

HHS Public Access

Author manuscript Bioorg Med Chem Lett. Author manuscript; available in PMC 2022 December 01.

Published in final edited form as:

Bioorg Med Chem Lett. 2021 December 01; 53: 128416. doi:10.1016/j.bmcl.2021.128416.

Discovery of structurally distinct tricyclic M₄ positive allosteric modulator (PAM) chemotypes - Part 2

Madeline F. Long^{a,b,1}, Rory A. Capstick^{a,b,1}, Paul K. Spearing^{a,b}, Julie L. Engers^{a,b}, Alison R. Gregro^{a,b}, Sean R. Bollinger^{a,b}, Sichen Chang^{a,b}, Vincent B. Luscombe^{a,b}, Alice L. Rodriguez^{a,b}, Hyekyung P. Cho^{a,b}, Colleen M. Niswender^{a,b,d,e,f}, Thomas M. Bridges^{a,b}, P. Jeffrey Conn^{a,b,d,e,f}, Craig W. Lindsley^{a,b,c,f}, Darren W. Engers^{a,b}, Kayla J. Temple^{a,b,*}

^aWarren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, USA

^bDepartment of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA

^oDepartment of Chemistry, Vanderbilt University, Nashville, TN 37232, USA

^dVanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA

eVanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN 37232, USA

^fVanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA

Abstract

This Letter details our efforts to develop novel tricyclic M_4 PAM scaffolds with improved pharmacological properties. This endeavor involved a "tie-back" strategy to replace the 3amino-4,6-dimethylthieno[2,3-b]pyridine-2-carboxamide core which lead to the discovery of two novel tricyclic cores: a 7,9-dimethylpyrido[3',2':4,5]thieno[3,2-d]pyrimidine core and 2,4dimethylthieno[2,3-b:5,4-c']dipyridine core. Both tricyclic cores displayed low nanomolar potency against the human M₄ receptor.

Graphical Abstract

Corresponding author at Warren Center for Neuroscience Drug Discovery at Vanderbilt University, Vanderbilt University, Nashville, TN 37232, USA. kayla.temple@vanderbilt.edu (K.J. Temple). ¹These authors contributed equally to this work.

Publisher's Disclaimer: This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Keywords

M₄; Muscarinic acetylcholine receptor; Positive Allosteric modulator (PAM); Structure Activity Relationship (SAR)

Muscarinic acetylcholine receptor subtype 4 (M_4) positive allosteric modulators (PAMs) continue to be important drug targets as novel treatments for various neurological disorders such as Parkinson's disease,¹ Huntington's disease,² and schizophrenia (both the positive and negative symptom clusters).^{3–7} Classically, M₄ PAMs possess a β-amino carboxamide moiety as a key pharmacophore (circled in 2, Figure 1) which was believed to be essential for M₄ PAM activity.^{8–14} As such chemotypes have been plagued with poor solubility, varying degrees of P-gp efflux, and potency differences across species, efforts have been made to develop M₄ PAM chemotypes devoid of the β -amino carboxamide moietv.^{3,14–26} Clinical studies featuring xanomeline, a M_1/M_4 preferring agonists that lacks the β -amino carboxamide moiety, have validated targeting the muscarinic cholinergic system as a method for treating the psychosis and behavioral disturbances observed in both Alzeheimer's and schizophrenia patients.^{23,24} However, the lack of receptor subtype selectivity resulted in undesired side effects which ultimately lead to a discontinuation of clinical development. An effort to circumvent these adverse events led to the development of KarXT which is currently undergoing clinical trials. KarXT is a treatment in which xanomeline is coadministered with a pan-selective peripheral muscarinic acetylcholine receptor antagonist (trospium) to minimize the adverse side effects of xanomeline.²⁵ Additional work in the field led to the identification of a selective M_4 PAM which lacked the β -amino carboxamide moiety. Not only was this PAM efficacious in preclinical assays but had fewer and less severe adverse cholinergic-related side effects than observed in rats treated with the nonselective M₄ agonist xanomeline.²⁶ This indicates that receptor-subtype-selective M₄ PAMs could potentially improving safety profiles. In fact, CVL-231 (a selective M_{Δ} PAM) is currently undergoing clinical trials.^{27,28}

