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Abstract

Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder that affects the competence of academic perfor-
mance and social wellness in children and adults. The causes of ADHD are unclear. Both genetic and environmental factors contribute
to the development of ADHD. The behavioral impairments in ADHD are associated with epigenetic changes in genes that are important
for neurodevelopment. Among environmental causes of ADHD, the neurotoxin methylmercury (MeHg) is associated with an increased
risk for ADHD. Developing children are susceptible to neurotoxic effects of prenatal MeHg exposure. Human epidemiology studies have
shown that prenatal MeHg exposure could invoke epigenetic changes in genes that are involved in ADHD. In addition, the pathogenesis
of ADHD involves dopaminergic system, which is a target of developmental MeHg exposure. MeHg-induced alterations in the dopamin-
ergic system have a profound impact on behavioral functions in adults. As a trace level of MeHg (around nM) can induce long-lasting
behavioral alterations, potential mechanisms of MeHg-induced functional changes in the dopaminergic system may involve epige-
netic mechanisms. Here, we review the relevant evidence on developmental MeHg exposures and the risk for ADHD. We also point out
research gaps in understanding environmental causes of ADHD.
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Introduction
Attention-deficit hyperactivity disorder (ADHD) is a neurodevel-
opmental disorder that affects children’s learning ability, social
behavior and emotional wellness [1]. Children and adults with
ADHD suffer challenges in academic performance, social com-
munication and emotional control. There is no curable treatment
for the disease [2]. The symptoms of ADHD include inatten-
tion, hyperactivity–impulsivity or both. The estimated incidence
of ADHD is 5% in children and 2.5% in adults worldwide [3].
The increased social awareness of ADHD and the great social
and economic burden inflicted on the patients call for a better
understanding and treatment of the disease [4].

Currently, clinical management of ADHD relies on stimulants
including methylphenidate and amphetamine; however, their
efficacy is a subject for debate. For example, a recent review
pointed out that there is a great uncertainty regarding the effect
of long-term treatment with the dopamine agonist amphetamine
in adults with ADHD [5]. Furthermore, nearly 10% of patients
did not respond to either amphetamine or methylphenidate [6].
In addition, while ADHD mostly afflicts children, many of them
show persistent symptoms in adulthood. The causes for ADHD

are multifactorial. Both environmental and genetic factors are
involved in the development of ADHD [7, 8].

Methylmercury (MeHg) is an organic form of mercury species
that naturally occurs in human environment [9]. Human expo-
sure to MeHg comes from eating fish animals that absorb and
biomagnify MeHg produced from aquatic microorganisms [10].
The most notable toxic target of MeHg is the brain [11]. Devel-
oping fetus is vulnerable to MeHg’s neurotoxicity. As an internal
exposure marker of MeHg [12], blood mercury in asymptomatic
mothers can cause a long-lasting damage to fetal neurodevelop-
ment [13]. MeHg can form a complexwith the amino acid cysteine.
The MeHg–cysteine complex is a structural mimicry of the amino
acid methionine. Therefore, the complex can take a free pass into
the brain through transporters for methionine [14, 15]. MeHg can
disrupt cellular redox balance, leading to a cascade of toxic effects
[16, 17]. Although there is an uncertainty on the adverse effects
of fish eating on the neurobehavioral functions, environmental
MeHg exposure can alter DNA methylation levels, an important
mechanism in the epigenetic regulation of gene expression [18].

Recent research suggests that environmental MeHg exposure
may contribute to the development of ADHD [19]. However, we
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are far from understanding the causal link between MeHg and
ADHD. Herein, we attempt to summarize the current available
evidence in support of the pathogenic role of MeHg in the devel-
opment of ADHD. Although most evidence is indirect, it provides
an important base and impetus for future studies. We focused on
mechanistic roles of epigenetic effects of MeHg exposure and risk
for ADHD, particularly on the modulation of dopaminergic neuro-
transmission by MeHg. We did not include the heritable effects
of MeHg toxicity, genetic susceptibility to MeHg toxicity or sig-
nificance of latent MeHg effects in age-related diseases, as these
subjects were discussed elsewhere [20–23].

