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Abstract

Natural biopolymers, polymeric organic molecules produced by living organisms and/or renewable 

resources, are considered greener, sustainable, and eco-friendly materials. Natural polysaccharides 

comprising cellulose, chitin/chitosan, starch, gum, alginate, and pectin are sustainable materials 

owing to their outstanding structural features, abundant availability, and nontoxicity, ease of 

modification, biocompatibility, and promissing potentials. Plentiful polysaccharides have been 

utilized for making assorted (nano)catalysts in recent years; fabrication of polysaccharides-

supported metal/metal oxide (nano)materials is one of the effective strategies in nanotechnology. 

Water is one of the world’s foremost environmental stress concerns. Nanomaterial-adorned 

polysaccharides-based entities have functioned as novel and more efficient (nano)catalysts 

or sorbents in eliminating an array of aqueous pollutants and contaminants, including ionic 

metals and organic/inorganic pollutants from wastewater. This review encompasses recent 

advancements, trends and challenges for natural biopolymers assembled from renewable resources 

for exploitation in the production of starch, cellulose, pectin, gum, alginate, chitin and chitosan-

derived (nano)materials.
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1. Introduction

Water is one of the world’s foremost environmental stress concerns; the supply of safe, 

affordable drinking and/or clean water is a massively challenging proposition throughout the 

world. Rapidly escalating environmental contamination of natural resources is an emerging 

issue in recent years that needs to be tackled on priority basis for sustaining the earth and 

its inhabitants for future generations. Indeed, resources of freshwater are limited and they 

are deteriorating fast due to the discharge of untreated or inadequately-treated wastewaters. 

Traditionally, coagulation/flocculation, ion exchange, floatation, reverse osmosis, oxidation, 

adsorption, membrane separation, ultra-filtration, sedimentation, electro-precipitation, and 

advanced oxidation processes are mainly resorted to as the accessible technologies in 

treating waste-water. Conventional methods of wastewater treatment and purification cannot 

possibly yield the desired extent of purification to attain accurate or cost-effective discharge 

standards (Khoramzadeh, Nasernejad, & Halladj, 2013; Nasrollahzadeh, Sajjadi, Dasmeh, & 

Sajadi, 2018; Yargıç, Şahin, Özbay, & Önal, 2015).

Beyond the stoichiometric use of reagents, catalysis is one of the most important 

foundation of “green chemistry” with novel processing systems and deployment of 

assorted novel catalysts with many benefits in terms of product selectivity, process 

utilization, energy reduction as well as the utilization of safer materials and alternative 

reaction media/conditions. Novel wastewater treatment approaches such as UV photolysis/

photocatalysis, activated carbon adsorption, ozonation, and perovskite adsorption, among 

others can be utilized for the degradation of pharmaceutically active compounds, metal 

ions, and toxic dyes (Cai et al., 2018; Garba, Xiao et al., 2019; Garba, Zhou, Zhang, 

& Yuan, 2020; Karnib, Kabbani, Holail, & Olama, 2014; Xu, Nasrollahzadeh, Sajjadi 

et al., 2019). Interestingly, the expensive energy-intensive commercially-activated carbons 

applied for this goal can be effectively replaced by renewable alternatives and low-cost 

biosorbents that are based on natural biopolymers (Crini, 2006; Xu, Nasrollahzadeh, 

Sajjadi et al., 2019). In general, the development of ‘greener’ and eco-friendly treatment 

technologies must be perceived as a key element for the industries dealing with toxic, 

hazardous and chemically laden wastewater (Atarod, Nasrollahzadeh, & Sajadi, 2015; 

Hatamifard, Nasrollahzadeh, & Lipkowski, 2015; Hatamifard, Nasrollahzadeh, & Sajadi, 

2016; Iravani & Varma, 2020a; Khodadadi, Bordbar, & Nasrollahzadeh, 2017; Khodadadi, 

Bordbar, & Nasrollahzadeh, 2017; Maryami, Nasrollahzadeh, Mehdipour, & Sajadi, 2016; 

Nasrollahzadeh, Bagherzadeh, & Karimi, 2016; Nasrollahzadeh, Sajadi, & Maham, 2016; 

Omidvar, Jaleh, & Nasrollahzadeh, 2017; Sharma, Zboril, & Varma, 2015; Sivan et al., 

2019; Varma, 2014; Zhang, Yu et al., 2018; Zhang, Hou et al., 2018).

Among the greener technologies, the synthesis of natural (nano) catalysts with lower costs, 

and enhanced efficiency has been a focus area for the treatment of wastewater pollutants 
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as exemplified by nanoscale filtration procedures and the adsorption of pollutants by metal/

metal oxide based nanoparticles (NPs) (Ai, Yue, & Jiang, 2012; Crini, 2006; Meng, Zhu, 

Choi, Park, & Oh, 2011; Nasrollahzadeh, Baran et al., 2020; Nasrollahzadeh, Sajjadi, 

Dasmeh et al., 2018; Xu, Nasrollahzadeh, Sajjadi et al., 2019; Zhang, Sèbe, Rentsch, 

Zimmermann, & Tingaut, 2014). The utilization of nanostructures with unique features 

namely large surface area, significant chemical reactivity, cost-effectiveness, and lower 

power consumption, can meaningfully exploit multifunctional nanosystems that enable 

particle retention and removal/elimination of pollutants.

Over the decades, the accessibility of synthetic polymers derived from gas, petroleum, 

and nonrenewable carbon sources is diminishing as researchers are exploring more readily 

available and sustainable alternatives, namely, natural biopolymer-derived materials from 

renewable resources. Natural biopolymers are polymeric organic molecules acquired from 

renewable resources (alga, plants, microbial biomass and animals) comprising monomeric 

parts that are bonded covalently to form larger molecules (Baran & Nasrollahzadeh, 2020; 

Den, Sharma, Lee, Nadadur, & Varma, 2018; Hebbalalu, Lalley, Nadagouda, & Varma, 

2013; Iravani & Varma, 2020b; Mohazzab et al., 2020; Motahharifar, Nasrollahzadeh, 

Taheri-Kafrani, Varma, & Shokouhimehr, 2020; Nasrollahzadeh, Shafiei, Nezafat, & 

Bidgoli, 2020; Nasrollahzadeh, Issaabadi, & Varma, 2019). They represent a highly 

promising option for the generation of sustainable materials owing to their extraordinary 

structural and physical features, safety, availability, and economics; biocompatibility and the 

biodegradability of these natural resources can enhance their utilization as nanocatalysts 

and nanosorbents. Low-cost biopolymers such as polysaccharides are diverse in size, 

structure, and molecular chains, making them attractive candidates for stabilization and 

immobilization and the reduction of NPs; biopolymer-based (nano) catalysts can be 

immobilized on their uniquely featured reactive groups to enhance (nano)catalytic efficiency 

and stability (Crini, 2005; Kumar, 2000; Oladoja, Adelagun, Ahmad, Unuabonah, & Bello, 

2014; Xu, Nasrollahzadeh, Sajjadi et al., 2019; Xu, Nasrollahzadeh, Selva, Issaabadi, 

& Luque, 2019). The salient advantageous features for the utilization of polysaccharide 

supports include the release of nanostructures during operations, the prevention of 

aggregation, the ease of recovery of catalytic materials, and importantly, improving the 

photocatalytic efficiency compared to the conventional slurry systems.