Our laboratory previously described two structurally distinct 5,6,6-tricyclic scaffolds devoid of the β -amino carboxamide moiety that afforded potent and CNS penetrant M₄ PAMs.¹⁷ In an effort to identify additional novel M₄ PAM chemotypes, we employed a "tie-back" strategy in order to mask the β -amino carboxamide moiety of one of our early lead M₄ PAM compounds, **VU0152100**.^{10–11} When designing this new scaffold, we elected to keep the 4,6-dimethylthieno[2,3-*b*]pyridine core intact while masking the β -amino carboxamide as a pyrimidine moiety, a strategy utilized in the development of

VU6017654 (3). This resulted in the discovery of a novel M_4 PAM chemotype containing a 7,9-dimethylpyrido[3',2':4,5]thieno[3,2-d]pyrimidine core, **5**. Further exploration revealed a second novel, tricyclic M_4 PAM chemotype containing a 2,4-dimethylthieno[2,3-b:5,4-c']dipyridine core, **6**. This body of work details the development of these two novel M_4 PAM chemotypes.

The synthesis of core **5** began with the commercially available amine **7**, which was first condensed with formamide followed by formamidine acetate salt to afford the pyrimidone intermediate **9** (Scheme 1). Treatment of pyrimidone **9** with POCl₃ gave chloride **11** which readily underwent nucleophilic aromatic substitution with a variety of primary and secondary amines as well as alcohols to yield desired analogs **16** and **19**. For this exercise, we chose to evaluate benzyl amines and amino azetidines that proved to be successful in our past endeavors to afford potent M_4 PAMs.^{15–17,29}

Select analogs **16** & **19** were screened against the human M_4 (h M_4) receptor to determine potency with results highlighted in Table 1. It became very clear that the amine "tail" greatly influences potency. It was noted that minor changes, such as a fluoro-substitution on the phenyl ring (**16m** vs. **16n**), led to a ~2.5-fold decrease in potency. Moreover, removal of one fluorine from the trifluoromethoxy group of **16d** (inactive) afforded analog **16e** (EC₅₀ = 4 μ M), which reestablished activity at hM₄. Another intriguing finding was observed when the amine linker (**16m**; hM₄ EC₅₀ = 910 nM) was exchanged for an ether linker (**19**; hM₄ EC₅₀ = 8.7 μ M) resulting in a 9.6-fold loss of potency.

Noting the importance of the amine "tail", we next elected to explore small aliphatic amines (Table 2) as well as small carbon-linked groups (Table 3) which were synthesized in accordance with Scheme 2. Briefly, commercially available 2-mercapto-4,6-dimethyl nicotinonitrile (**22**) was condensed with various α -bromo ketones in a Gewald-type reaction to afford thieno[2,3-*b*] pyridines **23**. As previously described in Scheme 1, condensation with formamide afforded final compounds **24**. The piperidine intermediate **24e** could be further transformed via nucleophilic aromatic substitutions (**26**), HATU-assisted amide formation (**28**), or reductive amination (**30**). Finally, the synthesis of biaryl analog **21** was accomplished utilizing intermediate **11** in a Stille cross-coupling reaction as described in Scheme 1.

Select analogs 16s-y, 21, 24, 26, 28, and 30 were screened against human M₄ (hM₄) to determine potency with results highlighted in Tables 2 & 3. Selecting small amines as our "tail" groups (16s-y) proved most advantageous as the majority of analogs in Table 2 possess hM₄ PAM functional potencies less than 500 nM, with three analogs displaying EC₅₀'s < 300 nM: 16w (hM₄ EC₅₀ = 277 nM), 16x (hM₄ EC₅₀ = 172 nM), and 16y (hM₄ EC₅₀ = 144 nM).

Conversely, similar small carbon-linked tail groups resulted in a loss of hM_4 functional potency (Table 3): **21** ($hM_4 EC_{50} = 3.4 \mu M$), **24a** ($hM_4 EC_{50} = 6.8 \mu M$), **24b** ($hM_4 EC_{50} = 3.9 \mu M$), **24c** ($hM_4 EC_{50} = 2.8 \mu M$). Most notably, the addition of a hydrogen bond acceptor into the cyclohexyl ring of analog **24a** to give the tetrahydropyran analog **24d** ($hM_4 EC_{50} = 152 nM$), resulted in a nearly 45-fold increase in hM_4 functional potency.