ADHD, Dopamine, and MeHg Toxicity
The development of ADHD involves structural and functional
alterations in the developing brain. These alterations are believed
to be outcomes of deviation of ‘normal’ brain development [3].
The clinical diagnostic criteria are based on symptoms of learning
and social behaviors that aremanifested in typical ADHDpatients.
However, it has to be pointed out that clinical ADHD patients only
represent those whose apparent behavior and cognitive devel-
opments deviate from ‘normality.’ There is still a proportion of
people that exhibit mild and subclinical symptoms of ADHD [24].
The development of ADHD involves multi-systems of neurotrans-
mission in the brain. Dopaminergic neurotransmission plays an
important role in the development of ADHD [25].

Dopaminergic neurotransmission is involved in brain functions
including reward system, motor control and emotion regulation
[26]. The efficacy of dopamine neurotransmission stimulants in
mitigating ADHD suggests that the normal dopaminergic neu-
rotransmission may have been disrupted in ADHD patients [27].
Dopamine synthesis takes several steps, among which tyrosine
hydroxylase (TH) is the rate-limiting enzyme to produce dopamine
(Fig. 1). Intracellular dopamine is packaged into synaptic vesi-
cles to be released into the synaptic cleft for neurotransmission.
Extrasynaptic dopamine levels are regulated and can be trans-
ported back into presynaptic neurons by dopamine transporters
(DATs).

Studies have shown that the expression of DATs is epigenet-
ically regulated, which is linked to the risk for ADHD [28–30].
For example, in a case–control study on risk factors for ADHD,
alterations in DAT-1 expression were linked to ADHD. The study

Figure 1: Potential impacts of developmental MeHg exposures on
dopamine neurotransmission. The developing brain of fetus is
susceptible to environmental exposure to neurotoxins. The primary
pathway for dopamine synthesis involves several enzymes including TH
and DDC. For the dopamine neurotransmission, MeHg exposure can
alter the epigenetic regulation of the TH gene and potentiate the effect
of dopamine neurotransmission agonists such as amphetamine [55–58].
TH, tyrosine hydroxylase; L-DOPA, L-3,4-dihydroxyphenylalanine; DDC,
DOPA decarboxylase; VMAT, vesicular monoamine transporter 2; DAT,
dopamine transporter

did not find a significant change in overall DNA methylation lev-

els in the promoter region of the dat-1 gene; however, a possible

change in methylation levels in several individual sites of the

dat-1 region was proposed [28]. The importance of dat-1 epige-

netics in the prognosis of ADHD was also demonstrated in a

clinical study showing that themethylation status in the promoter

region of dat-1 can predict the treatment outcomes of ADHD with
methylphenidate, particularly on oppositional and hyperactive-
impulsive symptoms [29]. Furthermore, in a recent investigation
on the epigenetics of dat-1 in ADHD, it is showed that themethyla-
tion level in the dat-1 gene significantly changed in ADHDpatients,
which was not only related to the severity of ADHD symptoms but
also had a predictive value for clinical prognosis [30].

The neurotoxicity of MeHg is mediated via several well-
established mechanisms including oxidative stress, mitochondria
toxicity and disruption of calcium homeostasis [31–33]. However,
it is still unclear whether MeHg exposures at the environmen-
tal relevant level invoke the same mechanisms to alter neuronal
functions. Recent studies suggest that mechanisms of toxicity
induced by the environmental level of MeHg involve epigenetic
regulations [34–38], which also play key roles in the transgenera-
tional effects of MeHg [39, 40]. Further, we have recently shown
that environmentally relevant exposures of developing human
neurons from pluripotent stem cells cause subtle and persis-
tent effects on both neuronal differentiation and neuronal gene
expression [41, 42].