Pollution generated by dyes, heavy metals, nitroarenes, and pesticides in water/wastewater 

is a global major problem; in particular, the dye effluents are identified as largest class 

of industrial colorants and significant threat to aquatic environments as the discarded 

dyes seriously affect humans and flora/fauna (Albukhari, Ismail, Akhtar, & Danish, 2019; 

Khan et al., 2016; Sajjadi et al., 2020). Toxic dyes/nitroarenes are hazardous, biologically 

and chemically stable, non-biodegradable and water soluble organic contaminants that are 

responsible for a diversity of human diseases e.g. kidney failure, skin irritation, nervous 

system damage, liver disease, etc. (Chamjangali, Bagherian, Javid, Boroumand, & Farzaneh, 

2015; Dai et al., 2009; Mazaheri, Ghaedi, Azqhandi, & Asfaram, 2017; Nasrollahzadeh, 

Nezafat, Gorab, & Sajjadi, 2020). The main sources of contamination from dyes have their 

origin in diverse industries, namely coloration of textiles, inks, paints, paper, plastics, dye 

sensitized solar cells, energy transfer cascades, display devices, light emitting diodes, laser 

welding processes, as well as food and/or cosmetic dyes which are particularly derived 
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from azo dyes (Sannino, Vaiano, Sacco, & Ciambelli, 2013; Singh & Arora, 2011). Textile 

dye effluents are generally present as a mixture of several dyes in diverse percentages 

depending on the factory schedule, and the extent of dye fixation on a fabric (Yaseen & 

Scholz, 2018). Consequently, the removal of such admixed dyes (in diverse concentration 

levels and mixing ratios) in wastewaters is extremely vital. The development/improvement 

of novel eco-friendly treatment approaches should be considered as a critical element for the 

industries generating toxic and hazardous chemical-laden wastewater.

Generally, polysaccharide derivatives showed high removal efficiency of both inorganic (e.g. 

heavy metal ions) and organic (e.g. dyes, nitroarenes, and pesticide formulations) pollutants 

via adsorption, reduction/degradation and coagulation/flocculation methods (Kanmani, 

Aravind, Kamaraj, Sureshbabu, & Karthikeyan, 2017; Sajjadi, Nasrollahzadeh, & Tahsili, 

2019; Sivan et al., 2019). Among these, adsorption can be considered as a good option for 

the removal of the hazardous organic contaminants, since it can be simply deployed thus 

avoiding the formation of various toxic intermediates, which gets generated while treating 

novel organic contaminants in aqueous solutions (Ertas & Uyar, 2017; Ghaedi et al., 2012; 

Liu et al., 2020). The utilization of biopolymer-based adsorbents is not only restricted to 

the removal of heavy metals, dyes and nitro compounds, but extends to a range of toxic 

contaminants including pharmaceuticals (Amouzgar & Salamatinia, 2015), hydrocarbons 

(Xu, Yong, Lim, & Obbard, 2005), pesticides (Sahithya, Das, & Das, 2015), phosphates 

(An, Jung, Zhao, Lee, & Choi, 2014), nitrates (Rajeswari, Amalraj, & Pius, 2016), fluo-rides 

(Jagtap, Yenkie, Labhsetwar, & Rayalu, 2011), perchlorates (Sayed & Jardine, 2015), and 

radioactive ions (Lu et al., 2016), etc.

Polysaccharides are sustainable and environmental-friendly organic biopolymers naturally 

engineered by living organisms and comprise the repeat unit of monosaccharides 

(Cn(H2O)n). In this respect, chitin/chitosan, cellulose (Ahmad, Ahmed, Swami, & Ikram, 

2015; Olivera et al., 2016; Xu, Nasrollahzadeh, Sajjadi et al., 2019), starch (Yusof & 

Kadir, 2016), pectin (Sharma, Naushad, Pathania, & Kumar, 2016), alginate (Swain, Patnaik, 

& Dey, 2013; Xu, Nasrollahzadeh, Sajjadi et al., 2019), guar gum (Kee, Mukherjee, & 

Pariatamby, 2015) and xanthan gum (Kee et al., 2015; Pi et al., 2016) are important 

examples of sustainable and environmental-friendly organic biopolymers (Fig. 1). Among 

the polysaccharides, after cellulose (most abundant biopolymer on earth), chitosan, the 

second most abundant biopolymers have been preferred for broad ranging environmental 

appliances (Ahmad et al., 2015; Olivera et al., 2016; Xu, Nasrollahzadeh, Sajjadi et al., 

2019). Herein, this paper sums up the recent advances in the remediation and elimination 

of aqueous pollutants and noxious contaminants using some of the most abundant natural 

biopolymer resources, namely chitin/chitosan, starch, gum, alginate, pectin, and cellulosic 

(nano)materials.

2. Polysaccharide derived (nano)catalysts for water treatment

Recently, polysaccharide derived (nano)catalysts have been investigated as heterogeneous 

and novel catalysts with excellent catalytic prowess for the water treatment. Different 

applications of polysaccharide derived (nano)catalysts in water treatment are summarized 

in this section.
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2.1. Cellulose-based nanomaterials

2.1.1. Chemistry and properties—Cellulose-based materials for example, cellulose 

nanofibrils (CNFs) and nanocrystals (CNCs) have found numerous applications in medicine, 

bioplastics, barrier films, biomedicine, pharmaceutics, electronics, nanocomposites, 

membranes, supercapacitors, and cosmetic products. These nanomaterials have garnered 

substantial interest for deployment as (nano)sorbents because of their unique properties (Fig. 

2) (Moon, Martini, Nairn, Simonsen, & Youngblood, 2011; Ray & Shipley, 2015; Trache, 

Hussin, Haafiz, & Thakur, 2017); cellulose-based adsorbents and their use in water and 

wastewater treatment have been reviewed (Table 1) (Mohammed, Grishkewich, & Tam, 

2018).

While the materials have shown demonstrative effectiveness in separating and eliminating 

various contaminating materials, the environmental influences of modified cellulose 

nanomaterials should be assessed; their non-toxicity and biodegradability attributes, though 

suitable for wastewater treatment, need stability evaluation. Sizeable amounts of cellulose 

nanomaterials are needed for remedial applications, thus their cost, feasibility of access, 

and life cycle considerations for the large scale manufacturing of these materials must 

be considered (Shatkin, Wegner, & Neih, 2013) although cellulosic nanomaterials have 

environmental advantages over activated carbon derived from charcoal. Biochar (obtainable 

from plant biomass) with its similarity to activated carbon has less functionality than 

cellulose nanomaterial. Cellulosic nano- and microfibers with suitable dimensions and 

strength have been used to generate membranes for water management. Membranes 

have been prepared as pristine cellulose nanomaterial mats as well as from cellulose 

nanomaterials incorporated into assorted polymer matrices such as cellulose triacetate, 

polypyrrole, poly(vinylidene fluoride), poly (ethylene oxide), poly(ether sulfone), poly(vinyl 

alcohol), poly(acrylonitrile), and poly(3-hydroxybutyrate) (Carpenter, de Lannoy, & 

Wiesner, 2015); they can be applied in membrane distillation, nanofiltration, hemodialysis, 

microfiltration, and ultrafiltration. The presence of cellulose nanomaterials within polymer 

matrices can noticeably change the membrane characteristics. For instance, better membrane 

tensile strength, surface hydrophilicity, superior permeability, resistance to biofouling, and 

enhanced selectivity can be attained by adding cellulose nanomaterials which are highly 

biocompatible and eco-friendly and ideally suited for pharmaceutical, biomedical and 

environmental applications of these nanocomposite membranes (Carpenter et al., 2015; 

Yin & Deng, 2015); challenge being the application of polymer-cellulose nanocomposites 

realizing uniform and homogeneous dispersing within polymer matrices (Xie, Mai, & Zhou, 

2005). Homo-aggregating cellulose nanomaterials destructively influence the amorphous 

and semi-crystalline polymers by upsetting the polymer solutions homogeneity (Varma, 

2016).

