rate to reduce TE despite the slightly lower Gmax 

relative to the WU-Minn HCP scanner. A smaller, 33 cm ID, head gradient developed so 

as to fit into the bore of whole body MR system was reported to achieve 100 mT/m and 

1200 mT/m/s when driven by 720 Amp/1300 Volt amplifiers (31) and has been employed in 

dMRI scans with TE= 19 ms at b=1000 s/mm2 (36). At the present time, in projects funded 

by the NIH’s BRAIN Initiative (U01 EB025144 and U01 EB025162) towards establishing 
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next generation human neuroimaging platforms, high performance head only gradients are 

also being pursued in industrial-academic collaborations, aiming for ≳100 mT/m maximal 

strength with ≳700 T/m/s slew rate.

When evaluating and comparing the Gmax and slew rate performance of head gradients, 

it is critical to keep in mind that the gradient performance depends strongly on the 

gradient driver amplifiers used, which have been increasing in current and voltage over 

the years, the size of the gradients, particularly the ID which strongly influences the 

achievable Gmax per unit current, the shielding efficiency, the volume over which linearity 

is desired, and the degree of the linearity over that volume, which impacts particularly 

the slew rate. It will be interesting to see what kind of compromises will emerge in 

the on-going efforts to substantially improve performance using head gradient designs. 

Actual achievable performance in a real dMRI experiment will also depend on additional 

considerations. Most importantly, thermal performance and eddy currents induced in the 

magnet will be critical. The latter can lead to temperature rises in the magnet, which 

can have catastrophic consequences. The former is critical for contemporary developments 

in neuroimaging, particularly functional and diffusion weighted imaging, which push for 

ever-higher accelerations in data acquisition; such acceleration gains will often be used to 

sample more data points per unit time while keeping the total acquisition time still relatively 

long. This means that the gradients must attain very high Gmax and slew rates using high 

currents and voltages at increasingly high duty cycles over long periods of time.

An interesting aspect of the BRAIN Initiative funded projects pursuing new head gradients 

is that they are associated also with ultrahigh fields (UHF) like 7T or 10.5T. The advantages 

of the high gradient slew rates in k-space encoding at very high magnetic fields is clear. 

Namely, at high B0 fields, magnetic field inhomogeneities, and shorter T2* and T2 become 

a bigger challenge for rapid acquisition schemes like EPI and spiral, especially when 

implemented as single-shot trajectories. Faster slew rates, hence faster rate of covering 

k-space, alleviates this problem. However, these projects also target major gains in dMRI.

dMRI and UHF

Among many practitioners of dMRI, there is the concept (may be even better called a 

“prejudice”) that UHF is inherently disadvantageous for dMRI. This is true in the limit that 

TEs employed for diffusion encoding are long compared to T2; in this limit, the intrinsic 

SNR advantage of the ultrahigh magnetic field such as 7 or even 10.5T will be lost due to 

the shorter T2 and hence faster longitudinal relaxation and signal loss during TE. However, 

as TE’s become smaller, the losses associated with the shorter T2 at the higher magnetic 

fields are not sufficient to negate the intrinsic SNR gain available at the higher magnetic 

field (7). This was shown early on for reduced FOV diffusion weighted single-shot SE-EPI 

with 50–100% SNR improvements at 7T relative to 3T (37); however, this SNR gain was 

limited without access to current scan-efficient techniques, and high gradient strengths. In 

particular, SNR gain could not be extended to whole-brain imaging in the absence of SAR 

and B1 management tools, which are now available (38).

The long TE regime for diffusion encoding, which is disadvantageous for ultrahigh magnetic 

fields, was applicable especially in the early days of dMRI when typically two refocusing 
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pulses and bipolar gradients in three intervals between the excitation radio frequency (RF) 

pulse and data acquisition were employed for diffusion encoding. This was done in order to 

counteract and minimize the eddy current effects (39). However, with eddy current distortion 

corrections becoming feasible in the HCP (40), or through the use of field monitoring 

(41,42), a move to a single refocusing pulse together with the use of high performance 

gradients, as employed in the HCP, have already shortened TEs where ultrahigh fields 

actually provide net gains in dMRI.

This was demonstrated in the WU-Minn young adult HCP consortium, where dMRI data 

were obtained on the same 180 subjects at both 3T and 7T instruments. This unique dataset 

showed distinct advantages for the 7T: The 7T dMRI data was obtained with 1.05 mm vs. 

1.25 mm isotropic nominal resolution used for the 3T acquisitions, which corresponds to ~2 

fold smaller voxel volumes at 7T. The real voxel volume calculated by taking into account 

the point spread function was even smaller for the 7T where the echo train lengths were 

kept short by using undersampling in the phase encode direction (2,43). The 3T dMRI used 

a Gmax= 100 mT/m as previously mentioned while the 7T only had 70 mT/m for Gmax; 

as such, the 7T was handicapped from the point of view of gradient performance. Despite 

this, the 7T data had unique advantages with respect to gyral bias (43). At the time, it was 

decided in the WU-Minn consortium that, because of the lower gradient performance, the 

b=3000 s/mm2 shell that was employed on the 3T dMRI would not be used for the 7T dMRI 

data. However, subsequently, it was demonstrated that the addition of this shell still has 

enough SNR to provide information and leading to a 7T dMRI data acquired using the same 

3 shells employed in the 3T HCP protocol (44). An example from this 3-shell 7T effort is 

shown in Figure 2.

Higher Resolution using UHF—The performance of tractography is reduced when 

there is an ambiguous correspondence between diffusion directions and fiber geometry (e.g. 

crossing, divergence). Often the focus has been on the crossing fiber problem in white 

matter; however, accurately following fibers becomes a major problem also at the boundary 

between white and gray matter where fibers can sharply turn from the white matter into 

the gyral wall and subsequently penetrate the cortical laminae where radial and tangential 

fibers coexist. This makes it challenging to completely track the end-to-end connections 

for creating joint structural and functional connectomes. In this respect, the 2-shell 7T 

HCP data was already significantly better than the 3-shell 3T HCP data due its higher 

spatial resolution, but further significant improvements were achieved when the three-shell 

3T HCP protocol was also applied at 7T while keeping the spatial resolution at 1.05 mm 

isotropic (44). This is demonstrated by tractography streamlines progressively bending into 

and penetrating the cortex (Figure 2) not only toward the gyral crown but also throughout 

the walls. Such UHF results demonstrating improved tractography relative to 3T HCP data 

of course would attain further major gains with enhanced gradient performance which was 

not been available for these 7T data.

Thus, significant new gains are anticipated for dMRI in the post HCP developments that 

will rely on the use of high performance head gradients, particularly large when these high 

performance gradients are employed together with ultrahigh magnetic fields. The use of 

high resolution and high magnetic fields also increases the complexity of the problem; 
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for example, the effect of the coupling between endogenous local field gradients and 

exogenously applied gradients may become significant as local gradients, which arise from 

magnetic susceptibility difference at the interface between different tissues, increase in 

magnitude as B0 increases. However, the impact from such local gradients also decrease 

in the presence of large exogenously applied gradients. Since high gradient strengths are 

needed to fully exploit the SNR advantages UHF for dMRI, this problem would be naturally 

minimized. However, there are other problems encountered at 3T and particularly at much 

higher magnetic fields that challenge dMRI acquisitions; some solutions to these problems 

have been already demonstrated as discussed in the next section; improving upon these 

solutions and bringing them to easy and routine use will likely be one of the major goals of 

the superior dMRI acquisitions in the post HCP era.

RF-coils: Receive Arrays

High Channel Receive Capability at 3T—The number of receive channels in the 

RF coils employed in MRI acquisitions impact SNR and acceleration significantly. In the 

original HCP, a standard, Siemens 3T 32 channel receive (Rx) head coil was employed for 

data collection in the WU-Minn consortium and a custom build 64 channel Rx array (45) 

was used in the MGH-USC consortium.

In clinical 3T systems, vendor supplied 64 channel Rx coils typically do not focus on the 

“brain” per se but rather cover a larger volume as “head and neck” coils; consequently, 

such 64 Rx “head and neck” coils do not necessarily provide an advantage over the brain 

compared to a 32 Rx coil that focuses only on the brain. This is the reason why the initial 

WU-Minn HCP effort and all current HCP projects that are carried on Siemens Prisma 

scanners employ a vendor supplied 32 Rx coil rather than the available 64 Rx coil from the 

same vendor.