Comparison of **24d** to the corresponding piperidine analog **24e** (hM₄ EC₅₀ = 6.1 μ M) once again resulted in a loss of hM₄ functional potency (~40-fold). To investigate the importance of a hydrogen bond acceptor at this position, we further investigated the piperidine tail by eliminating its ability to serve as a hydrogen bond donor. This exercise generated amides (**28a** & **28b**), small aliphatic C-linked piperidines (**30**), as well as aryl-linked piperidines (**26**). Interestingly, converting piperidine **24e** into amides **28a** (hM₄ EC₅₀ = 620 nM) and **28b** (hM₄ EC₅₀ = 234 nM) led to an increase in functional M₄ potency by ~10-fold and 26-fold, respectively. Removing the carbonyl of analog **28a** to afford analog **30** resulted in a complete loss of M₄ potency, further supporting our theory of the importance of a hydrogen bond acceptor at this position. Similarly, a complete loss of activity was observed when the piperidine tail of **24e** was capped with 3-fluoropyridine (**26**). This loss of activity could be attributed to several factors including the large size of the C-linked "tail", the position/orientation of the electron lone pair of the pyridine, and/or the effects of the fluorine substituent on the basicity of the pyridine.

After extensive exploration of the amine tail, we turned our attention toward accessing the importance of the sulfur of the 7,9-dimethylpyrido[3',2':4,5]thieno[3,2-d]pyrimidine core. To do so, we exchanged the sulfur with an oxygen to generate a 7,9-dimethylpyrido[3',2':4,5]furo[3,2-d]pyrimidine core, **17**. Similar to the synthesis **16**, the synthesis of core **17** began by condensing formamide with ethyl 3-amino-4,6-dimethylfuro[2,3-b]pyridine-2-carboxylate (**8**) to afford the pyrimidone intermediate **10** (Scheme 1). Treatment of pyrimidone **10** with POCl₃ gave chloride **12** which readily underwent nucleophilic aromatic substitution with a variety of primary and secondary amines to afford desired analogs **17** in moderate to good yields.

Functional hM₄ potencies for analogs **17** were determined and the results highlighted in Table 4. Of the compounds evaluated, none possessed sub-micromolar potencies. In fact, we observed complete loss of activity in several analogs (**17a**, **17d**, **17e**, and **17f**). Directly comparing analog **16m** (hM₄ EC₅₀ = 910 nM) to **17e** (inactive), **16w** (hM₄ EC₅₀ = 277 nM) to **17a** (inactive), and **16v** (hM₄ EC₅₀ = 359 nM) to **17c** (hM₄ EC₅₀ = 1.59 μ M; 4.4-fold potency decrease) further illustrates the significance of the sulfur atom in the tricyclic ring.

Finally, we evaluated the relevance of the pyrimidine nitrogen at the 5-position by synthesizing analogs **18** (Scheme 1). These analogs were synthesized from commercially available amine **7**, which underwent a Sandmeyer reaction to give the corresponding bromide. The bromide intermediate was transformed into intermediate **13** via a Suzuki cross-coupling reaction. Cyclization of **13** to form the pyrone followed by exchange with ammonia afforded the pyridone **14**, which was chlorinated via treatment with POCl₃ to give intermediate **15** in moderate to good yields. Chloride **15** then underwent nucleophilic aromatic substitution with varies amines to give analogs **18**.

Analogs **18** were screened against hM_4 to determine potency with results highlighted in Table 5. It was immediately apparent that this modification was not detrimental to hM_4 activity. In fact, several analogs displayed increased potencies. For instance, direct comparisons between **16m** ($hM_4 EC_{50} = 910 nM$) and **18b** ($hM_4 EC_{50} = 327 nM$) resulted in a ~2.8-fold increase in potency. Similarly, comparing **16p** ($hM_4 EC_{50} = 6.55 \mu M$) and **18c**

(hM₄ EC₅₀ = 150 nM) resulted in a ~44-fold increase in potency. Likewise, this trend was also observed when analyzing **16v** (hM₄ EC₅₀ = 359 nM) and **18g** (hM₄ EC₅₀ = 85 nM) which resulted in a ~4-fold increase in functional hM₄ potency.