2.1.2. Applications for water treatment

2.1.2.1. Removal of oil and organic solvents.: Cellulose is an ideal adsorbent due to its 

low-cost and abundance relative to commercial ion exchange sorbents. Although unmodified 

cellulose lacks certain properties to be applied as an effective adsorbent, namely variable 

physical stabilities and low heavy metal adsorption capacities (O’Connell, Birkinshaw, & 

O’Dwyer, 2008), among others; thus, surface engineering via chemical modification have 
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been studied in recent years. Modified cellulose nanomaterials matrices can be applied for 

the sorption of organic contaminants; inherently hydrophilic cellulose nanomaterials are 

modifiable to enhance their affinity for hydrophobic materials. The surface modification 

of cellulosic nanomaterials can be attained by insertion of both, the organic and inorganic 

groups as has been exemplified via the atomic layer placement of titanium dioxide (TiO2) 

NPs onto cellulose nanomaterial aerogels (Korhonen, Kettunen, Ras, & Ikkala, 2011); 

TiO2 veneer formed a low-energy surface on the fibers to generate nanocellulose-based 

material which has both, the oleophilic and hydrophobic properties and they could absorb 

oil and diverse organic solvents from the water’s surface with 20–40 g/g and 80–90 % 

vol/vol capacity. Jiang and Hseih achieved better sorption capabilities of model organic 

solvents ranging from 139–345 g/g by vapor phase deposition of triethoxyl(octyl)silane on 

CNFs aerogels (Jiang & Hsieh, 2014). The addition of hydrophobic silanes to cellulose 

nanomaterials transformed them into water-repellant and oleophilic materials which could 

eliminate oil from the top or below the surface of water; heterogeneous catalyst could 

be reused 6 times. Wang, Yadav et al. (2014) and Wang, Zhang et al. (2014) prepared 

hydrogels with graphene oxide embedded in the nanocellulose matrix. After the H2 gas 

reduction, the graphene oxide-cellulose nanomaterials composites could sorb cyclohexane 

and dimethylformamide (DMF).

Other hazardous atmospheric volatile organic compounds (VOCs), namely, phenol, toluene 

and xylenes are of health concern owing to their low solubility and volatility that adversely 

effects the environment and human health (Al Momani, 2007); toluene, an ingredient 

utilized in adhesives, paints, detergents, and inks, is a typical VOC in water (Zeng et al., 

2009). Rezaee, Pourtagi, Hossini, and Loloi (2016) reported that TiO2 NPs impregnated on 

the microbial cellulose (MC) surface (MC/TiO2) could degrade toluene in air at ambient 

temperature under UV-irradiation conditions with maximum photodegradation abilities 

towards toluene pollutants being 87.79 % and 76.87 % after 40 min irradiation with UVC 

and UVA, respectively.

2.1.2.2. Removal of pesticides.: Pesticides are major organic pollutants in water bodies 

that are generally treated using assorted techniques such as photocatalytic degradation, 

aerobic degradation, ozonation, ultrasound combined with (photo)Fenton treatment, 

advanced oxidation processes, electrodialysis, reverse osmosis, adsorption, etc. (Ahmad et 

al., 2010; Hladik, Roberts, & Bouwer, 2005; Salman, Njoku, & Hameed, 2011). Based on 

target organisms, the main classes of pesticides are herbicides, fungicides, and insecticides, 

with herbicides accounting for approximately 46 % of the total pesticide (4.1 million 

tons) use worldwide (Mojiri et al., 2020). 2,4-Dichlorophenoxyacetic acid (2,4-D), one of 

the oldest herbicides and a common type of pesticide utilized broadly in the agricultural 

industry, is an organochlorine compound commercially accessible since 1945 (Kanmani et 

al., 2017). Nevertheless, pesticides are widely used in agriculture, industry and households, 

and they pose a risk to ecosystems and human health. Salman et al. (2011) reported that 

the maximum allowable concentration of 2,4-D in affordable drinking water is 100 μg 

L−1. Due to its endocrine disrupting and plant hormone activities, 2,4-D (well-known plant 

growth regulator) has been listed as one of the top 10 bestselling pesticides (Wang, Ge et 

al., 2013). The 2, 4-D accumulation in agricultural products and natural environment not 
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only can cause serious contamination to the environment/ecosystem, but also jeopardizes 

public safety, human health, and economic advancement; indeed, it is associated with the 

occurrence of human cancer, endocrine disruption, etc. (Smith, Smith, La Merrill, Liaw, 

& Steinmaus, 2017). In yet another attempt, Zhang, Zhao et al. (2019) and Zhang, Ma et 

al. (2019) described a facile and novel method to prepare fluorescent microfluidic paper 

chips (paper@QDs@MIPs) by depositing fluorescence signal material, CdTe quantum dots 

(QDs) onto cellulose paper as a base material, and studied the ability of the resulting 

paper@QDs@MIPs in rapid detection of pesticide 2,4-D.

2,4-Bis(isopropyl amino)-6-(methylthio)-s-triazine or prometryn (Pr), a colorless crystal, 

nonionic and hydrophobic herbicides pose a serious threat to the environment as well 

as human/animal’s health (Plakas & Karabelas, 2009). In this context, Garba, Zhou, 

Lawan, Zhang, and Yuan (2019) synthesized a copper modified microcrystalline cellulose 

(Cu@MCC) by a facile synthesis and deployed it as an effective composite adsorbent for Pr 

herbicide adsorption from synthetic waste-water; good adsorption capacity of 97.80 mg g−1 

at ambient temperature was discerned with sufficient stability for 6 sequential adsorption-

desorption runs. In another study, a facile and novel process was developed for embedding 

triolein into cellulose acetate sphere as a sustainable and efficient composite adsorbent for 

removing lipophilic pollutants (Liu, Dai, Qu, & Ru, 2005); adsorbent could be used for 

the effective removal of two organochlorinated pesticides (OCPs) of low concentrations 

from water. In addition, a novel class of recoverable CdS@x%SCNF (x = 5, 10, 15, 20, 

50) bionanocomposites was attained by depositing cadmium sulfide NPs on a matrix of 

biomass-derived silanized cellulose nanofibers via a solvothermal methodological route 

(Gupta, Kumar, Tikoo, Kaushik, & Singhal, 2020), and used for the adsorptive detoxification 

of pesticide (organophosphate insecticide chlorpyrifos) and textile dye (MB and safranin 

O) contaminants from wastewater. The as-synthesized CdS@10 %SCNF bionanocomposite 

exhibited maximum adsorption capacities for all the contaminants and could be reused up to 

six adsorptive runs.

Cellulose composites and metal organic frameworks (MOFs) are promising adsorption 

candidates as they combine the high adsorption capacities of MOFs and the sustainability 

of cellulose-based (nano)materials. Abdelhameed, Abdel-Gawad, Elshahat, and Emam 

(2016) selected Cu-BTC MOFs for the adsorption of 14C-ethion as an organo-phosphorus 

insecticide pollutant. Cu-BTC@cotton was fabricated via a facile method by an interaction 

of Cu in MOF and cellulose functional groups; indeed, the ethion molecule can bind with 

adsorbent by forming chemical bonds with Cu-BTC (copper-benzene-1,3,5-tricarboxylic 

acid) and cotton fabrics (chemisorption). As a result, the maximum sorption capacity of 

as-prepared composite reached 182 mg g−1 and the ethion removal percent exceeded 97 %. 