Approximately 32 Rx channels is expected to capture most of the ultimate intrinsic SNR 

(uiSNR) available at the center of the brain, as suggested by calculations in a sphere 

approximating the brain (46). However, higher channel coils improve the peripheral SNR 

(47), though this increase is expected to be relatively small at 3T compared to higher 

magnetic fields because, with the smaller coils that must be employed in high density arrays, 

thermal noise in the coil and associated electronics rather than the sample is expected to 

dominate (46). Thus, one can argue that there is little to be gained for neuroimaging at 3T 

for the much larger effort needed when going to channel counts much higher than ~32; this 

would be true for unaccelerated imaging. However, virtually all contemporary imaging and 

certainly contemporary dMRI relies on some sort of acceleration as previously discussed; 

consequently such images suffer from noise amplification from the mathematical algorithm 

used to resolve aliased signals (i.e. the g-factor noise (48)). In this case, using a 64 channel 

“brain” coil at 3T as employed in the MGH-USC HCP consortium (9) would be highly 

advantageous, providing reduced g-factor noise, including and especially in the center of the 

brain, thus increasing SNR (9,49).

High Channel Receive Capability for UHF—In particular, the HCP 7T dMRI studies 

could have benefited significantly from going beyond 32 channel Rx capability, for example 
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to 64 or even higher number of Rx channels. However, such a capability was not available 

at the time. The primary aim of UHF efforts has always included improved spatial resolution 

(e.g. (50–52)), which adversely impacts volume acquisition times and hence SNR efficiency. 

The remedy for this problem is higher accelerations, for example in the slice direction in 

multislice based brain coverage. This was the reason SMS/MB was introduced for brain 

imaging to begin with, so as to simultaneously excite multiple slices and acquire the 

combined signal of these slices in the same duration as a single slice, thus aiming for 

whole brain fMRI with thin slices (i.e. higher resolution) with improved SNR efficiency 

(53). In addition, increased B0 inhomogeneities at this ultrahigh magnetic field requires 

undersampling in the phase encode dimension in order to keep echo train lengths short in 

techniques like single-shot EPI or spiral trajectories that are commonly used in dMRI and 

fMRI; this is obligatory for minimizing image distortions, blurring, and signal drop outs in 

the acquired images. Therefore, in the 7T SMS/MB accelerated dMRI and fMRI imaging 

in the HCP, undersampling in the phase encode direction by a reduction factor (R) of 3 

and 2, respectively, was employed together with slice acceleration (7), resulting in total 

two dimensional acceleration of MBxR. In this case, unaliasing capability of the receive 

array employed is challenged not just by the slice acceleration factor of MB, but the total 

two-dimensional acceleration of MBxR, which at any given field strength will be limited by 

the number of elements in the Rx array.

Thus, high Rx channel counts are more imperative at UHF. Synergistically, high channel Rx 

arrays also perform much better at ultrahigh magnetic fields (46,54,55). At 7T and higher, a 

96 channel “brain” array composed of relatively small coils employed to achieve such a high 

channel density is expected to operate in a domain where the sample noise still dominates, 

capturing a larger fraction of the available uiSNR in superficial voxels (46). While the 

number of channels greater than 32 are not expected to (46), and do not (49), improve SNR 

in the center of the brain in unaccelerated imaging even at 7T, they are expected to improve 

SNR in the entire brain, including the center in the highly accelerated dMRI acquisitions 

required for 7T.

However, the unavailability of greater than a 32 channel receiver system at 7T at the time 

of the young adult HCP, precluded using a higher than 32 Rx coil, even a home-built one. 

This was a major limitation. Eliminating this limitation has been one of the major goals of 

development in the post HCP era, not only for dMRI, which is the subject of this review, but 

also for fMRI.

The afore discussed improvements expected at 7T with arrays greater than 32 elements 

was recently demonstrated (49). In the fMRI component of the young adult HCP, MBxR 

= 5×2 acceleration was employed. Going beyond that resulted in unacceptable g-factor 

noise with the 32 channel Rx coil used. However, with a 64 channel “brain” coil at 7T, 

collecting images in the same oblique orientation of the HCP, supported 6×2, 7×2, and 

even 8×2 accelerations (49) without exceeding the g-factor noise level of the 5×2 HCP data 

(49). Gains with the 64 Rx coil in the canonical axial, sagittal and coronal orientations are 

illustrated in Figure 3 as 1/g-factor maps calculated in the whole brain but presented as a 

MIP on a central sagittal slice (49), showing that if sagittal or coronal slices are employed, 

5×3 and even 6×3 fold accelerations would be feasible with the 64 channel coil whereas 32 

Moeller et al. Page 10

J Magn Reson Imaging. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



channel coil would not support greater than approximately 4×3. It is important to note that 

the performance of both coils are worst with axial slices.

RF Coils: Transmit Arrays

The selection of RF pulse-profile for the excitation and refocusing pulses in the SMS 

SE-EPI impacts the TE, slice-resolution, saturation of adjacent slices, and spatial distribution 

of SNR within slices and throughout the volume of interest. In the original WU-Minn 

HCP, the Siemens optimized 90°−180° pulse-pair, which are a windowed Sinc pulse with a 

time-bandwidth product of 3.2 for excitation, and 5.2 for refocusing, were employed. This 

pair of balanced pulses are short, analytic, compatible with the construction of multibanded 

pulses in SMS/MB, and provide an empirical balance between slice-profile and low power 

demand (see the (56) for a review of other pulse choices).

Flip Angle (In)homogeneity—The sensitivity of the signal in a SE-EPI sequence to the 

excitation flip angles is shown in Figure 4a as a function of TR, for the same T1 value of 

1200 ms; the refocusing flip angle was set to 180° to maximize the signal irrespective of the 

excitation flip angle. The TR employed in the Lifespan HCP, young-normative WU-Minn 

HCP at 3T and at 7T, and MGH-USC HCP (Table 1) are also indicated on this plot. It is 

clear that for the TRs achieved in all of these HCP protocols, SNR and SNR efficiency 

would be highly dependent on the flip angle. However, the flip angle in the human head is 

not uniform even at 3T but particularly at 7T (Figure 4b and 4c). This nonuniformity exists 

even with RF transmit coils that would achieve a highly uniform B1 field in the absence of 

the head. It is an intrinsic property of the dimensions of the head relative to the wavelength 

of the RF employed (50,57) and arises from the fact that at 3T and higher fields, the system 

is increasingly operating in the traveling wave regime (50,57,58). Any coil imperfections of 

course adds on to this intrinsic inhomogeneity.

At 3T, using the whole body RF transmit coil, there is an ~15% spatial variation (Coefficient 

of Variation (COV)) in flip angle over the brain; for the 7T acquisition, a single transmit 

head coil was used, along with di-electric padding, to reduce the C.O.V. to 20% (Figure 

4c) with certain regions (e.g. cerebellum and the temporal lobes) having a larger local 

drop in achievable transmit efficiency (2). The deleterious effects of these transmit B1 and 

consequently flip angle inhomogeneities become particularly pronounced in a spin-echo 

sequence as employed in dMRI where application of the multiple pulses compounds the 

effect. Thus, the HCP data and, for that matter, virtually all dMRI data obtained at 3T 

and higher field strengths reported to date also suffer from spatially non-uniform SNR and 

SNR efficiency within the brain due to transmit B1 inhomogeneities, leading even to regions 

where tractography fails (2,38).

In the WU-Minn young adult and the Lifespan HCPs, steps were taken to alleviate this 

problem. With the 32 channel receive array used in these studies, deeper parts of the brain 

have the lowest receive SNR. Therefore, in order to increase the lowest SNR in the 3T HCP 

a 90°/180° excitation/refocus were selected for the deeper parts of the brain, which was 

achieved using average whole brain flip angles of 78°/160°. These problems were partially 
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improved in the 7T component of the WU-Minn HCP using dielectric pads (2). However, 

these steps provide only partial mitigation.