Of these compounds, **160**, **16w**, **16x**, **16y**, **28b**, **18b**, **18d**, and **18g** were advanced into a battery of *in vitro* DMPK assays and our standard rat plasma:brain level (PBL) cassette paradigm (Table 6).¹⁸ These compounds were chosen to move forward based on their M₄ potency (EC₅₀ < 350 nM) as well as their chemical diversity across subseries. In regard to physicochemical properties, these analogs all possessed molecular weights less than 450 Da possessed molecular weights less than 450 Da with **160**, **16w**, and **16x** having the most attractive CNS xLogP values (2.79 - 3.39).^{30–31} All analogs tested displayed high predicted hepatic clearance in at least one species based on microsomal CL_{int} data (rat CL_{hep}s > 56 mL/min/kg). While analogs **160** and **28b** displayed moderate human predicted hepatic clearance based on microsomal CL_{int} data (human CL_{hep}s of 11–12 mL/min/kg) all other analogs tested displayed high human predicted hepatic clearance based on microsomal CL_{int} data (human CL_{hep} > 15 mL/min/kg).

Compounds within the tricycle series of core **6** (**18b**, **18d**, & **18g**) were, in general, highly bound to plasma protein (rat f_{u} s plasma 0.005 – 0.016; rat f_{u} s brain 0.002 – 0.004; human f_{u} s plasma 0.001 – 0.005). By contrast, compounds within the tricyclic series of core **5** (**16o**, **16w**, **16x**, **16y**, **28b**) exhibited reduced protein binding profiles (rat f_{u} s plasma 0.017 – 0.21; rat f_{u} s brain 0.004 – 0.019; human f_{u} s plasma 0.002 – 0.056). Interestingly, compounds **16y** and **28b** displayed the best overall protein binding profiles (rat f_{u} s 0.017 – 0.21; rat f_{u} s brain 0.032 – 0.053; human f_{u} s 0.011 – 0.019); however, these analogs were not progressed forward due to their high predicted hepatic clearance in rat and/or human. Analogs **16o** (rat brain:plasma K_p = 0.45, K_{p,uu} = 0.21) and **16x** (rat brain:plasma K_p = 6.49, K_{p,uu} = 0.27) proved to have low CNS distribution of unbound drug, while analogs **16w**, **16y** and **28b** displayed moderate CNS distribution (rat K_{p,uu}s = 0.35 – 0.65). On the other hand, analogs **18d** (rat brain:plasma K_p = 37.1, K_{p,uu} = 4.87) and **18g** (rat brain:plasma K_p = 10.4, K_{p,uu} = 4.18) displayed excellent CNS penetration; however, these compounds suffered from low fraction unbound.

In summary, a scaffold hopping exercise utilizing a "tie-back" strategy based on M₄ PAM **3** proved to be a successful strategy in converting an early lead compound, **VU0152100**, into potent tricyclic M₄ PAM analogs devoid of the classic β -amino carboxamide moiety. Analogs within the tricycle series containing the 2,4-dimethylthieno[2,3-b:5,4-c']dipyridine core (**6**) gave many potent M₄ PAMs (Table 5; hM₄ EC₅₀ = 85–327 nM); however, these analogs displayed very poor fraction unbound in regards to brain and plasma protein ($f_{us} < 0.01$) as well as high human (CL_{hep}s 15 mL/min/kg) and rat (CL_{hep}s 60 mL/min/kg) predicted hepatic clearance. Thus, additional analogs of core **6** were not pursued further. Directing our effort toward the 7,9-dimethylpyrido[3',2':4,5]thieno[3,2-d]pyrimidine core (**5**) showed benzyl amine linked analogs generally provide only moderately potent analogs (Table 1). Changing the linker to small aliphatic amine linkers provided several potent M₄ PAMs (Table 2; hM₄ EC₅₀ = 144–453 nM). On further evaluation, this subseries of analogs generally exhibited improved plasma protein binding profiles. Unfortunately, the small aliphatic amine linker analogs suffered from very high human (CL_{hep}s 18 mL/min/kg)

and rat ($CL_{hep}s$ 62 mL/min/kg) predicted hepatic clearance and further work on this subseries was abandoned. Further exploration revealed that carbon-linked groups (Table 3) showed improved brain and plasma $f_{u}s$ when compared to the 2,4-dimethylthieno[2,3-b:5,4-c']dipyridine core (**6**) as previously discussed; however, due to poor human and rat predicted hepatic clearance, further work on this subset of analogs was not pursued.