After recovering five times, the Cu-BTC@cotton adsorption efficiency was still retained and 

surpassed 85 %. Interestingly, Gan et al. (2019) extracted carbon nanofiber (CCNF) from 

abundant cellulosic source via electrospinning and pyrolysis treatment strategy and coated 

CoFe2O4 on it via a hydrothermal method to generate a novel catalyst for the activation 

of peroxymonosulfate (PMS). The appliance of CoFe2O4/CCNF nanocomposite activated 

PMS has been illustrated in the degradation of dimethyl phthalate (DMP), a classical organic 

pesticide pollutant, in wastewater. Besides, the catalyst could be easily reused in catalytic 

degradation reactions for 5 cycles with an insignificant loss in catalytic performance.
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2.1.2.3. Removal of heavy metal ions.: As aforementioned, there has been a growing 

ecological and global public health concern associated with wastewater contamination by 

heavy metals. Heavy metals represent any naturally occurring element that has a high 

atomic weight or a high density (5 times higher than that of water) and are toxic/hazardous 

even at very low concentration (Huang, Liu, Zhang, Wu, & Tang, 2017; Sajjadi et al., 

2019; Varghese, Paul, & Latha, 2019; Yadav & Xu, 2013); numerous heavy metals are 

summarized in Table S1. One of the common heavy metals is chromium [Cr(VI)] that finds 

diverse applications in leather tanning, pigment production, stainless steel manufacturing, 

and is detrimental to the human health. Simultaneous exposure to several heavy metals 

can generate a toxic effect, which is either additive/synergistic or antagonistic. Yu, Tong, 

Ge, Wu et al. (2013) and Yu, Tong, Ge, Zuo et al. (2013) reported that applying succinic 

acid groups onto CNCs considerably accelerated the binding efficiency to Pb2+ and Cd2+ 

in water; transformation of the carboxylic acid groups to sodiated carboxylates improved 

their ability to eliminate toxic metal ions from solutions. Researchers have established the 

capability of COO-amended CNFs to sorb Ni2+, Cd2+, Pb2+ and Cr3+, with competences 

3–10 % greater than original CNFs (Srivastava, Kardam, & Raj, 2012). Besides, the catalyst 

could be easily separated and reused for 5 times. On the other hand, cysteine usage offered 

appended thiol functionalities to effectively bind Cr(VI) and Pb(II) (Yang et al., 2014). The 

amine group mobilization on the surface of CNCs enabled more than 98 % elimination of 

anionic chromate comprising Cr6+ in the concentration range of 12.5 mg g−1 (Singh, Arora, 

Sinha, & Srivastava, 2014). Moreover, the catalyst could be recycled and reused at least five 

times without any noticeable decrease in catalytic activity.

Bacterial cellulose (BC) possesses numerous advantages such as high purity and 

crystallinity, favorable biocompatibility, low density, high porosity, durable mechanical 

properties, high absorption capacity, low-cost, and three dimensional interconnected 

structures with ultrafine nanofibers (Brandes, Carminatti, Mikowski, Al-Qureshi, & 

Recouvreux, 2017; Campano, Balea, Blanco, & Negro, 2016; Chawla, Bajaj, Survase, 

& Singhal, 2009; Qiu & Netravali, 2014; Shao, Liu, Liu, Wang, & Zhang, 2015). The 

high crystallinity of BC endows it with excellent physico-chemical stabilities (Fang, Zhou, 

Deng, Zheng, & Liu, 2016), and its hydrophilicity originating from its abundant hydroxyl 

groups makes it suitable catalyst support for deployment in water bodies (Costa, Gonçalves, 

Zaguete, Mazon, & Nogueira, 2013; Thiruvengadam & Vitta, 2013). Bacterial nanocellulose 

(BNC) is another family member of natural biopolymers and renewable raw materials, 

similar to nanoscale forms of cellulose, i.e. CNCs and CNFs that display tremendous 

potential for environmental and water treatment as highlighted recently (Mahfoudhi & 

Boufi, 2017; Voisin, Bergström, Liu, & Mathew, 2017; Wang, 2019). For the water 

purification application, Ma, Lou, Chen, Shi, and Xu (2019) reported a BC@zeolitic 

imidazolate framework-8 (ZIF-8) composite aerogel with low density below (<0.03 g 

cm−3), large surface area, and hierarchical porosity, which displayed prominent heavy metal 

adsorption performance and recyclability superior to original ZIF-8 NPs (1.2 times).

Magnetite NPs have been simply incorporated into the cellulose nanomaterial structure for 

their controlled retrieval through magnetic separation (Zhou, Wu, Lei, & Negulescu, 2014; 

Zhou, Fu, Zhang, Zhan, & Levit, 2014). Zhu et al. (2011) prepared CNFs encompassing 
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magnetite NPs trapped inside the fibers via the growth media of CNFs making bacteria 

during their generation; a low energy pathway for altering cellulose nanomaterials is a major 

advantage although extended time for growth and up-scaling challenges may hamper the 

commercialization process. Bacteria-originated CNFs has been applied for removing the 

heavy metals (e.g. Pb2+, Mn2+, and Cr3+) and the fabricated catalyst could be recovered and 

reused for three cycles without noticeable drop in catalytic activity.

2.1.2.4. Removal of dyes.: Organic dyes are complex organic pollutants exemplified by 

cationic, anionic and/or nonionic properties that originate from several industrial sources 

e.g. textile, printing, pulp and paper, rubber leather tanning and cosmetic industries for 

coloring various products; toxic pigments and dyes are notable environmental afflictions 

in various parts of the world that need to be eliminated (Crini, 2006; Nasrollahzadeh, 

Sajjadi, Maham, Sajadi, & Barzinjy, 2018; Rafatullah, Sulaiman, Hashim, & Ahmad, 

2010). It has been estimated that ~1.6 million tons of toxic dyes are generated each 

year and ~10–15% of aforesaid volume is released as wastewater. Various cationic dyes 

are eliminated deploying CNCs and CNFs modified with anionic moieties as adsorbent 

materials or catalysts. Carboxylation of cellulose-based nanomaterials is one of the 

most investigated procedures for enhancing their sorption capacity. He et al. (2013) 

investigated the adsorption characteristics of carboxylated nanocelluloses fabricated via 
a single-extraction step hydrolysis process. Carboxylated or COO-modified CNCs are 

prepared through an ammonium persulfate (APS) hydrolysis of microcrystalline cellulose, in 

which carboxyl groups could be introduced on their surface during the cellulose hydrolysis. 

Adsorption studies conducted for a cationic dye e.g. methylene blue (MB) confirmed that 

the carboxylate groups bind to positively charged dyes; the adsorption capacity of MB onto 

CNCs approached a balance (0.32 mmol g−1) at 22 °C after 10 min. The MB desorption 

from CNCs by ethanol was vastly efficient with more than 90 % dye removal up to seven 

desorption cycles. Similarly, Yu, Zhang, Lu, and Yao (2016) described a facile and single-

step method to prepare carboxylated CNCs by deploying HCl/citric acid hydrolysis of the 

microcrystalline cellulose which has been utilized for the adsorption of MB; nearly complete 

UV degradation of methyl blue by the COO-modified CNCs, was observed after 4 h, and 

with an increased rate compared to other types of CNCs prepared using acids like sulfuric 

acid and formic acid. This result is attributed to the surface modification of carboxylated 

CNCs wherein additional carboxyl groups could effectively serve as a binding site for the 

dyes.

Zhou et al. prepared porous hydrolyzed polyacrylamide (HPAM)/CNC nanocomposite 

hydrogels via facile thermal treatment, and studied their activities for MB dye adsorption 

in aqueous solutions (Zhou, Wu et al., 2014); synergy between CNCs and HPAM can 

effectively increase the removal of toxic MB via the improvement in swelling properties 

wherein enhanced adsorption capacity for toxic dye can be attained by increasing CNCs 

content (~20 wt.%), raising HPAM and decreasing the pH of the prepared solution. 