Power Deposition Limitations—When the goal is to increase SNR efficiency through 

faster image acquisition, there is another problem encountered associated with transmit B1 

and RF pulses, particularly in spin echo sequences, namely power deposition in the subject 

(i.e. specific absorption rate (SAR)). This imposed a limit of MB 3 for the 3T component 

of the WU-Minn young adult HCP; although in some subjects slightly higher MB factors 

were possible without violating the SAR limit, HCP stayed with a conservative value of 3 

to accommodate the variation that was anticipated in the large number of people scanned 

in this consortium. The SAR limitation becomes more severe at higher magnetic fields. The 

7T dMRI component of the young adult HCP, restricted MB to 2 because of SAR; this 

enabled the use of a higher phase-encoding undersampling rate of 3, resulting in a 6-fold 

2-dimensional acceleration compatible with the unaliasing performance of the 32Rx coil 

employed. However, the minimum TR achievable with this low MB factor and the larger 

number of slices needed to accommodate the higher resolution was 7700 ms, which is highly 

inefficient for SNR.

pTx Design and High Channel Capability—The two problems of flip angle non-

uniformities and SAR limitation in accelerated dMRI can be tackled simultaneously by the 

use of multichannel transmit coils and parallel transmit (pTx) pulses, which can be designed 

explicitly to reduce power deposition as well as improve flip angle uniformity (38,59–61). 

Alternative strategies based on the use of relatively low power RF refocusing pulses have 

also been suggested for ameliorating the SAR problem in UHF dMRI acquisition ((62) and 

references therein); however, in such approaches, the bandwidth of the refocusing pulses are 

reduced significantly. This is problematic especially at UHF where B0 inhomogeneities are 

inherently large.

The pTx approach is applicable for the MB pulses employed in the SMS/MB based dMRI 

(63,64). This allows significantly improved flip angle uniformity thus improving spatial 

SNR uniformity over the brain. Equally important is the ability to use a higher MB 

factors due to the lower SAR achieved with pTx pulses; this decreases VAT (hence TR 

in slice based imaging), and improves SNR efficiency. This latter gain can be exploited in 

different ways. It can be used to decrease the total data collection time given k- and q-space 

sampling scheme (38). This is an important consideration especially for imaging with young 

subjects and patients where motion or tolerance of long scan times is more of a problem. 

Alternatively, the total acquisition time can be kept constant but a larger number of q-space 

points can be acquired, potentially improving the tractography accuracy.

A full solution using parallel transmission (pTx) was demonstrated at 7T (38); the attainable 

increase in SNR uniformity that resulted in improved tractography are illustrated in Figure 

5 (reproduced from (38)) which shows that particularly the cerebellum and temporal lobe 

areas (indicated by the arrows in the figure) suffer from the B1 non-uniformity. In addition, it 

was demonstrated that higher MB factors can be achieved before SAR limits were reached, 

even when conservative SAR limits were imposed (38) for safety considerations. With that 

solution, the experimental SNR-efficiency of MB3 would be ~5% higher due to the shorter 
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TR, and for MB4 relative to MB3 a further gain of 5% could be realized. Even the 3T 

data can be improved with pTx in a similar fashion. The theoretical SNR efficiency of the 

90°/180° SE-EPI which is optimal TR=1.2×T1 can be closely maintained over a wider range 

of roughly 0.8×T1 to 2×T1, shown in Figure 4a, and the use of pTx can be applied to balance 

fewer q-space samples with higher SNR and more q-space samples - each individual sample 

with low SNR but collectively similar SNR.

Further improvements in alleviating the SAR limitation while simultaneously increasing 

the flip angle uniformity can be achieved by using higher number of transmit channels, 

different transmit coil array configurations than those employed in the study by Wu et al 

(38), and using advanced SAR modeling. Wu et al (38) employed an 8 channel transmit 

version of the RF coil used in the 7T component of the young adult HCP in order to 

make direct comparisons; the transmit channels in this coil are azimuthally distributed in a 

single ring. However, simulations have demonstrated that larger number of transmit channels 

and distributing the transmit channels in multiple rows along the z direction provides 

significantly better performance for local, and global SAR mitigation while improving flip 

angle uniformity (59,61).

Thus, transmit array designs are also critical in achieving high accelerations in dMRI 

acquisitions. Therefore, compared to the single channel transmit employed in all of the HCP 

studies to date, significant improvements are possible in acceleration by using optimized 

multichannel transmit arrays and pTx pulses. However, increased acceleration enabled in 

this way requires, in addition, a high performing receive array in order to handle the 

increased aliasing. This is possible with increasing the number of Rx channels as previously 

discussed and demonstrated with the afore mentioned 64-channel Rx array at 7T (49)(Figure 

3). This 7T 64 channel Rx array was in fact designed with a 16 channel transmitter 

laid in two rows of eight azimuthally distributed channels along the z-direction with this 

consideration in mind (49); this initial foray into 16 transmit (Tx)/64 Rx at 7T (49) likely 

will be overtaken by RF coils operating with up to 32 Tx and up to 128 Rx or more channels 

in the future and such coils will become a critical part of post HCP dMRI data acquisition. 

These developments will be critical for surpassing the already excellent HCP dMRI data in 

the post HCP era.

Image Reconstruction with Slice and Phase-Encode Accelerated Imaging

Controlled Aliasing with SMS/MB

The use of parallel Imaging in the HCP was imperative for increasing the SNR efficiency. 

As previously discussed, acceleration along both slice and/or phase encoding dimensions 

were employed. At the time of the young adult HCP, the GRAPPA reconstruction for 

parallel imaging data was mature, but the SMS/MB acquisition needed to be further 

improved for encoding and reconstruction.

Exciting slices simultaneously and afterwards unaliasing them with parallel imaging 

reconstruction was first introduced in 2001 (reviewed in (56)). The performance of this 

approach was subsequently improved with the CAIPIRINHA (Controlled Aliasing in 

Parallel Imaging Results in Higher Acceleration) technique (reviewed in (56)) for unaliasing 
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of simultaneously excited slices imaged with a Gradient Recalled Echo (GRE) (also referred 

to as FLASH) acquisition scheme where a single k-space line is acquired after each RF 

pulse; in this approach, the slices were shifted relative to each other by using a slice specific 

modulation of RF pulse phases exciting the spins before each k-space line. Such an approach 

is not possible with EPI acquisition. Instead, CAIPIRINHA using a constant slice-encoding 

gradient blip between EPI k-space lines was introduced in 2006 so as to impose a slice 

specific phase modulation superimposed on phase encoding (reviewed in (56)). However, 

the constant slice-encoding blip scheme produced a dephasing within the slice in the slice 

direction.

SMS/MB for EPI

Subsequent to these efforts, development of EPI based slice acceleration stalled, probably 

because of lack of an immediate application that would highly benefit from these 

developments. Such an application was first introduced for high resolution fMRI at 7T (53). 

This effort did not use CAIPIRINHA encoding along the slice direction; it introduced also 

the first demonstration of acceleration along the phase encode axis simultaneously with slice 

acceleration, achieving 16-fold two-dimensional acceleration. The enthusiasm generated 

with this early brain application led to additional developments for encoding and unaliasing. 

The CAIPIRINHA encoding for EPI was changed from a constant slice-encoding blip 

scheme to a balanced slice-encoding blip scheme termed “blipped-CAIPI” (65), aiding 

unaliasing without the within-slice dephasing of constant slice encoding.

The undersampling of k-space for accelerating in the phase encoding dimension results 

in the Field of View (FOV) folding (i.e. aliasing) onto itself. For slice acceleration in 

SMS/MB where the FOV is not undersampled per se, the simultaneously excited slices 

appear summed or overlaid in the image domain; if SMS/MB is thought of as a 3D 

acquisition (66), then the FOV can also be thought of as folding (i.e. aliasing) onto itself. 

This latter approach was taken in the original, highly accelerated brain implementation 

(53), an approach referred to as readout (RO)-SENSE-GRAPPA. An alternative strategy 

termed Slice-GRAPPA (65) was subsequently introduced and was shown to have better 

g-factor noise performance than RO-SENSE-GRAPPA at high acceleration factors. Because 

of this, Slice-GRAPPA was adapted for the young adult HCP. Both slice-GRAPPA, and 

RO-SENSE-GRAPPA are compatible with the deterministic GRAPPA g-factor calculation 

(67). For slice-GRAPPA, noise-decorrelation needs to be applied prior to calculating the 

g-factor, whereas for RO-SENSE-GRAPPA it can be used either way as described in (67).