MeHg exposure can alter dopamine-mediated neurotrans-
mission [43–50], which can be attributed to MeHg-induced
effects on intracellular andmitochondrial calcium regulation [51].
A recent study showed that a dopamine-mediated neurobehavior
in Caenorhabditis eleganswas changed long after cessation of MeHg
exposure, suggesting that mechanisms other than calcium signal-
ing are also involved inMeHg-induced alterations in dopaminergic
neurotransmission [52]. Given that dopamine-mediated neurobe-
haviors can be altered by environmental chemicals and the effects
are transgenerational [39, 53, 54], studies on the role of epigenetics
inMeHg toxicity and its implication for the risk of ADHDare timely
and meritorious. In one such in vitro study, it was shown that
MeHg exposure (1nM) can repress the expression of TH. The study
further investigated methylation status at the promoter region of
the TH gene and showed that tri-methylation of histone H3 lysine
27 was significantly increased following MeHg exposure (1nM)
[55]. The importance of dopamine systems in MeHg’s toxicity was
corroborated in the C. elegans study showing that reduced swim-
ming speeds following MeHg exposure were modulated by the
homolog of the TH gene [52]. Furthermore, a recent study showed
that the effect ofMeHg on neurobehavior functions invokedmech-
anisms of sperm epimutation, a heritable change in differential
DNA methylation regions [39].

The importance of dopaminemetabolism in MeHg’s neurotoxi-
city and its implication in ADHDwas also supported by behavioral
studies in rodents. A study in female rats showed that their behav-
ioral sensitivity to d-amphetamine was increased following devel-
opmental exposure to MeHg [56]. In another study with male rats
exposed to MeHg during adolescent development, it was shown
that the effects ofMeHg exposure on adult neurobehaviors includ-
ing attention and memory were augmented by the dopamine
agonist, d-amphetamine [57]. A follow-up study concluded that
adolescence was vulnerable to MeHg and d-amphetamine, and
the effect persisted in adulthood [58]. These studies provide
important bases for the involvement of dopamine neurotransmis-
sion system in behavioral toxicity of MeHg, particularly in the
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behaviors related to ADHD [57]. However, a direct link between
MeHg and ADHD via epigenetic mechanisms remains scarce.

Environmental MeHg Exposure and ADHD
Developing brains are especially sensitive to MeHg toxicity. Sev-
eral large cohort studies investigated prenatal and postnatalMeHg
exposures and neurodevelopmental outcomes in children. In the
Seychelles Child Development Study, although the study did
not reveal any significant adverse associations between MeHg
exposure and a series of neurobehavioral outcomes [59], sig-
nificant adverse associations between scholastic achievement
and postnatal MeHg exposure were noted particularly in males
[60]. Importantly, the study showed that some measures of
neurodevelopmental tests were improved rather than adversely
affected. This is in contrast with the conclusion of another large
cohort study that showed that developmental MeHg exposure
adversely affects neurobehavioral functions including attention,
memory and verbal functions [61, 62]. The subtle effects of envi-
ronmental levels of MeHg on neurobehavioral functions in these
studies suggest that nutritional factors and co-exposed neuro-
toxins in the fish may have compounded functional measures of
developing brain [63, 64]. In addition, the integrity of epigenetic
regulation in the developing nervous system is extremely suscep-
tible to environmental exposures [65, 66]. The potential role of
epigenetic alterations by MeHg exposure may have contributed
a significant effect in the observed neurofunctional measures
(for more on this, see these reviews on MeHg-induced epigenetic
alterations [67–69]).

MeHg exposure has been described as a risk factor for ADHD,
given that the developing nervous system is most sensitive to the
neurotoxicity of MeHg [70–72]; indeed, several studies have shown
that mercury exposure, in the form of thimerosal (a mercury-
based vaccine preservative), may be positively related to increased
occurrence of behavior phenotype of ADHD [73, 74]. In addition,
the association between prenatal MeHg exposure and the risk
of ADHD was shown in a prospective cohort study in the Cana-
dian Arctic and other cross-sectional studies [19, 75, 76]. These
studies suggested that cord blood mercury was associated with
higher scores of attention problems and scores of the Disruptive
Behavior Disorders Rating Scale with ADHD. However, another
cohort study in New Bedford, MA, reported an opposite conclu-
sion, namely, that low mercury level is associated with ADHD
behaviors [77]. The frequency of fish consumption is positively
related to body mercury levels [78]. Intriguingly, an inverse rela-
tionship between mercury levels and risk for the behaviors of
ADHD was shown in the cohort study in New Bedford, MA. This
effect is probablymodified by the level of fish consumption, which
provides nutritional factors that are of benefit to brain develop-
ment. For instance, the incidence of ADHD was reported to be
decreased in groups eating the Mediterranean diet, and fish is
an important component of the diet [79]. The apparent inconsis-
tency in the conclusions from these studies may also reflect the
inherent difference in the populations, such as diet and genetic
variations.