Generally, porosity and the availability of the hydroxyl groups on surfaces of CNCs and/or 

CNFs can provide an outstanding mechanical template and support for nanocatalysts, thus 

ensuring good dispersion of NPs and stability of nanocatalysts (Mohammed et al., 2018; Xu, 

Nasrollahzadeh, Sajjadi et al., 2019; Zeng, Liu, Cai, & Zhang, 2010).
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In another study, the fabrication of a novel CoPc@BC by covalent immobilization and 

decoration of amino cobalt phthalocyanine (CoPc) onto BC nanofibers has been described 

(Chen & Huang, 2015); ensuing nanocatalyst could be successfully deployed in the ≥90 

% destruction of Rhodamine B (RhB) dye in water/wastewater using H2O2 as an oxidant 

within 3 h. An effective approach was disclosed by Yang et al. (2011) for growing 

cadmium sulfide NPs and stabilizing them through coordination effects with the bacterial 

CNFs via hydrothermal reaction; CdS/BCNFs hybrid composites were affirmed as robust 

recoverable photocatalysts for the 82 % MO degradation after 90 min exposure to visible 

light irradiation. The nanocomposite could be reused 5 times with no remarkable decrease 

of catalytic activity/efficiency. In another development, Zhang, Yu et al. (2018) and 

Zhang, Hou et al. (2018) prepared BC@TiO2 nanocomposite by immersing well-preserved 

3D interconnected porous BC blocks into a solution of titanium source that exhibited 

tremendous potential as MO adsorbent. Furthermore, a novel class of robust and highly 

scalable polydopamine (PDA)/BNC hybrid membrane has been prepared by Derami et 

al. (2019) which could be effectively used for the adsorptive removal of organic dyes 

(rhodamine 6 G, MB, and MO) from contaminated water.; the membrane catalyst was 

separated and reused 10 times with no detectable decrease of the catalytic performance.

After the capture of toxic pollutants, the ability to isolate and separate them from the 

nanosorbent or nanocatalyst and especially the reuse of such nanomaterials are some key 

issues in producing and designing sustainable treatment systems. The development of 

novel and recoverable CNCs is of paramount importance in numerous research areas such 

as remediation of toxic pollutants via adsorption and degradation process, however, the 

recovery of nanosorbents (or nanocatalysts) can limit their practical utilization on large-scale 

remediation processes. One of the straightforward procedures for the fabrication of reusable 

adsorbents is the incorporation of pristine nanocellulose (CNCs and/or CNFs) into various 

nanocomposite hydrogels or polymers that can be easily recycled using sieves, filtration, 

and magnets, etc. These materials could also be packed within columns and applied in 

wastewater remediation operations. In this context, a novel class of recoverable microgel 

comprising pristine CNCs and amphoteric poly(vinyl amine) (PVAm) has been reported by 

Jin and co-workers (Jin, Sun, Xu, & Xu, 2015), which can be utilized for the adsorptive 

removal of anionic dyes. The protonation of amine functionalities on the microgel particle’s 

surface organized positively charged microgels under an acidic pH medium wherein the 

electrostatic attraction among negatively charged sulfate groups and protonated amine 

promote the adsorption of anionic dyes into/onto microgels surface.

Besides, active NPs for photocatalytic destruction of pollutants has been introduced by 

placing TiO2 particles on CNFs via controlled surface hydrolysis strategy (Sun, Yang, & 

Wang, 2010); significant ultra violet degradation of methyl orange (MO) could be detected 

within 20 min, that was 20 % faster compared to the rate attained with TiO2 alone. Likewise, 

Snyder, Bo, Moon, Rochet, and Stanciu (2013) fabricated hybrid gold/TiO2- and silver/

TiO2-cellulose CNF composites which eliminated MB ~75 % and 70 %, respectively, after 

one hour via photocatalytic degradation and adsorption. Notably, the mechanical strength of 

the CNF films can be augmented by addition of metallic NPs thus rendering them recyclable 

and imparting them additional durability.
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A variety of cellulose-based nanosorbents deployed for the elimination of dyes and heavy 

metals are presented in Table 2.

2.1.2.5. Removal of other pollutants.: Non-biodegradable nitrophenols are extremely 

hazardous, and carcinogenic and are responsible for several ailments in humans; their 

removal from water/wastewater is of utmost importance. They have numerous applications 

in diverse industries e.g. synthesis of anilines as a crucial feedstock to produce 

pharmaceuticals, dyes, explosives, resins, agrochemicals and synthetic polymers, among 

others (Crini, 2006; Nasrollahzadeh, Sajjadi, Dasmeh et al., 2018; Rafatullah et al., 2010) 

and are on the list of regulated materials. Shi et al. synthesized CNCs-supported gold NPs 

with a quick swelling rate and superior catalytic prowess to catalyze the aqueous sodium 

borohydride (NaBH4)-mediated reduction of pollutant, 4-nitrophenol (4-NP) (Scheme S1) 

with turnover frequency value and maximum rate constant of 641 h−1 and 0.0147 s−1, 

respectively (Yan et al., 2016); synthesis was accomplished via electrospinning and thermal 

treatment of polyethylene glycol, CNCs and HAuCl4 at 80 °C for 60 min wherein CNCs and 

polyethylene glycol act as support and reductant, respectively.

Additionally, cellulosic nanomaterials can be applied for the passive nanoremediation of 

reactive NPs where they act as scaffolds or particle-stabilizers. These NPs are often altered 

by using polymers to prevent aggregation; though, these surface-bound stabilizers cover 

the surface of reactive particle and may hinder the degradation and sorption of targeted 

materials (Yu, Tong, Ge, Zuo et al., 2013). Nata, Sureshkumar, and Lee (2011) reported 

one-pot simple solvothermal approach by incorporating the aminated iron oxide particles in 

bacterial cellulose nanofibers (BCNFs) for the remediation of arsenic; hardy CNF template 

prohibited the aggregation of particles and simplified the amine modification of magnetite 

particles. Therefore, ensuing materials demonstrated extremely superior arsenic elimination 

capacity (36.49 mg g−1) than the bare iron oxide-based adsorbents and the nanocomposite 

could be reused 5 times with a minimal catalytic activity impairment. In one of the studies, 

Ma, Hsiao, and Chu (2012) demonstrated the capability of CNFs for eliminating radioactive 

uranyl ions (UO2
2 + ) from solutions; UO2

2 +  ions coordinated to the carboxylate groups of 

TEMPO-oxidized CNFs removed more than 167 mg/g, which was 2–3 times more than 

traditional adsorbents including hydrogels, montmorillonite, silica and polymer particles.

Polyethylene glycol (PEG) modified CNCs composites have been prepared for adsorbing 

pharmaceutical compounds, including sulfa-methoxazole, acetaminophen, and N,N-diethyl-

meta-toluamide (DEET) in aqueous media. Such cellulose-based nanocomposite can be 

applied for eliminating the hydrophobic drugs from water; PEG-functionalized CNCs 

could facilitate the interaction between the cellulose nano-crystals and drugs. Such 

composite have been prepared via carboxylation of CNCs surface via 2,2,6,6-tetramethyl-1-

piperidinyloxy oxidation, tailed by covalent appendage of hydrophilic polyether diamine of 

molecular weight of 600 g mol−1 using sodium salt of N-(3-dimethylaminopropyl)-N′-ethyl-

carbodiimide/N-hydroxysulfosuccinimide (Herrera-Morales et al., 2017).
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2.2. Chitin/chitosan-based nanomaterials

2.2.1. Chemistry and properties—After cellulose, chitin and chitosan are the next 

most abundant bio-polymers in nature. Chitosan is a renewable and biodegradable 

carbohydrate and is essentially, N-deacetylated chitin, the main constituent of insect cuticles 

and crustaceous shells, built up from linear aminopolysaccharide of glucosamine (Fig. 3). 