Performance of Reconstruction Algorithms

The g-factor parallel imaging performance of the slice-GRAPPA approach was evaluated 

(68) and, differently from phase-encoding parallel imaging, it did not have more than a 

linear increase in noise-amplification from increased undersampling; in other words, g-factor 

noise alone was inadequate to assess the performance of the unaliasing of the simultaneously 

excited slices in SMS/MB. This necessitated the concept of slice leakage (L-factor) as a new 

metric (68) for differentiating the performance of SMS/MB by measuring residual aliasing 

among the simultaneously excited slices.
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Subsequently, improvements to the slice-GRAPPA algorithm was proposed to reduce 

the slice leakage, using an additional constraint for kernel calibration in slice-GRAPPA, 

an approach termed Split Slice-GRAPPA (Sp-Sg) (69), introducing the concept of 

“slice blocking”. The Sp-Sg reconstruction has higher g-factor noise compared to slice-

GRAPPA; however, it is significantly more advantageous with respect to leakage among 

simultaneously excited slices (70). Consequently, slice-GRAPPA, which was chosen over 

RO-SENSE-GRAPPA in the original young adult HCP because of its superior g-factor noise 

suppression, was abandoned for Sp-Sg, which has inferior g-factor characteristics (Figure 6) 

but less interslice leakage.

The concept of “slice blocking” for reducing slice-leakage is not used in conventional 

parallel imaging with phase encode undersampling; it is purely a concept necessitated by 

the implementation of slice-GRAPPA, which turns out to be suboptimal. Both GRAPPA 

and RO-SENSE-GRAPPA use shift invariant convolutional kernels for data interpolation 

and the kernels are calibrated from a Nyquist sampled reference data using all possible 

patterns. In Slice-GRAPPA, the kernels are used as projection operators and calibrated 

from individually acquired single slice data. The slice-GRAPPA approach proposed in (65) 

determines the projections kernels as the mapping of “the sum of the individual slices to 
the individual single band”; had either the Minnesota or the MGH group implemented this 

as the calibration of the “sum of any complex combination of the individual slice to the 
individual slice”, the concept of slice-blocking would not have been needed. Referring to the 

implementation of slice-GRAPPA using this formulation as “unbiased slice-GRAPPA”, one 

can write,

Gj( ∑iSi ) = Sj ∀j A: Slice‐GRAPPA

Gj( ∑iSi ) = Sj ∀j AND Gj(Si) = 0, i ≠ j [B: Sp‐Sg]

Gj( ∑iαiSi ) = Sj ∀j ∀αi with |αi | = 1 [C: Unbiased Slice‐GRAPPA]

[Eq. 3]

As a linear system, any complex combination can be implemented using the basis function 

for the complex Hadamard Transform such that for an MB factor of N, the linear system 

to determine the unbiased slice-GRAPPA is N times larger than for determining the slice-

GRAPPA kernel. With this formulation Sp-Sg, Unbiased slice-GRAPPA and RO-SENSE-

GRAPPA, are equivalent in performance (71) with respect to both g-factor noise and 

interslice leakage, and superior to the original slice-GRAPPA.

Next Generation of Algorithms

Thus, in the post HCP era, at least we have a better and a unifying understanding of 

the reconstruction algorithms for SMS/MB acquisitions. The reconstruction algorithms 

will continue to be a critical part of post HCP dMRI, as the number of channels and 

the degree of undersampling are increased. Recent advances in linear reconstructions 

with Virtual coils (72) and kernel regularization (73) have improved the conditioning 

of the interpolation by reducing the propagation of noise from the measurements, and 

promises to enable better utilization of the data. Finally, recent advances in non-linear 

deep learning (DL) reconstructions (74) are poised to provide additional benefits for 
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reconstruction. One of the main challenges for application of DL in diffusion MRI remains 

the lack of fully-sampled reference data with which to perform supervised training. This 

challenge is being addressed in different ways. One line of work considers database-free 

methodologies, where convolutional neural networks trained on ACS data are used to 

improve k-space interpolation (75). These methods have also been shown to improve the 

noise and artifact reduction for SMS imaging at high acceleration factors in fMRI (76). 

Another line of work considers self-supervised database-based training from undersampled 

data only (77). This method works with so-called physics-driven neural networks, where 

an optimization algorithm for solving a regularized inverse problem is unrolled for a fixed 

number of iterations, and then trained end-to-end. These methods hold promise for even 

higher acceleration rates due to the regularizers built into them (78). Their application to 

diffusion MRI faces several challenges due to the high number of input channels to the 

neural network, which includes all diffusion weightings per slice, and thus warrants further 

investigation.

Preprocessing Pipelines for HCP Diffusion MRI

The move to a single refocusing pulse in the HCP projects instead of the conventional 

bipolar gradient design increased the sensitivity to eddy current-induced fields that distort 

the k-space trajectories of the single-shot SE-EPI employed for acquiring the k-space data; 

this perturbation comes in addition to the distortions in the SE-EPI acquisition caused 

by the off-resonance frequency shifts induced by susceptibility gradients within the target 

imaged. The local geometric distortions are estimated and corrected by minimizing the 

sum-of-squared differences between two acquisitions with reversed phase-encoding that 

induce opposing distortions, an approach that is referred to as the TOPUP technique (18). 

The off-resonance field just above the sinuses in the human brain in a typical subject 

is ~150Hz at 3T. For the dMRI acquisition with an echo-spacing of 0.78 ms, nominal 

phase-encoding resolution of 1.25mm and phase-encoding FOV of 210mm, the maximal 

susceptibility-induced off-resonance shift is ~8 pixels (5% of the FOV). This distortion 

is within the capability of TOPUP. For correcting subject movement effects and the eddy 

current-induced off-resonance fields, a rigid body movement model and a 3D static second 

order polynomial model for the eddy current-induced off-resonance field were used for 

the initial cohort of HCP data, referenced as the EDDY technique (79). The predictive 

data model in EDDY, using a Gaussian process built for TOPUP, also facilitates detecting 

movement-induced signal drop out by comparing the observed to the predicted total signal 

in each slice. In the HCP implementation of EDDY, outlier slices were replaced by the 

model predictions in this way, thus ensuring that they have a minimal impact on subsequent 

analysis. The predictive data model in the Gaussian process ensures a multi-dimensional 

solution that is a consistent discrete sampled solution of a continuous and smooth model 

both on and between q-space shells.

Continuous Motion Model and Dynamic Susceptibility Map

The eddy current-induced off-resonance field correction method continued to be developed 

following the conclusion of the original HCP project. The volumetric rigid body model 

employed in the original HCP breaks down when movement is fast, relative to the repetition 

Moeller et al. Page 16

J Magn Reson Imaging. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



time. An extended predictive model allows EDDY to include a continuous motion model 

within a repetition time such that each slice can have a unique rigid body model with 

a continuous parameterization of the motion relative to their temporal sampling (80). In 

the case of large, though not necessarily rapid, subject movement one encounters another 

problem. The first approximation that the susceptibility-induced off-resonance field, i.e. the 

disturbance of the field caused by the object/head follows the subject, no longer holds. This 

has been solved by estimating, directly from the data and with no additional measurements, 

“rate of change maps” that specify how the field changes as a consequence of rotation 

in every part of the brain (10). The attainable improvements are illustrated in Figure 7 

reproduced from this work. In Figure 7, the left column shows the impact on whole brain 

consistency with a rigid versus a continuous model; in the center and right column, the 

difference between a static and a dynamic susceptibility map is shown for two different 

q-space vectors (top and bottom row), showing how with the dynamic susceptibility map 

the volumes are consistently aligned across different diffusion contrasts (i.e. on the right 

most column, the two images corresponding to the two different q-vectors are consistent 

with each other in distortions (but of course not contrast; this is not the case for the static 

susceptibility map based correction).