In addition, neuronal differentiation and migration in the
developing brain require numerous epigenetic modifications to
ensure proper regulation of gene expressions and integrated func-
tion [80]. Epigenetic regulations in the developing brain are sus-
ceptible to environmental exposures [67]. MeHg exposure at trace
levels could induce long-lasting and transgenerational epigenetic
effects [39, 40]; however, what is less understood is how envi-
ronmental MeHg exposure might alter epigenetic regulations in

neuronal cells in vivo and its significance in behavioral outputs of
ADHD. Apparently, a mechanistic understanding of MeHg expo-
sure through eating fish and the risk for ADHD may suffice to
generate a new hypothesis for future investigations on epige-
netic factors that contribute to environmental influences on brain
development [18, 81]. Furthermore, understanding epigenetic
mechanisms of MeHg’s toxicity is helpful in identifying vulnera-
ble targets and refining measures of developmental outcomes in
human studies [82].

Studies on human epigenetic alterations following MeHg expo-
sure used epigenetic markers in blood cells or saliva to infer
possible epigenetic influences ofMeHg on the brain [18, 81, 83, 84].
Recent epidemiology studies demonstrate that prenatal expo-
sure to MeHg alters epigenetic markers in several genes that are
involved in the regulation of neurodevelopment [18, 85]. For exam-
ple, in the Nutrition Cohort 2 of the Seychelles Child Development
Study, prenatal MeHg exposure was associated with increased
levels of DNA methylation at the cytosine of CG dinucleotides
located at gene-expression regulation sites [18]. The affected
genes include brain-derived neurotropic factor (BDNF), glucocor-
ticoid receptor (NR3C1) and glutamate receptor subunit NR2B
(GRIN2B), all of which had been shown to be involved in the devel-
opment of ADHD in other independent studies [86–88]. Increased
methylation levels of NR3C1 associated with prenatal mercury
exposurewere also reported in another human study showing that
the methylation level of NR3C1 was increased in those with an
average mercury level of 0.17 µg/g compared with the reference
mercury level of 0.01 µg/g [85].

It has been recognized that perinatal MeHg exposure adversely
affects neurobehavior development [13]. A birth cohort by
Maccani et al. showed that prenatal mercury exposure increased
the risk for poorer quality of movement, poorer self-regulation
and increased signs of physiologic stress [89]. In addition, toenail
mercury tertiles are associated with 339 CpG loci, with an average
methylation difference of >0.125. The study also showed that the
prenatal mercury level in the toenails of infants is associated with
several genes with altered methylation levels, which include tran-
scription elongation regulator 1-like (TCERG1L), a possible factor
involved in ADHD [90]. Because significant changes in the methy-
lation level of many other genes were also noted in the study, it is
difficult to conclude the alteration ofmethylation level in TCERG1L
is a direct effect of mercury.

A recent new study carried out in Spain revealed that postnatal
mercury exposure was associated with an increased risk for
ADHD. The study also showed that boys were more vulnera-
ble than girls to these effects [91]. The study further demon-
strated that the polymorphism in BDNF modified the association
between mercury and behaviors of ADHD. The sex-specific effect
on DNA methylation levels following prenatal mercury expo-
sure was also reported in a cohort study in Japan [92]. Specif-
ically, the study showed that hyper-methylation in one locus
of the gene of haloacid dehalogenase-like hydrolase domain-
containing protein 1 (HDHD1) within the transcriptional regulation
site was only noted in boys. Furthermore, the temporal changes
of epigenetic effects related to prenatal mercury exposure were
shown in a study on prenatal mercury exposure and neurocog-
nitive effects [93]. The study further showed that alterations in
DNA methylation levels induced by prenatal mercury exposure
varied from early to mid-childhood, suggesting that the inter-
action between mercury and DNA methylation regulation may
have been compounded by other factors during development and
that the observed changes were indirectly caused by mercury.
Methylation of cytosine at CG dinucleotides can be oxidized to