Bioconversion of chitin into chitosan via enzymatic N-deacetylation could be achieved 

with chitindeacetylase. The hydrophilic functional groups, including hydroxyl and amino 

groups, present in chitosan cannot change its hydrophobic nature enough to allow its use 

for adsorption and modification (Wang & Zhuang, 2017). In general, chitin/chitosan as a 

biogenic raw material is of specific significance because of its abundance, high adsorption 

capacity and ease of modification; chitosan has been deployed in biocatalysis, wastewater 

treatment, drug/gene delivery, agricultural/industrial use, and cell/enzyme immobilization 

(Bagheri, Roostaie, & Baktash, 2014; Dotto & Pinto, 2017; Rangel-Mendez, Monroy-

Zepeda, Leyva-Ramos, Diaz-Flores, & Shirai, 2009; Xu, Nasrollahzadeh, Sajjadi et al., 

2019).

Chitosan-based nanomaterials have garnered significant interest as they are utilized as 

nanosorbents and nanocatalysts because of their distinctive physicochemical properties 

(Fig. 4). The presence of N-acetamido functionality is responsible for the formation of 

various inter/intra-molecular hydrogen bond between linear structures of chitin. Indeed, 

the extended hydrogen bonded chitin chains does limit their solubility in solvents, and 

therefore, their processing and novel appliances have been under scrutiny for the preparation 

of sustainable nanomaterials. Their application as eco-friendly, low-cost, sustainable and 

renewable resources for the synthesis of chitin/chitosan-based nanocatalysts and for the 

assembly of potable and safe water systems are under rigorous investigation (Crini, Morin-

Crini, Fatin-Rouge, Deon, & Fievet, 2017; Krajewska, 2001; Xu, Nasrollahzadeh, Sajjadi et 

al., 2019).

2.2.2. Applications for water treatment

2.2.2.1. Removal of heavy metal ions.: Coagulation and flocculation of ionic substances 

and charged particles in wastewater has efficiently been performed with the aid of natural 

polymers, while diminishing the dependability on synthetic polyelectrolytes (Zemmouri, 

Drouiche, Sayeh, Lounici, & Mameri, 2013). Chitin, chitosan and their derived molecules 

have been exploited as natural and eco-friendly coagulants/flocculants to eliminate various 

charged particles such as dyes and metal ions from wastewater (Kanmani et al., 2017; 

Sami, Khalid, Iqbal, Afzal, & Shakoori, 2017). Chitosan and its derivatives present a 

cationic character in acidic media that facilitates their dissolution and enable ion-exchange 

interactions or electrostatic attraction with various anionic characters, while, the non-

protonated amino groups in neutral media expedite complexation of metal ions and 

organic molecules. Polyvinyl alcohol-chitosan and PEG-chitosan composites have been 

investigated by Rajeswari et al. (2016) to remove aqueous nitrate ions with a adsorption 

capacity of > 35.03 and 50.68 mg g−1, respectively, while the preparation of carboxymethyl 

chitosan (Borsagli, Mansur, Chagas, Oliveira, & Mansur, 2015) and goethite/chitosan nano-

composites (goethite NPs 10~60 nm) (Rahimi, Moattari, Rajabi, & Derakhshan, 2015) were 

selective towards the complexation of Cd2+/Cr6+ and Pb2+, respectively. Wang, Chen, Yuan, 
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Sheng, and Yu (2009) reported a highly water-soluble chitosan-based flocculant by grafting 

it with (2-methacryloyloxyethyl) trimethyl ammonium chloride (grafting percentage >236.4 

%) for the treatment of pulp mill waste-water; as-prepared flocculant revealed a more 

notable flocculation capacity and performance than that of polyacrylamide.

Considerable endeavors have been explored to ameliorate the experimental processes 

towards capacitive deionization (CDI) using a diversity of conducting polymers (e.g. 

polypyrrole) in view of their ion-exchange property and doped process (Abdi, Nasiri, 

Mesbahi, & Khani, 2017; Fang, Jiang, Luo, & Geng, 2018). Besides, the synergistic effect 

of polypyrrole and chitin/chitosan was described to improve the stability of polypyrrole 

material because of its −COOH and –NH2 (Huang et al., 2013). For example, Zhang, Xue, 

Li, Dai, and Zhang (2019) reported a polypyrrole(PPy)/CS/CNT nanoelectrode (34.57 nm) 

with various mass ratios of PPy and CS via in-situ polymerization for the adsorption of 

copper ion from water/wastewater by CDI process (Fig. S1); high adsorption competence 

of 16.83 mg g−1 for the Cu2+ removal was attained by this nanocomposite. The result of 

100 cycles CV test shows that the specific capacitance of PPy/CS/CNT composite electrode 

decreased 13.1 % after 100 cycles, but only 3.4 % after the last 50 cycles, which indicated 

that this composite electrode has a good stability after 50 cycles.

The stabilization of various NPs has been achieved via their impregnation on organic 

renewable supports by preparation of nano-composite as shown by Chen, Cao, Quinlan, 

Berry, and Tam (2015) where the amino functionalization on surface of organic supports 

under mild conditions greatly diminished the agglomeration of metal/metal oxide NPs. 

The adsorption capacity of chitin/chitosan-supported NPs as nanocatalysts or nanosorbents 

could be further improved by a fusion of NPs and natural polymers culminating in 

promising natural polymer-based nanocomposites (Qiu, Ma, & Hu, 2014). Low-cost 

natural polymers, such as chitin/chitosan, has largely been applied as highly effective 

catalytic support in the heterogeneous catalysis field owing to its inherent functional 

groups (Murugadoss & Chattopadhyay, 2007; Wang, Zhu et al., 2017); reactive amino 

group-bearing chitosan has become an ideal support compared to other biopolymers. 

Environmental applications of bio(nano)composites of chitin/chitosan formed by combining 

them with diverse nanostructures, namely iron oxide (Fe3O4), titanium dioxide (TiO2), etc. 

have recently been reported (Anaya-Esparza et al., 2020; Li, Xiao, & Qin, 2010). For 

example, a novel nano-TiO2-enabled CS beads crosslinked with copper were prepared that 

could achieve the (photo)oxidation of toxic arsenite (As(III)) to a less-toxic and more easily 

adsorbed arsenate (As(V)) in UV light as well as the selective adsorption of As(III) and 

As(V) in presence of phosphate (Pincus, Melnikov, Yamani, & Zimmerman, 2018), which 

serves as a strong adsorption competitor and inhibitor of As removal in such protocols.

2.2.2.2. Removal of dyes.: Chitosan-based nanomaterials have been examined to adsorb 

or remove dye molecules wherein hydroxyl groups are effectively exploited in the dye 

adsorption, while the amine groups profoundly remain as a most active group and 

influences other biopolymer activities. Gibbs, Tobin, and Guibal (2003) have shown that 

by diminishing the acetylation degree of chitosan increases the relative proportions of amine 

groups available for protonation, thus favoring the adsorption of dyes like Acid Green 25. 

However, the alteration in these adsorption features is not proportional to the deacetylation 
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or acetylation degree, but it varies with the nature of dyes (Saha, Ichikawa, & Fukumori, 

2006) and also the repartitioning of acetyl groups in the macromolecular chains (Rinaudo, 

2006), depending largely on the preparative process. Gopi and co-workers have reported the 

efficient wastewater treatment by using multifunctional bio-hybrid aerogels based on CNFs 

decorated with chitin nanocrystal (CNC) (Fig. S2a) (Gopi et al., 2017). A rare semi-square 

CNCs (20–100 nm) and wire-like CNFs (60–120 nm) were initially extracted from shrimp 

shells and corn husks, respectively (Fig. S2b). Hybrid bio-aerogels (neat AR, AR1 or AR2) 

were prepared with varying percentages of CNCs (0, 1% or 2%) and decorated on the CNFs 

via an eco-friendly freeze-drying procedure. This mixture comprised CNFs aqueous solution 

with well-dispersed CNCs that was frozen at about −70 °C in the dry ice-isopropanol and 

finally freeze dried at −88 °C under vacuum for at least 4 days. The higher amount of 

CNCs can lead to better alignment, organization and morphology of nanofibers in AR2, and 

higher crystallinity, in addition, the nanofibers orientation of AR2 mimicked the multilayer 

maple seed structure (Fig. S2b). The AR2 aerogel showed considerable adsorption capability 

for the remediation of dyes (MB and rhodamine 6 G) from aqueous solutions (Fig. S2c); 

the electrostatic interactions among positively charged dyes and negatively charged CNCs 

decorated AR2 with acetamide-enriched groups favored the dye adsorption. Besides, the 

hybrid bio-aerogels could be reused 5 times with no noticeable loss in activity/efficiency.