Short TR Confound for Motion

The HCP provided a new way of rapidly acquiring copious amounts of data from a large 

cohort of subjects. This was aided by the new methods for handling and correcting subject 

movement and non-linear eddy current-induced fields. One, as of yet unsolved, problem 

with shortening the TR is that it increases the sensitivity to movement induced spin history 

effects, and how to correctly account for these in post-processing is not yet established. In 

practice increasing the SNR efficiency through shortening of the TR is balanced against a 

related decrease in tSNR which directly affects the parameter estimation. This is further 

exasperated when fewer q-samples are used which reduces the data redundancy for the 

predictive data model in EDDY to perform the estimation of eddy current fields and 

dynamic susceptibility mapping while simultaneously detect and correct for movement-

induced signal drop outs. When within TR motion is present, some of the spins will get 

excited more than once within the TR period due to the movement or some may not 

get excited at all within the TR but get excited later by the RF pulses coming for the 

next volume acquisition. For long TRs, the signal is still close to fully relaxed and these 

effects will not introduce “spin history” effects. For the 5500ms TR in the HCP, assuming 

T1=1200ms, the signal is 99% relaxed. In the presence of motion (considering just within 

TR motion and interleaved slice ordering), if the same spins are acquired earlier relative to 

the TR, e.g. TR/2=2800ms, the spins are only 91% relaxed and induce a different signal 

change than the one modelled with changing q-space sampling. For the Lifespan HCP, with 

a shorter TR=3500ms, the signal is 94% relaxed and possibly 76% relaxed if motion reduces 

the effective TR to TR/2=1800ms. The relative signal change due to motion in this case is 

larger than for the long TR choice, 24% and 10% for the short and long TR, respectively, but 

the likelihood of within TR motion is also reduced with shorter TR’s and maximizing SNR 

efficiency with less than fully relaxed signals is balanced against increased complex signal 

fluctuations.
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It was noted in the HCP data that the slices associated with the first one or two groups 

of simultaneously excited slices are less than optimally corrected for eddy currents. This 

is caused by long time-constant eddy currents, which means that the eddy current induced 

field from the diffusion gradient employed for one volume extends into the next volume. 

Since multiple slices throughout the head are simultaneously excited and experience the 

same diffusion encoding gradient in acquisitions with SMS/MB, these long time-constant 

eddy currents effect slices based on their sequence of excitation with the MB pulses rather 

than, for example, in a linear fashion going from the basal slices to the superior slices, where 

only the basal slices would be most affected.

Alternative to the post-acquisition correction of EDDY approach is field monitoring (81) and 

using the data to correct the k-space trajectories directly for the eddy-current induced field 

perturbations (e.g. (42,82)). This alone would not correct for motion effects. The motion 

can still be corrected in addition by EDDY or incorporating motion tracking and prospective 

adjustments during acquisitions (e.g. (83,84)). Although the feasibility of these technologies 

and potential improvements have been demonstrated, their robust and routine incorporation 

into dMRI acquisitions remains to be accomplished. This may represent one of the major 

efforts that can impact significantly how dMRI is acquired in the post-HCP era.

Q-space Sampling

The ability to acquire large amounts of data, using the tools developed by the HCP, also 

triggered the need to assess the relevance of the content of such data, and to decide what 

information should be acquired in q-space. In the HCP, the quality of fiber orientation 

mapping and tractography results was selected as the overarching guide for protocol 

optimization. For fiber orientation mapping, BedpostX (85,86) was employed as the primary 

analysis method, but the data was acquired to be compatible also with various other 

methods, dictating matched TE and TR across b-values. Once the fiber tracking is done, 

the quality of dMRI series is evaluated using the number of second and third fibers (i.e. 2- or 

3-way fiber crossings) resolved (6).

Inference across the candidate acquisition options demonstrated that a single low to medium 

b-value was sufficient for second fiber detection only, but that low b-value in combination 

with high b-values was necessary to resolve 3-way crossings; in such a multi shell (i.e. multi 

b-value) diffusion encoding, the difference between shells had to be larger than 750 s/mm2 

to significantly aid in third fiber detection. These guidelines and experimental evaluations 

performed with pilot data supported a proposed 3-shell acquisition in the young adult 

WU-Minn HCP with b= 1000, 2000, 3000 s/mm2 and Δb=1000 s/mm2 (6); because of the 

shorter total scan times needed in the Lifespan HCP, the dMRI acquisition employed two 

shells with b equal to 1500 and 3000 s/mm2, which were chosen based on further evaluation 

(12). The attainable crossing detection sensitivity across different q-space sampling patterns 

are illustrated in Figure 8.

Modelling the Signal

A variety of “multi-compartment” (also called biophysical) models have been proposed 

in the past 10–15 years, that aim to capture more accurately the variability of the 
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diffusion signal in the intra-axonal and extra-axonal compartments (21). In particular (see 

(87) for references), these models directly provide information about the white matter 

microstructure. They include ball-and-stick, CHARMED (composite hindered and restricted 

model of diffusion), AxCaliber, ActiveAx or the Minimal Model of White Matter Diffusion 

(MMWMD), NODDI (Neurite Orientation Dispersion and Density Index) and DIAMOND. 

The CONNECT project recently leveraged the CHARMED, AxCaliber and ActiveAx 

models to improve structural connectivity mapping methods. Parameter estimation in these 

biophysical models requires complex non-convex optimization, even for a single axonal 

orientation, and new techniques such as MIX (87).

Besides these modeling and computational considerations, diffusion acquisition parameters 

must also be adapted to capture the diffusion properties of pools of water molecules under 

different regimes (e.g. hindered or restricted diffusion), thereby probing tissue environments 

(e.g. axons with different diameters) more comprehensively. For example, the density 

and diameter distribution of axons in a white matter pathway determine its information-

bearing capacity; different densities, shapes and configurations of cells discriminate between 

different types of brain tumor; widespread protein deposits are hallmarks of Alzheimer’s 

disease. The stronger gradient hardware has enabled the use of a broader range of range 

of b-values with reasonably short TE, leading to a broader range of effective diffusion 

imes (Δ − δ
3) with short diffusion pulse time δ. Specifically, while assuming the narrow 

pulse approximation (δ ≪ Δ), optimized feasible acquisition protocols with |G|=200mT/m 

(animal system), as opposed to 70mT/m (human system), have been proposed and shown 

to accurately capture axonal radii at 5 and 10 μm and, to some extent, at 1,2, and 20 μm 

(88). Nonetheless, despite these improvements, estimating axonal diameters from diffusion 

MRI data below about 2 μm is still challenging and diffusion experiment optimization for 

microstructure mapping is still an important and challenging research topic (21). Indeed 

from the recent review (21) the biophysical models underpinning current microstructure 

imaging techniques remain crude and a variety of anomalous results point to the fact that the 

design choices steering the acquisition protocols are oversimplifications of the underlying 

micros structure environment. In support of this, with the advent of slice accelerated 

techniques, the improved efficiency of q-space sampling has extended the acquisition design 

choices including the acquisitions of multiple shells with high angular resolution in feasible 

scan times. Furthermore, combining this efficiency with the increased dynamic range of 

the sampling of diffusion times, afforded by the large gradient amplitudes, allows for an 

increased opportunity to probe tissue microstructure in humans and support more complex 

bio-physical models.

Solving the Model of the Signal

In addition the extraction of information from dMRI data can be performed by a variety 

of probabilistic and dictionary-based methods and algorithms (89) such as BedpostX (85), 

which is a fully probabilistic framework for estimating local probability density functions of 

parameters of interest from a model of diffusion. It was recently extended and generalized 

to leverage information from data acquired at multiple spatial resolutions (RubiX) (90). In 

this multiresolution data fusion algorithm, a lower resolution but high SNR “prior” dataset is 

combined with higher resolution but lower SNR dataset using a Bayesian model to estimate 

Moeller et al. Page 19

J Magn Reson Imaging. Author manuscript; available in PMC 2022 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the fiber parameters at the highest measured resolution. This approach also enhances the 

reproducibility of fiber estimation while relaxing the q-space sampling criteria without a 

linear “SNR” loss.