4 Environmental Epigenetics, 2021, Vol. 00, No. 00

hydroxy-methylation, which can independently regulate gene
expression [94]. The DNA hydroxy-methylation level was lower in
those with higher prenatal mercury levels, which was attenuated
from early childhood to mid-childhood [84]. Another investiga-
tion of newborns on global DNA methylation level and prenatal
mercury exposure showed that the methylation level in the gene
of transcription elongation factor A (SII) N-terminal and central
domain containing 2 (TCEANC2) was associated with cord blood
mercury levels [95]. The TCEANC2 gene is a known risk factor
for sporadic Parkinson’s disease [96]; however, the implication of
the epigenetic changes to neurobehavioral functions in developing
children is unknown.

As mentioned before, the effects of prenatal mercury exposure
on the epigenetic markers can be modulated by nutritional fac-
tors as well as other toxins. For example, the association between
DNA methylation level and prenatal mercury was modified by in
utero exposure to arsenic [97]. Another neurotoxin that coexists
withMeHg in fish [98], namely polychlorinated biphenyls, also had
a significant effect on DNA methylation profiles in blood leuko-
cytes [99]. In addition, nutritional elements also affect global DNA
methylation levels. One of the mechanisms of MeHg toxicity is
the inhibition of the activity of enzymes requiring selenium as a
cofactor [9]. Studies have shown that maternal blood selenium
is associated with global DNA methylation levels in both preg-
nant mothers and newborns [83]. Consequently, the disruption
of selenoprotein activity and synthesis by MeHg can interfere with
DNAmethylation of developing brain. Furthermore, prenatal mer-
cury exposure can induce changes in micro RNA profiles in the
placenta and cervix, respectively [100, 101], which may lead to
altered regulation of epigenetics during fetal development. Taking
together, these studies provide important clues on how develop-
mentalMeHg exposure alters brain functions and potential effects
on the epigenetic control of genes associated with neurotrans-
mission. Several important questions regarding epigenetic effects
of MeHg need to be answered. The first is what is the mecha-
nism of MeHg-induced alterations of the DNA methylation level.
Finding a mechanistically trackable DNA methylation marker fol-
lowing MeHg exposure will facilitate the research on biological
markers that reflect MeHg toxicity. Secondly, what are the epige-
netic programs that modulate the development of dopaminergic
neurotransmission. This will help to elucidate the critical devel-
opmental window that is vulnerable to the adverse effects of
environmental factors such as MeHg. Lastly, as human associ-
ation studies revealed many DNA methylation loci that can be
modified MeHg exposure and exhibit a sex-specific pattern, what
is the significance of the epigenic alterations induced by MeHg
in behavioral outputs. The recent study on the epigenetic effects
of MeHg and neurobehavior outcomes in the model organism
zebrafish provides an important base for the understanding of
these questions [39].

Conclusion
ADHD is one of the most common neurodevelopmental disor-
ders. Although the pathogenesis of ADHD is not fully under-
stood, exposure to environmental contaminants is associated
with the disease. Current evidence suggests that epigenetic reg-
ulatory mechanisms such as DNA methylation are a target of
environmental MeHg exposure. The investigations on the link
between DNA methylation and prenatal MeHg exposure have
shown that MeHg exposure may be associated with the pathogen-
esis of ADHD. Although MeHg exposure is associated with ADHD,
the behavioral impacts of MeHg-induced epigenetic alterations

warrant further investigations. Furthermore, MeHg exposure may
be associated with the epigenetic regulation of genes involved in
dopamine metabolism. Developmental MeHg exposure alters the
pharmacological effects of dopamine agonists through the inter-
action with dopaminergic system. These studies provide impor-
tant clues on how developmental MeHg exposure alters brain
functions and its effects on the epigenetic control of genes asso-
ciated with dopaminergic neurotransmission. However, further
studies on the role of MeHg exposure in epigenetic alterations are
needed to better understand the association between MeHg and
ADHD.

Themultifactorial nature of the causes for ADHD suggests that
MeHg exposure can significantly alter neurobehavioral outcomes
in animal models. As epigenetic marker is particularly susceptible
to environmental factors, further investigations on the epigenetic
effects of MeHg will shed new insights into the mechanisms of
environmental causes of ADHD.
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