Marrakchi, Khanday, Asif, and Hameed (2016) developed a reinforced chitosan with 

sepiolite as an additive and epichlorohydrin as a crosslinker to fabricate crosslinked 

chitosan/sepiolite composites for the removal of reactive orange 16 and MB from aqueous 

solutions; attained maximum adsorption capacity of modified chitosan for MB and reactive 

orange 16, being 40.99 mg g−1 and 190.97 mg g−1, respectively, at initial dye concentration 

of 100 mg L−1 and adsorbent dosage of 1 g L−1 at 30 °C for 30 h. The adsorption processes 

were best explained using pseudo-second-order kinetics and Freundlich model that provided 

a finer explanation of the adsorption process for both the organic dyes. The functioning 

of this crosslinked chitosan composite was superior to what has been reported in earlier 

studies (37.04 mg g−1) (Xie, Li, Chi, & Wu, 2013), (11.94 mg g−1) (Yao et al., 2014) and 

(24.690 mg g−1) (Zeng et al., 2015) for the removal of MB. In addition, the elimination 

of Acid Red-2 from textile wastewater by a glutaraldehyde crosslinked magnetic chitosan 

nanocomposite has been investigated (Kadam & Lee, 2015); it could effectively adsorb 91.6 

% textile pollutant, while iron oxide could adsorb only 16.4 %. This improved performance 

of magnetic chitosan nanocomposite in view of the available free amino and hydroxyl 

groups and 96 % pollutant removal with 100 % recovery bodes well for its practical uses.

Moreover, the combination of Fe3O4 and chitin/chitosan can afford fascinating magnetic 

support towards hassle-free separation of nano-catalysts. Chang and Chen (2005) 

designed carboxymethylated chitosan-conjugated magnetic nanosorbents (~13.5 nm) for the 

elimination of anionic dyes from aqueous solutions; excellent adsorption efficiencies were 

attained (1471 and 1883 mg g−1) for acid green 25 and crocein orange G, respectively.

2.2.2.3. Removal of other pollutants.: The adsorption of pesticides onto low-cost 

materials could help effectively remediate contaminated waters; particularly, nanomaterials, 

nanosorbents and polysaccharide-based adsorbents display high performance in eliminating 

pesticides from water bodies as exemplified by chitin and chitosan towards the biosorption 
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of pesticides. Indeed, the presence of hydroxyl groups in chitin/chitosan determined its 

conformation and also the stereochemistry of chemical transformations and kinetics. In 

this respect, chitosan removed more than 90 % of oxadiazon (herbicide) from aqueous 

solutions (Arvand et al., 2009) wherein strong binding of oxadiazon to the chitosan was 

observed (chemisorption). Moreover, 76.2 % of atrazine (herbicide) could be removed 

(with a maximum adsorption capacity of 17.92 mg g−1) from aqueous solutions by chitosan/

modified sepiolite (Liu, Chen, Cui, & Liu, 2015).

Modified chitosan nanomaterial matrixes can be applied for the biosorption of organic/

inorganic contaminants; sustainability of chitosan and its derivatives can be boosted by 

mixing with reinforcement and/or supporting matrixes like crosslinkers and polymers. 

This entails the presence of at least two reactive sites or functional groups in linkers 

to suitably transform the chitosan by producing bridges amongst their polymeric chains 

and/or neighboring molecules (Xing, Ju, Yang, Xu, & Qian, 2013). The used crosslinkers 

for buttressing chitosan namely glutaraldehyde, silicate, tripolyphosphate, starch, polyvinyl 

alcohol and cellulose must enable the flow of organic/inorganic contaminants towards the 

charged particles of the supported chitosan and concomitantly ensuring the physicochemical 

stability of chitosan (Xing et al., 2013). To ensure the adsorption competence close to the 

parent chitosan, the use of various additives like alginate (Nadavala, Swayampakula, Boddu, 

& Abburi, 2009), polyethylenimine, chloroacetic acid and Fe3O4 is deemed necessary. The 

adsorption efficiency depends on numerous factors such as the adsorbent characteristics, 

the degree of crosslinking, crystallinity and the stiffness of the chitosan linkages, and the 

chemistry of pollutant (Alaba et al., 2018). Mi, Shyu, Chen, and Lai (2002) reported a novel 

protocol for the synthesis of bundle-like porous chitosan beads via a phase inversion wet 

process; this chemically modified chitosan could absorb anti-inflammatory drug such as 

indomethacin.

Chitin/chitosan-supported metal/metal oxide NPs have displayed high performances for 

removing pollutants from water/wastewater; indeed, the synergistic effects of chitin/chitosan 

and nanostructures can improve (nano)materials in terms of antimicrobial, UV blocking, and 

magnetic properties. In this context, Mujeeb Rahman et al. (Mujeeb Rahman, Muraleedaran, 

& Mujeeb, 2015) studied the antimicrobial properties of ZnO NP reinforced chitosan 

nanocomposites which could be utilized as photocatalytic and/or natural antimicrobial 

agents; superior antimicrobial activities against gram-negative and gram-positive bacteria (E. 
coli and S. aureus) was observed compared to chitosan itself. Utilizing the well-developed 

preparative procedures for chitin/chitosan-based (nano)materials, multifunctional chitosan/

TiO2 (nano)composite photocatalysts could be easily attained owing to the miscibility 

between CS and hydrophilic TiO2 NPs (Wiaącek, Gozdecka, & Jurak, 2018).

In one study, TiO2 NPs (1% w/v) were embedded in two different matrixes, viz. chitosan 

and polyvinyl alcohol-chitosan blend (PVA-CS), through a precipitation procedure using 

an alkali/solvent medium (Neghi, Kumar, & Burkhalov, 2019) where the nanocomposites/

blends exhibited high metronidazole (MNZ) removal efficiency (76.1 % and 63.7 % in PVA-

CS-TiO2 and CS-TiO2 systems, respectively) from aqueous solutions under UV irradiation 

as compared to the TiO2 NPs suspension alone. As a result, PVA-CS-TiO2 showed enhanced 

stability than CS-TiO2 in an aqueous solution at different pH values and could be reused 
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under UV exposure up to 15 cycles as an effective photocatalyst without significant loss 

of catalytic performance. In a recent study, Shoueir et al. (Shoueir, Kandil, El-hosainy, & 

El-Kemary, 2019) reported an efficient visible-light photocatalyst by stacking a layer of 

nano-structured Au@TiO2 on a chitosan fiber substrate; the as-prepared plasmonic fiber 

displayed catalytic activities in visible light for the degradation of various water pollutants 

(MB, MNZ, and carbofuran (CBN)) and for the Cr(VI) reduction (~98.9 %) in presence 

of citric acid (pH = 1) within 21 min. The plasmonic fiber photocatalyzed the degradation 

of MB within 12 min under visible irradiation using a low catalyst dosage of 1 × 10−3 g 

L−1, with an efficiency of 98.8 %. In the case of MNZ and CBN, the degradation reaction 

times were longer, namely 260 min and 130 min, respectively, which could be improved 

by deploying H2O2 in these systems, when the photocatalytic degradation degree of MNZ 

reached 96 % and 98.3 % for CBN.