In BedpostX, automatic relevance determination (ARD) is used to accurately recover fiber 

orientations supported by the data during the data-driven parameter estimation process. The 

parameters (e.g. fiber volume fractions) that are not supported by the data will have value 

zero with very low variance in the posterior distribution. This relevance determination was 

recently further enhanced in BusineX (91) through relevance learning by tuning the variance 

prior hyperparameters individually (e.g. locally) and independently for each possible fiber 

orientation. Furthermore, in the BusineX framework, the exponential decay components 

along different possible diffusion directions is exploited to construct an overcomplete 

dictionary with the volume fractions of fibers along these directions defining the dictionary 

weights. The estimation of fiber parameters is then formulated as a sparse signal recovery 

problem and a linear unmixing framework with sparse Bayesian learning used for the 

recovery of sparse signals i.e. the fiber orientations and associated volume fractions.

A dictionary approach such as BusineX is more robust under q-space undersampling, similar 

to the application of compressed sensing in q-space (92). As an illustrative example for 

a sample dataset from the WU-Minn HCP, the fiber orientations at pons are reproduced 

in Figure 9 with color coded orientation estimates (orientation distribution functions in 

the case of CSD). Here, the background is the sum of anisotropic volume fractions for 

BusineX and BedpostX, and fractional anisotropy (FA) for the CSD - the measures for 

resolving the fiber structures. Furthermore in Figure 9, bottom right, the sensitivity under 

q-space undersampling is plotted for BedpostX (dashed lines) and BusinesX (solid lines) 

using the number of two (blue) and three-way (red) fiber crossings detected, illustrating how 

data-dependent local learning of hyperparameters, at each voxel and for each possible fiber 

orientation, can improve the parameter extraction.

Deep learning-based methods (93) for extracting structural information from diffusion 

weighted signals have very recently started to be developed. The ability to extract more 

accurately the variability of the diffusion signal from large data-sets (here demonstrated with 

BusineX and shown in Figure 9) is one reason that DL models will be further advanced and 

used to extract even more information than what can easily be described with conventional 

techniques. Recent studies report accurate DTI reconstruction (94) and fiber orientation 

distribution function (95) reconstruction, using neural networks, which promise to improve 

tractography even in complex tissue geometry areas and demonstrate the extraction of 

increased information from existing data. DL based reconstruction methods have also shown 

the ability to generate images for Diffusion Kurtosis Imaging (DKI) and NODDI model with 

less data (96), and the transition from these retrospective analysis to prospective analyses 

will elucidate the applications that will require larger amounts of data or will perform well 

with less data, and from which more information can be obtained. For most biophysical 

models, the optimal protocol is empirically determined; while the training of DL makes its 

application more protocol specific than existing solvers, the development and validation of a 

protocol that will support a multitude of biophysical models warrants further investigation.
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Imaging Techniques Different from 2D SMS/MB

Although both HCP projects selected a mono-polar, 2D,single-shot SE-EPI based SMS/MB 

approach for volume encoding, there are plausible alternatives, which independently 

continue to be advanced. The proposed extensions from Cartesian 2D single-shot EPI for 

k-space sampling and volume encoding are: multi-shot 2D or 3D EPI, and 2D or 3D single 

or multi-shot non-Cartesian trajectories such as spiral. Depending on their implementation, 

these alternative approaches can provide higher SNR through shortened TE, reduced point 

spread function (PSF), and reduced distortion of images (before pre-processing) through 

reduced echo-spacing or encoding of the T2* decay, and commonly considered independent 

of the earlier discussed TR related optimal SNR efficiency.

In this context we will describe some of the SNR performances of more advanced 

and typically multi-shot techniques, specifically readout segmented EPI, phase encode 

segmented EPI (MUSE and IRIS), Hadamard slab encoding (gslider), 3D-EPI, and non-

Cartesian acquisitions (for their relative merits we refer to the recent review by Holdsworth 

et al (19)). A common problem that needs to be addressed in all the segmented multi-shot 

acquisitions is the inconsistency of the phase at the end of diffusion encoding, the “diffusion 

phase” that commonly arises from motion induced B0 field variations around the refocusing 

pulse. These need to be corrected with either navigators (26,97) or data-driven (98,99) 

approaches. Additionally, the magnitude inconsistencies from the previously discussed spin 

history effects are mostly ignored and integrated implicitly as an averaging effect such that 

shorter TR’s can be utilized.

Phase Encoding Segmented Techniques,

The techniques referred to as aMUSE/MUSE/MUSSEL combine phase-encoding segmented 

acquisitions by using the diffusion-phase difference between the segments. The SNR of 

these segmented techniques are similar to the scan-time matched single-shot 2D-EPI without 

slice acceleration, since the gain in SNR from shortening of the TE is offset by the multiple 

repetitions, and the reduction in geometric distortion is equal to the number of segments. 

For N>2 the VAT is longer than for the single-shot 2D-EPI, and if the off-resonance 

blur has not been reduced enough, acquisitions with opposite PE-directions may still be 

necessary. The MUSSEL technique combines the highly segmented acquisition using a 

low-rank constraint for the phase-variation among shots. aMUSE/MUSE is a two-step 

reconstruction with first estimating the phase and then performing a SENSE optimal 

recombination and reconstruction. The k-space equivalent to aMUSE is with a realigned 

GRAPPA reconstruction (see Holdsworth et al (19)) where the GRAPPA weights are 

approximating both the missing data and the phase-variations.

Readout Segmented Techniques,

By only acquiring a smaller amount of the frequency-encoded signal, the echo-spacing in 

an EPI readout can be reduced. For example with RESOLVE, 3–7 blades are typically used, 

and each covers a blade in k-space acquired with some overlap. The readout is typically a 

sinusoidal gradient such as to not exceed peripheral nerve stimulation. The inefficiency of 

sinusoidal readouts relative to a trapezoidal gradient results in a 50% longer echo-spacing 
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for comparable k-space coverage, such that the reduction in geometric distortion is not 

equal to the number of blades. The shorter readout furthermore decreases scan efficiency, 

which is reduced less with the sinusoidal readouts. The reconstruction of the segments 

with different diffusion-phases is augmented with a separately acquired navigator, which 

increases the TR by ~30% depending on resolution (see Holdsworth et al (19)). As such the 

longer than minimal echo-spacing increases the SNR of readout segmented techniques by 

using a bandwidth that is lower than the bandwidth for either 2D EPI or the phase-encoding 

segmented acquisitions, and the ETL balances the SNR efficiency against the geometric 

distortions.

Hadamard Techniques,

Prior to SMS, the use of Hadamard encoding (see the review (56)) for simultaneously 

acquiring non-adjacent slices was proposed as one option for extending the FOV. In 

Hadamard encoding, the same slices are acquired multiple times and each successive 

acquisition uses a different phase-relationship between the slices, enabling the separation 

of individual slices - using N equations with N unknowns. This was recently used for 

diffusion imaging (100) in the spinal cord and is also the basis for gSLIDER. With 

gSLIDER, adjacent slices are excited simultaneously and all slices are simultaneously 

refocused (19,101), with (typically) 5 slices resolved per slab and repeated as many times 

as there are slices. For excitation, different RF pulses are used for each of the repetitions, 

each providing a unique phase-relationship between adjacent slices that enables the slices 

to be subsequently resolved in post-acquisition processing. To improve the consistency of 

the segmented acquisition, a data-driven phase-correction is combined with a regularized 

inversion of the segmented system for resolving the slices in each slab.

The potential improvements with these techniques rest on how well the slice boundaries can 

be defined with RF pulses exciting adjacent slices with different phases.

3D SE-EPI

The use of a 3D acquisition was considered for the MGH-USC consortium but it was not 

mature enough (9) and had more challenges than single-shot 2D SE-EPI based SMS/MB. In 

3D SE-EPI (22) and 3D SE-EVI the volume is covered by one or more slabs, and each slab 

is resolved into multiple slices using phase slice-encoding. In 3D SE-EPI, k-space data for 

a single phase-encoding plane, kx-ky plane, is acquired after each RF excitation (although 

this can be further segmented as well), whereas in 3D SE-EVI k-space data in more than 

one phase encoding plane is obtained for each RF excitation; typically with much longer 

readouts than what is feasible for dMRI. In this respect, 3D SE-EVI is not compatible with 

high resolution imaging and will not be discussed further.