Our efforts to mask the β-amino carboxamide moiety of an early lead M₄ PAM compound, **VU0152100**, resulted in the discovery of two new tricyclic cores (5 & 6) which provided potent M₄ PAM analogs. This endeavor also provided analogs **VU6007215** & **VU6009048**, which display 3.5- fold and 6-fold increase in human M₄ activity, respectively, when compared to parent compound **VU0152100**. Moreover, **VU6007215** exhibits a reduced protein binding profile in relation to the parent compound **VU0152100**. In comparison to the previously reported **VU6017654** (rat *f*_us plasma 0.007; rat *f*_us brain 0.003; human *f*_us plasma 0.021), **VU6007215** shows a much-improved protein binding profile (rat *f*_us plasma 0.206; rat *f*_us brain 0.019; human *f*_us plasma 0.056). Additionally, **VU6007215** displayed higher CNS distribution of unbound drug (rat brain:plasma K_p = 4.47, K_{p,uu} = 0.40) than that of **VU6017654** (rat brain:plasma K_p = 0.25, K_{p,uu} = 0.11); however, a ~2-fold loss in hM₄ and rM₄ functional potency was observed with **VU6007215**. Although this excursion did not deliver PAMs with DMPK profiles to warrant advancement as development candidates, it did garner insights for future scaffold designs toward that goal. These refinements will be reported in due course.

Acknowledgments

We thank the NIH for funding via the NIH Roadmap Initiative 1X01 MH077607 (C.M.N.), the Molecular Libraries Probe Center Network (U54MH084659 to C.W.L.) and U01MH087965 (Vanderbilt NCDDG). We also thank William K. Warren, Jr. and the William K. Warren Foundation who funded the William K. Warren, Jr. Chair in Medicine (to C.W.L.).

References and Notes

- Shen W, Plotkin JL, Francardo V, et al. M₄ Muscarinic receptor signaling ameliorates striatal plasticity deficits in models of L-DOPA-induced dyskinesia. Neuron. 2015;88:762–773. [PubMed: 26590347]
- Pancani T, Foster DJ, Moehle MS, et al. Allosteric activation of M₄ muscarinic receptors improve behavioral and physiological alteration in early symptomatic YAC128 mice. Proc Natl Acad Sci USA. 2015;112:14078–14083. [PubMed: 26508634]
- 3. Bridges TM, LeBois EP, Hopkins CR, et al. The Antipsychotic potential of muscarinic allosteric modulation. Drug News Perspect. 2010;23:229–240. [PubMed: 20520852]
- Foster DJ, Wilson JM, Wess J, et al. Antipsychotic-like effects of M₄ positive allosteric modulators are mediated by CB₂ receptor-dependent inhibition of Dopamine release. Neuron. 2016;91:1244– 1252. [PubMed: 27618677]
- Jones CK, Byun N, Bubser M. Muscarinic and nicotinic acetylcholine receptor agonists and allosteric modulators for the treatment of Schizophrenia. Neuropsychopharmacology. 2012;37:16– 42. [PubMed: 21956443]
- Farrell M, Roth BL. Allosteric Antipsychotics: M₄ Muscarinic potentiators as novel treatments for Schizophrenia. Neuropsychopharmacology. 2010;35:851–852. [PubMed: 20145632]
- Kruse AC, Kobilka BK, Gautam D, et al. Muscarinic acetylcholine receptors: novel opportunities for drug development. Nat Rev Drug Discov.2014;13: 549–560. [PubMed: 24903776]