The TR in these 3D acquisitions are defined as the time between successive pulses that 

excite the same volume. Thus, TR is not necessarily equal to VAT as previously discussed, 

and can be set for optimal SNR by selecting the number of slabs times the time to obtain 

one readout per slab. Typically, and especially when high resolutions are desired, each slab 

cannot be fully encoded in 3D in a single shot; instead multiple repetitions are necessary to 

encode each slab. The volume acquisition time (VAT) is then the TR times the number of 
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excitations necessary to encode each slab. As such, the volume acquisition time is longer for 

the 3D SE-EPI relative to an SMS/MB accelerated 2D SE-EPI acquisition. A single image in 

3D SE-EPI has sqrt(N) higher SNR than a single 2D SE-EPI image where N is the number 

of RF excitations needed to encode each slab. For example when, after each RF pulse, a 

single kx-ky plane is acquired, then N is the number of RF excitations needed to encode kz. 

However, when matching the volume-acquisition time, the achievable SNR between 2D and 

3D become comparable for whole brain coverage with resolutions > (1mm)3, since in this 

regime the SMS technique is able to obtain TR’s in the 3–5 second range and the variation 

in SNR with TR is slow at the optimal TR (Figure 4). If however, significantly higher 

accelerations become feasible through the development of higher transmit and receive RF 

coils, as discussed previously, then the differences between 3D multi-slab and 2D SMS/MB 

would become even smaller with respect to SNR

For segmented 3D SE-EPI (slice, phase or readout segmented) the diffusion phase (22) is 

an additional confound that has to be accounted for, in order to obtain stable image quality, 

and the effect of segmented acquisitions can also reduce the temporal SNR (tSNR) such 

that gains in SNR are offset (102). An example of the SNR gains possible for resolutions 

≪(1mm)3 between 3D and 2D acquisitions are shown Figure 10, and the images in SNR 

units are shown across a range of VATs enabling direct comparison.

Non-Cartesian Acquisitions

Spiral trajectories for k-space coverage are the most common and efficient non-Cartesian 

acquisitions alternative to EPI sampling (103). The challenges of spiral compared to EPI 

(104) are resonance offset contributions, gradient deviations, and concomitant field effects. 

Advances in spiral acquisitions were, for a long time, challenged by the unavoidable 
instrumental inadequacies, such as defining accurate trajectories with gradients and subject 

specific static B0 variations which induces blurring in spiral trajectories. In the more recent 

review (103) on spiral fMRI, increases in ability to measure activation was summarized, 

including references for advances for diffusion and perfusion MRI. All of these approaches 

continued to be combined with the plethora of other advances in MRI, some of which are 

discussed herein.

The Hahn-echo for a single-refocused SE is formed at a point in time which is equal to twice 

the interval between the excitation and refocusing pulses. In dMRI acquisitions, k=0 point 

in k-space is arranged to occur typically at this point in time. When spiral trajectories are 

employed, a low resolution spiral-in trajectory is played out before acquiring the Hahn-echo 

at k=0 with a spiral out trajectory. The spiral-in acquisition can be used as a navigator 

or for combining with the spiral out acquisition. This increase the TE and reduces some 

of the efficiency of spiral acquisitions (26). Nevertheless, under appropriate instrumental 

conditions circumstances, spiral trajectories can provide advantages with respect to SNR. 

As an example, listed in Table 2, are the expected changes in SNR from the shortened TE 

with single shot spiral versus EPI for three different resolutions, Lifespan resolution, highest 

before readout gradient mechanical resonance, and lowest past readout gradient mechanical 

resonances.
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The gradient deviations were originally corrected by mapping a priori the trajectory using 

pre-scan mapping(105,106) of the gradient response and more recently by correction of the 

gradient response (see (107) and references therein). With field monitoring or pre-mapping 

technique, the non-ideal gradient waveform in spiral imaging can be taken into account, 

yielding a more accurate estimation of concomitant field while correcting off-resonance 

effects resulting from eddy currents and trajectory deviation (108).

From the HCP data, and as discussed above for EDDY, for ensuring anatomical consistency 

in dynamically acquired data, the “static off-resonance“ correction for brain imaging needs 

to be updated dynamically to ensure that temporally distinct volumes are anatomically 

consistent.

Thus for spiral imaging with long readouts to be used for obtaining images with high spatial 

fidelity suitable for detailed parcellation of minute brain organization, the reconstructions 

optimized to overcome the blurring from the static B0 also needs to account for the gradient 

deviations, while also being sufficiently sensitive to estimate and adjust for dynamically 

changing susceptibility fields over a large range of signal-to-noise ratios.

Noise Variance Reduction

In the HCP projects, a conservative and mostly unbiased approach to data processing 

was used for evaluation. Recent advanced in conservative noise variance reduction (NVR) 

techniques have demonstrated how time-series data can be pre-processed to improve the 

model based fit (109). Specifically for the method referred to as MPPCA (109), the data is 

modeled as having a low-rank representation with additive Gaussian noise. This theoretical 

model is used in MPPCA to develop a practical algorithm compatible with diffusion 

weighted DICOM images. The same small volume of interest (VOI) is used from each 

volume in a dMRI series, and rearranged into a 2D Cassorati matrix. The singular value 

decomposition on the Cassorati is calculated and a threshold is applied on the spectrum of 

the singular values. The threshold is determined based on the distribution of the singular 

values from a series with noise only; such that signal that cannot be differentiated from noise 

is removed. In MPPCA, the threshold is calculated from the spectrum itself, in the PCA 

decomposition it is selected empirically, or it can be selected based on the thermal noise 

level. Both MPPCA and related approaches finds that a ~2X decrease in statistical fitting 

error is achievable with appropriate selection of the thresholding. In Figure 11, an example 

from applying the MPPCA to the (1.5mm)3 resolution Lifespan data with 98 directions is 

shown; with a b=3000 s/mm2 image illustrating the noise removal on any individual volume, 

and the FA illustrating that spatial fidelity is maintained by only removing signal that cannot 

be distinguished from noise.

Thus, in the post HCP era, a focus in denoising to improve tractography without blurring the 

effective resolution will be a major advance in dMRI. These denoising efforts will also have 

a major impact on other MR imaging sequences, such as anatomical and functional imaging.
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Summary

Diffusion imaging post HCP will, in the short term, use the same techniques developed 

for the HCP. The WU-Minn HCP produced data of higher quality, resolution and amount, 

than what is currently being acquired in large cohorts. The MGH-USC produced data 

with higher diffusion contrast (high q-space) than what is currently being obtained, and 

provided a small database for evaluating what high diffusion contrast can provide. However, 

a combination of innovations in hardware for diffusion weighting, spatial encoding, and 

transmit B1 management, and progress in sequence design, strategies for k-space coverage, 

image reconstruction, pre-processing and post processing will enable significant advances in 

the achievable spatial and q-space resolution and/or total scan duration in dMRI. However, it 

will require a supported development and dissemination effort to translate these into routine 

use, as accomplished in the HCP.
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Figure 1: 
Summary of performance metrics for the HCP scan evaluation for a T1=1200ms. (A) The 

SNR efficiency, defined as SNR/√TR, as a function of TR. (B) The relative loss in SNR per 

shell by using the TE for the highest b value shell for all shells instead of the minimum TE 

for each b value. (C) The reduction in signal for different shells for isotropic diffusion with a 

diffusivity of 0.0017 mm2/s for white matter representative of the corpus callosum. (D) SNR 

gain for different maximal gradient strength, and infinitely fast slew-rate.
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Figure 2: 
7T Tractography (Euler integration using Gaussian radial basis functions for orientation 

interpolation with 10,000 streamlines) from the primary fiber orientation in the primary 

motor cortical area. Center image shows 1000 streamlines and right image shows 5000 

streamlines to elucidate different levels of details in the display of the fiber distribution. 