- Chan WY, McKinzie DL, Bose S, et al. Allosteric modulation of the muscarinic M₄ receptor as an approach to treating Schizophrenia. Proc Natl Acad Sci USA. 2008;105:10978–10983. [PubMed: 18678919]
- Leach K, Loiacono RE, Felder CC, et al. Molecular Mechanisms of action and *in vivo* validation of an M₄ muscarinic acetylcholine receptor allosteric modulator with potential antipsychotic properties. Neuropsychopharmacology. 2010;35:855–869. [PubMed: 19940843]
- Brady A, Jones CK, Bridges TM, et al. Centrally active allosteric potentiators of the M₄ muscarinic acetylcholine receptor reverse amphetamine-induced hyperlocomotor activity in rats. J Pharm Exp Ther. 2008;327;941–953.
- Byun NE, Grannan M, Bubser M, et al. Antipsychotic drug-like effects of the selective M₄ muscarinic acetylcholine receptor positive allosteric modulator VU0152100. Neuropsychopharmacology. 2014;39:1578–1593. [PubMed: 24442096]
- Bubser M, Bridges TM, Dencker D, et al. Selective activation of M₄ muscarinic acetylcholine receptors reverses MK-801-induced behavioral impairments and enhances associative learning in rodents. ACS Chem Neurosci. 2014;5:920–942. [PubMed: 25137629]
- Melancon BJ, Wood MR, Noetzel MJ, et al. Optimization of M₄ positive allosteric modulators (PAMs): The discovery of VU0476406, a non-human primate *in* vivo tool compound for translational pharmacology. Bioorg Med Chem Lett. 2017;27:2296–2301. [PubMed: 28442253]
- Wood MR, Noetzel J, Melancon BH, et al. Discovery of VU0467485/AZ13713945: An M₄ PAM evaluated as a preclinical candidate for the treatment of Schizophrenia. ACS Med Chem Lett. 2017;8:233–238. [PubMed: 28197318]
- Temple KJ, Engers JL, Long MF, et al. Discovery of a novel 3,4-dimethylcinnoline carboxamide M₄ positive allosteric modulator (PAM) chemotype via scaffold hopping. Bioorg Med Chem Lett. 2019;29:126678. [PubMed: 31537424]
- Temple KJ, Engers JL, Long MF, et al. Discovery of a novel 2,3-dimethylimidazo[1,2a]pyrazine-6-carboxamide M₄ positive allosteric modulator (PAM) chemotype. Bioorg Med Chem Lett. 2020;30:126812. [PubMed: 31784320]
- Temple KJ, Long MF, Engers JL, et al. Discovery of structurally distinct tricyclic M₄ positive allosteric modulator (PAM) chemotypes. Bioorg Med Chem Lett. 2020;30:126811. [PubMed: 31787491]
- Tarr JC, Wood MR, Noetzel MJ, et al. Challenges in the development of an M₄ PAM preclinical candidate: The discovery, SAR, and *in vivo* characterization of a series of 3-aminoazetidinederived amides. Bioorg Med Chem Lett.2017;27:2990–2995. [PubMed: 28522253]
- Le U, Melancon BJ, Bridges TM, et al. Discovery of a selective M₄ positive allosteric modulator based on 3-amino-thieno[2,3- *b*]pyridine-2-carboxamide scaffold: Development of ML253, a potent and brain penetrant compound that is active in a preclinical model of schizophrenia. Bioorg Med Chem Lett. 2013;23:346–350. [PubMed: 23177787]
- Kennedy JP, Bridges TM, Gentry PR, et al. Synthesis of Structure-Activity Relationships of Allosteric Potentiators of the M₄ Muscarinic Acetylcholine Receptor. ChemMedChem. 2009;4:1600–1607. [PubMed: 19705385]
- Salovich JM, Vinson PN, Sheffler DJ. Discovery of N-(4-methoxy-7-methylbenzo[*d*]thiazol—2yl)isonicotinamide, ML293, as a novel, selective and brain penetrant positive allosteric modulator of the muscarinic 4 (M₄) receptor. Bioorg Med Chem Lett. 2012;22:5084–5088. [PubMed: 22738637]
- Smith E, Peter C, Niswender CM. Application of Parallel Multiparametric Cell-Based FLIPR Detection Assays for the Identification of Modulators of the Muscarinic Acetylcholine Receptor 4 (M₄). Biomol Screening. 2015;20:858–868.
- Bodick NC, Offen WW, Levey AI, et al. Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behaviorl symptoms in Alzheimer disease. Arch Neurol. 1997;54:465–473. [PubMed: 9109749]
- 24. Shekhar A, Potter WZ, Lightfoot J, et al. Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am J Psyciatry. 2018;165:1033–1039.
- 25. Brannan SK, Sawchak S, Miller AC, et al. Muscarinich Cholinergic Receptor Agonist and Peripheral Antagonist for Schizophrenia. N Engl J Med. 2021;384:717–726. [PubMed: 33626254]

- Schuber JW, Harrison ST, Mulhearn J, et al. Discovery, Optimization, and Biological Characterization of 2,3,6-Trisubstituted Pyridine-Containing M4 Positive Allosteric Modulators. ChemMedChem. 2019:14:943–951. [PubMed: 30920765]
- https://clinicaltrials.gov/ct2/show/NCT04136873. A Multiple Ascending Dose Trial of CVL-231 in Subjects with Schizophrenia. Date of Access: 10/11/2021
- https://clinicaltrials.gov/ct2/show/NCT04787302?term=CVL-231. PET Trial to Evaluate Target Occupancy of CVL-231 on Brain Receptors Following Oral Dosing. Date of Access: 10/11/2021
- Long MF, Engers JL, Chang S, et al. Discovery of a novel 2,4-dimethylquinolin-6-carboxamide M₄ positive allosteric modulator (PAM) chemotype via scaffold hopping. Bioorg Med Chem Lett. 2017;27:4999–5001. [PubMed: 29037946]
- Rankovic Z CNS Drug Design: Balancing Physiochemical Properties for Optimal Brain Exposure. J Med Chem. 2015;58:2584–2608. [PubMed: 25494650]
- Wager TT, Hou X, Verhoest PR, et al. Central Nervous System Multiparameter Optimization Desirability: Application in Drug Discovery. ACS Chem Neurosci. 2016;7:767–775. [PubMed: 26991242]

Figure 1.

Exploration of novel tricyclic cores as M_4 PAMs. We utilized the same "tie-back" strategy to mask the β -amino carboxamide moiety (dotted circle), which contributed to the discovery of **VU6017654** (**3**), to develop two unique M_4 PAM tricyclic chemotypes: a 7,9-dimethylpyrido[3',2':4,5]thieno[3,2-d]pyrimidine core (**5**) and a 2,4-dimethylthieno[2,3-b:5,4-c']dipyridine core (**6**).

Author Manuscript

Author Manuscript

Scheme 1.

Synthesis of M₄ PAM analogs. Reagents and conditions: (a) i. HCONH₂, 150 °C; ii. AcOH • HN=CHNH₂, 150 °C; (b) POCl₃, 120 °C, 18h; (c) i. CuBr₂, 'BuONO, CH₃CN, 60 °C, 56%; ii. Cs₂CO₃, Pd(dppf)Cl₂, dioxane/H₂O (10:1), 90 °C, 18h, 99%; (d) i. TFA, 100 °C, 4h, 98%; ii. NH₄OH, 100 °C, 48h, 98%; (e) amine, DIEA, NMP, 120 °C, 21–88%; (f) i. Methyl (4-hydroxymethyl)benzoate, NaH, THF, 0 °C, 17%; ii. MeMgBr, THF, 0 °C, 38%; (g) **20**, Pd(PPh₃)₄, 1,4-dioxane, μW 120 °C, 0.5h, 10%.

Long et al.

Scheme 2.

Synthesis of M₄ PAM analogs. Reagents and conditions: (a) **22**, KOH, IPA, 105 °C, 10–74%; (b) i. HCONH₂, 150 °C; ii. AcOH • HN=CHNH₂, 150 °C, 62 – 95%; (c) HCl, 1,4-dioxane/H₂O (1:1), 79%; (d) **25**, DIEA, NMP, 120 °C, 72h, 92%; (e) **27**, HATU, DIEA, DMF, 54–62%; (f) **29**, STAB. AcOH, DCM, 18h, 95%.

Table 1.

Structures and activities for analogs 16 & 19.

16 or 19

Cmpd	R Group	hM ₄ EC ₅₀ (nM) ^{<i>a</i>} [%ACh Max]
16a VU6008258	`N_N_CF3	Inactive
16b VU6008243	`N H F	Inactive
16c VU6008261	N F	Inactive
16d VU6008266	℃N OCF3	Inactive
16e	`N F	4,010
VU6008279 16f	`N	[45] 1,560
VU6008248	H UNNN	[34]
16g VU6008250	``RN	1,110 [47]
16h VU6008255	`N H S	Inactive

16 or 19

Cmpd	R Group	$hM_4 EC_{50} (nM)^a$ [%ACh Max]
16i	`_NN	2,560
VU6008257	н	[30]
16j	``N	1,140
VU6008256	H	[41]
16k	N N	>10,000
VU6008254	H N F	[30]
161	`_NN	1,400
VU6008283	H N	[54]
16m	``N	910
VU6008284	Н	[76]
16n	`` <u>N</u>	2,320
VU6010076	F OH	[74]
160	``N	293
VU6008280	SO ₂ Me	[42]
16p		6,550
VU6008452	/ ~ _N _/	[52]
16q		341
VU6007221	/ ~ 🔟	[67]
16r	→ OMe	1,640
VU6008278	NH	[61]

-

_

	N	N N S R
	16 or	19
Cmpd	R Group	$hM_4 EC_{50} (nM)^a$ [%ACh Max]
19	``O	8,740
VU6010153	С	[40]

 a Calcium mobilization assays with hM4/Gqi5-CHO cells performed in the presence of an EC₂₀ fixed concentration of acetylcholine, n =1 independent experiment in triplicate.