Background image is unbiased T1-weighted data.
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Figure 3: 
1/g maps for SMS/MB acceleration for different MB factors for simultaneously excited 

slices with R = 3 in the phase encode dimension. The g-factor calculations are performed 

for sagittal, coronal, and axial slices and slice accelerations (labeled on the left side of the 

figure) with k-space undersampling performed on the AP direction for sagittal and axial 

slices and in the LR direction for the axial slices. The data are presented as a MIP over 

an 80-mm sagittal slab superimposed on a silhouette of a sagittal slice. The mean and the 

maximal (at 98% level) g-factor numbers are given as 1/g values in the lower left corner 
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for each figure. Images are from a representative subject, and numbers are averages over all 

participants. From (49)
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Figure 4: 
a) SNR efficiency for different TRs and for different excitation flip angles for spins that have 

a T1 of 1200ms relative to the SNR for TR=8800ms with a 180° refocusing pulse. (b), and 

(c) relative spatial variation of the flip angle at 3T (b) and 7T (c). The 7T used 5 mm thick, 

high permittivity dielectric pads under the neck and on both sides of the head to improve the 

normally poor B1
+ in the cerebellum and temporal lobes and the pads are visible in the B1

+ 

map, on each side of the axial slice shown.
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Figure 5: 
Comparing HCP 7T dMRI protocol (HCP 1Tx) with the HCP protocol run with pTx 

pulses (HCP pTx protocol). Data are shown for one subject. Fractional anisotropy (FA) 

maps (left panel) and volume fraction maps for second fiber orientations (right panel). The 

color FA is FA (in the range of [0 1]) with the color representing the orientation of the 

principal fiber (red: left-right; green: A-P; blue: inferior-superior). The volume fraction map 

is shown in a colorscale of [0.05 0.2] (with yellow being high and red being low in volume 

fraction), overlaid on the respective FA map (in a grayscale of [0 1]). Both dMRI datasets 

were acquired with 1.05 mm isotropic resolutions, MB2, in-plane acceleration factor = 

3, and TE = 71 ms. The TR for pTx acquisition was slightly longer (7400 versus 7000 

ms). Both acquisitions used the same q-space sampling scheme (double shells, b-value = 

1000/2000 s/mm2), corresponding to 143 unique image volumes, each acquired twice with 

anterior-posterior (AP) and PA phase encode directions. Total scan time was kept constant 

for both datasets (i.e., 40 min divided into 4 segments of 10 min each). Note that the use of 

pTx improved fiber orientation estimation performances not only in lower temporal lobe (as 

indicated by yellow arrows) but also in cerebellum (as highlighted by red arrows). Adapted 

from (38).
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Figure 6: 
Simulated maximal g-factor for SMS/MB 2D SE-EPI for Sp-Sg and slice-GRAPPA. Top; 

maximal g-factors using 99 percentile over a whole-brain acquisition as a function of the 

MB factor. For MB=[2,3,4] a kernel of 3×3 is used; for these MB factors the results are 

plotted using red and black colors, for Sp-Sg and slice GRAPPA, respectively, and they 

superimpose. For MB ≥4, a kernel of 7×7 is used; for these MB factors, the results are 

plotted in green and blue for Sp-Sg and slice GRAPPA, respectively. Bottom row, left, 

g-factor map using kernels calculated with Slice-GRAPPA, and bottom row right, g-factor 

map using kernels calculated with Sp-Sg.
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Figure 7. 
Comparison of anatomical consistency with different model options in EDDY. Left column, 

the effect of spin-history in the presence of rapid movement, with a rigid body correction 

(top) and with an estimation for inter volume signal drop (bottom). Under large movement, 

and after correction, the corrected brain from different q-vectors should have the same brain 

outline. The static susceptibility map shows difference in the frontal areas (center column) as 

indicated with yellow arrows, and these are corrected using the dynamic susceptibility map 

(right most column). Adapted from https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy
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Figure 8. 
Sensitivity of different q-space sampling schemes in resolving (two and three-way) crossing 

fibers within the centrum semiovale. The amount of crossings resolved by each scheme is 

normalized by the maximum. (6)
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Figure 9: 
Comparison between BusineX, BedpostX, and Constrained Spherical Deconvolution (CSD), 

showing improved fiber parameter estimations by BusineX. Upper panels and lower-left 

panel show color coded orientation estimates (orientation distribution functions in the 

case of CSD) at the pons region highlighted in the inset view. The background is the 

sum of anisotropic volume fractions for BusineX and BedpostX, and fractional anisotropy 

(FA) for the CSD. The areas highlighted with arrows depict the improvements; the better 

detection of fiber crossings (violet and green arrows) and the lower estimation uncertainty 

(red arrows). Lower right panel shows the detected number of second (blue) and third 

(red) fiber crossings at two representative ROIs (left superior longitudinal fasciculus and 

posterior corona radiata), and its variation with acceleration in diffusion gradient directions 

(under-sampling factor). The improved estimations in BusineX is due to the data-dependent 

local learning of hyperparameters, at each voxel and for each possible fiber orientation, that 

moderate the strength of priors governing the parameter variances.
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Figure 10: 
Comparison of experimental SNR between 2 SMS/MB and 3D (Multislab-Multiband) high 

resolution acquisitions for whole brain, 0.9 mm isotropic resolution (reproduced from 

(110)), showing the SNR from the shortest VAT with what is feasible with 2D SMS/MB 

and 3D acquisitions with 8 slices/slab, all obtained with iPAT=2 to maintain a TE<100ms. 

The experimental thermal noise (g∙σ) is used as the hardware thermal noise, with g the 

encoding noise amplification and σ the system thermal noise. The 2D SMS with MB 2, 12s 

TR and 6 average (VAT=72s) is similar to the achievable SNR to a 3D acquisition using a 

TR=1.6s, 1 Average (VAT=19s). For approximately matched scan times of 72 s for SMS/MB 

and 76 s for 3D, the latter has 2x higher SNR. For matched scan-time the 3D with TR=1.6 s 

and 2 averages versus TR=3.2s and single average have similar SNR reflecting how the fact 

that SNR efficiency varies slowly near the optimal TR (Figure 3).
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Figure 11: 
The effect of MPPCA pre-processing on Life-span data. The MPPCA is applied to un-

processed dMRI data. A slice from a volume with b=3000 s/mm2 is show in A/ and the 

same slice after MPPCA noise variance reduction is shown in B. After post-processing as 

described in the “Preprocessing pipelines” the FA is calculated with FSL, and reproduced in 

C/ and D/ for the native DICOM and the MPPCA processed data respectively.
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Table 1.

dMRI protocols for Human Connectome Projects

3T MGH-USC HCP* 3T WU-Minn HCP 7T WU-Minn HCP 3T LifeSpan HCP

TR/TE (ms) 8800 / 57 5520 / 89.5 7000 / 71.2 3230 / 92.8

Resolution 1.5 mm isotropic 1.25 mm isotropic 1.05 mm isotropic 1.5 mm isotropic

Acceleration
§
, R/MB

3 / 1 1 / 3 3 / 2 4 / 1

Δ/δ (ms) 21.8/12.9 43/10.6 34/14.3 43.4/13.7

Phase Partial Fourier 6/8 6/8 6/8 6/8

Acquisition Time, min 89 min 60 min 40 min 21

Shells s/mm2 1000, 3000, 5000, 10,000 1000, 2000, 3000 1000, 2000 1500, 3000

*
The MGH-USC consortium data is from (https://www.humanconnectome.org/study/hcp-young-adult/document/mgh-adult-diffusion-data-

acquisition-details)

§
R is the reduction factor in the phase encode direction. MB is the multiband factor designating the number of simultaneously excited slices
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Table 2:

SNR efficiency comparison between EPI and spiral acquisition across 3 different resolution for matched TR 

and T2=65ms. For each resolution, R designates the amount of necessary EPI phase-encoding undersampling. 

For the Cartesian acquisition, the achievable echo spacing (ESP), echo time (TE) and echo train length (ETL) 

for b=3000 s/mm2 are listed. The maximal TE gain, as the achievable gain feasible with a spiral acquisition, 

and the SNR gain from the shortened TE are listed. Gain from a spiral acquisition with an ADC (the spiral 

equivalent of ETL) of 80ms, feasible at 3T, relative to the EPI is listed rightmost and are in alignment with 

experimental validation reported in (26).

Resolution (mm) R Cartesian TE gain (ms) for Spiral SNR gain from (TE) SNR gain From ADC

ESP(us) TE (ms) ETL(ms)

1.5 1 690 89.2 72.8 18.1 1.32 1.05

1.17 2 770 77.8 50.6 13 1.22 1.25

0.9 2 940 95.4 80.9 20.68 1.37 0.99
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