Table 2.

Structures and activities for analog 16 containing small aliphatic amines.

16

Cmpd	R Group	$hM_4 EC_{50} (nM)^a$ [%ACh Max]
16s		762
VU6007214	N	[50]
16t	N F	456
VU6007218	NVF	[69]
16u		453
VU6007216	N	[75]
16v	\sim	359
VU6007220	HN	[76]
16w	\sim	277
VU6007219	N	[67]
16x	\cdot	172
VU6007217	N	[59]
16y		144
VU6007215		[84]

Table 3.

Structures and activities for C-linked analogs 21, 26, 28, & 30.

21, 24, 26, 28, or 30

Cmpd	R Group	hM ₄ EC ₅₀ (nM) ^{<i>a</i>} [%ACh Max]
24a		6,790
VU6008673		[71]
24b	1	3,900
VU6008479	<	[62]
24c	CU	2,820
VU6008362	CH3	[58]
24d	\frown	152
VU6008676	{0	[99]
24e	\square	6,110
VU6009094	{	[44]
28a	\triangleright	620
VU6009098	{N-{O	[62]
28b	\neg	234
VU6009100		[72]

21, 24, 26, 28, or 30

 a Calcium mobilization assays with hM4/Gqi5-CHO cells or performed in the presence of an EC₂₀ fixed concentration of acetylcholine, n =1 independent experiment performed in triplicate.

Structures and activities for analog 17.

 a Calcium mobilization assays with hM4/Gqi5-CHO cells performed in the presence of an EC₂₀ fixed concentration of acetylcholine, n =1 independent experiment performed in triplicate.

R

Structures and activities for analog 18.

18

Cmpd	R Group	$hM_4 EC_{50} (nM)^a$ [%ACh Max]
18a	`_NF	>10,000
VU6010206	OMe	[90]
18b	`N	327
VU6010225	ОН	[101]
18c		150
VU6010205	/ \ _N _/ ·	[80]
18d	\sim	233
VU6008889	N	[98]
18e	/	202
VU6009049	N	[82]
18f	\sim	124
VU6009203	HN	[71]
18g	HN−∕∕	85

 a Calcium mobilization assays with hM4/Gqi5-CHO cells performed in the presence of an EC₂₀ fixed concentration of acetylcholine, n =1 independent experiment performed in triplicate.

Table 6.

In vitro DMPK and rat PBL data for select analogs 16, 18 & 28.

Property	160 VU6008280	16w VU6007219	16x VU6007217	16y VU6007215	28b VU6009100	18b VU6010225	18d VU6008889	18g VU6009048
MW	398.5	284.38	270.35	312.39	380.51	377.5	283.39	283.39
xLogP	3.39	3.24	2.79	1.85	3.75	4.89	3.69	3.92
TPSA	84.8	41.9	41.9	51.1	59	58	29	37.8
In vitro PK parameters								
CL _{INT} (mL/min/kg), rat	176	1896	741	594	367	334	2098	3859
CL _{HEP} (mL/min/kg), rat	50	68	64	63	59	58	68	69
CL _{INT} (mL/min/kg), human	28	134	296	129	25	50	161	345
CL _{HEP} (mL/min/kg), human	12	18	20	18	11	15	19	20
Rat fu _{plasma}	0.024	0.054	0.071	0.206	0.017	0.005	0.016	0.009
Human fu _{plasma}	0.002	0.016	0.021	0.056	0.017	0.001	0.003	0.005
Rat fu _{brain}	0.011	0.004	0.009	0.019	0.011	0.003	0.002	0.004
Brain Distribution (0.25 h) ((SD Rat; 0.2 mg	(kg IV)						
$\mathbf{K}_{\mathbf{p},\mathbf{brain}:\mathbf{plasma}}$	0.45	5.36	6.49	4.47	0.54	2.27	37.1	10.4
${f K}_{puu}$, brain:plasma	0.21	0.65	0.27	0.40	0.35	1.16	4.87	4.18