Additionally, by designing the core/shell structures, the surface functionalities of the natural 

polymers could be made easily available to metal/metal oxide NPs (Ghosh Chaudhuri 

& Paria, 2012). In this regard, Antony et al. (Antony, Marimuthu, & Murugavel, 2019) 

developed a facile and novel approach for anchoring bimetallic AgNi NPs (20~25 nm) 

on Fe3O4@chitosan core/shell support (Fe3O4@CS_AgNi) as a heterogeneous retrievable 

nanocatalyst (Fig. 5); magnetic nanocomposite has been applied for the rapid and 

nearly quantitative reduction of 4-nitrophenol (4-NP) using NaBH4 within 10 min 

under ambient conditions. Furthermore, the heterogeneous nanocatalyst could be simply 

recovered/separated using an external magnet and reused seven times.

Applications of wide ranging chitin/chitosan-based nanomaterials for the removal of water 

contaminants and toxic pollutants such as various dyes, heavy metals and pharmaceutical 

materials are summarized in Table 3.

2.3. Starch-based (nano)materials

2.3.1. Chemistry and properties—Starch, a natural, abundant, renewable, 

biocompatible and biode gradable biopolymer is present in sundry plants as a reserve 

carbohydrate and is commonly found in many parts of plants such as stalks, roots, and 

crop seeds; main sources being cassava, wheat, rice, maize or corn, and potatoes, among 

others. Starch granules have a 3D architecture with crystallinity in the range of 15–45 % and 

comprise D-glucose units with bio-macromolecules including amylopectin, branched (1→6) 

α-D-glucan, amylose, and linear (1→4)-linked α-D-glucan (Visakh, Mathew, Oksman, & 

Thomas, 2012; Zobel, 1988). Microcrystalline starch, starch nanocrystal, starch crystallite, 

and hydrolyzed starch all embody the crystalline part of the starch generated via hydrolysis 

(Le Corre, Bras, & Dufresne, 2010); modes for preparing crystalline and amorphous starch 

nanostructures with varying morphologies and crystallinities are shown in Fig. S3.

The mixing of fibrous clays with natural polymers is an appealing alternative for 

removing pollutants from water. Biopolymers e.g. guar gum or starch can be combined 

with polyacrylic acid (PAA) and polyacrylamide (PAAm) to develop eco-friendly and 

biodegradability superabsorbents (Li, Liu, & Wang, 2005). Generally, the incorporation of 

clays has boosted water absorption rate and water absorbency of these catalytic systems as 

noted for the starch/g-PAAm and guar gum-g-PAA (Ruiz-Hitzky et al., 2013). For example, 
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the effect of sepiolite modification with cationic starch on the physical properties such as 

increased Young’s modulus of the composites obtained as a reinforced starch film was 

investigated (Chivrac, Pollet, Schmutz, & Avérous, 2010).

Among the naturally occurring polymers, starch polysaccharides; especially starch 

nanocrystals, have been increasingly utilized as ideal supports to afford environmentally 

benign and practical catalyst systems due to their high surface area, high abundance, non-

toxicity, low cost, renewability, and biocompatibility (Ghaderi, Gholinejad, & Firouzabadi, 

2016; Gholinejad, Saadati, Shaybanizadeh, & Pullithadathil, 2016; Herreros-López et al., 

2016). Nanocrystalline starch is ideal for the reinforcement of a biopolymer compared 

to amorphous or amorphous starch (Angellier, Molina-Boisseau, & Dufresne, 2005; 

Jenkins, Cameron, & Donald, 1993). Functionalized natural starches can generally be 

attractive supports for various colloidal metal NP-based catalysts owing to their abundance, 

biocompatibility, and biodegradability.

2.3.2. Applications for water treatment

2.3.2.1. Removal of organic pollutants.: The modified starch had significantly greater 

water binding capacities than native starch and their amylase digestibility decreased as their 

degree of crosslinking increased (Jyothi, Moorthy, & Rajasekharan, 2006); for example, 

epichlorohydrin is the most familiar crosslinking agent that can be utilized for natural 

polysaccharides. Guo, Li, Liu, Meng, and Tang (2013) synthesized a crosslinked porous 

starch by crosslinking corn starch with epichlorohydrin and then hydrolyzing it with α-

amylase, ensuing catalyst could be successfully utilized in MB adsorption from water with a 

maximum adsorption capacity from Langmuir isotherm model being 9.46 mg g−1 at 293 k.

(Photo)catalysts, often deployed for (photo)degradation of environmental contaminants, 

are commonly metal oxide/metal acid salts of n-type semiconductors, including TiO2, 

Fe2O3, ZnO, etc; (Rostami--Vartooni, Nasrollahzadeh, Salavati-Niasari, & Atarod, 2016; 

Wang, Wang et al., 2018; Wang, Li et al., 2018) relatively inexpensive TiO2 NPs have 

been extensively studied as environmentally friendly (photo) nanocatalysts owing to their 

nontoxicity, and stability (Al-Harbi, Kosa, Abd El Maksod, & Hegazy, 2015; Hassan, 

Chen, Liu, Zhu, & Cai, 2014; Rostami-Vartooni et al., 2016). Starch as a biodegradable 

and renewable raw material, offers additional sustainability/stability to the nano-particles 

similar to graphene (Doustkhah & Rostamnia, 2016; Ye, Hao, Liu, Li, & Xu, 2017) and 

carbon nanotubes (Ihsanullah, 2019). The modification of starch can be accomplished easily 

because of its hydroxyl groups which have strong bonding with diverse functional groups 

and are amenable to easy chemical transformation. Guo, Wang, Zheng, and Jiang (2019) 

investigated the photodegradation and adsorption of cationic golden yellow X-GL/cationic 

yellow 28 dye from water/wastewater by TiO2 NPs (~10 nm) loaded onto the crosslinked 

carboxymethyl starch (CCMS) surface (TiO2 NPs/CCMS) as a novel biosorbent by the 

sol-gel technique (Fig. S4); TiO2 NPs/CCMS was reused for four successive cycles.

Negatively charged starch can efficiently adsorb various cationic dyes (Huang, Chang, Lin, 

& Dufresne, 2014; Pourjavadi, Abedin-Moghanaki, & Tavakoli, 2016). In a related study, 

Guo, Wang, Zheng, and Jiang (2019) prepared crosslinked cationic starch from corn starch 

and 3-chloro-2-hydroxypropyl trimethylammonium chloride and epichlorohydrin as cationic 

Nasrollahzadeh et al. Page 17

Carbohydr Polym. Author manuscript; available in PMC 2022 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



etherification and crosslinked agents, respectively. Crosslinked cationic starch was applied 

to eliminate reactive golden yellow SNE dye from aqueous solutions and its maximum 

adsorption capacity was found to be 208.77 mg g−1 at 308.15 K. Besides, Pourjavadi 

et al. (2016) functionalized magnetic crosslinked starch materials with PVA modified by 

chlorosulfonic acid based vinyl acetate copolymerization onto crude starch (sulfation of its 

hydroxyl groups) to generate MNPs@Starch-g-poly(vinyl sulfate) nanocomposite (Fig. 6). It 

can effectively eliminate cationic dyes such as MG and MB from water; excellent adsorption 

capacities of 567 and 621 mg g−1, respectively, were demonstrated and up to 90 % of MB 

and MG dyes could be removed from the solution by the regenerated adsorbent even after 

five cycles of adsorption-desorption.

The utilization of metal/metal oxide NPs on surface of biopolymers for the development of 

easily recoverable magnetic nanocatalysts has led to a dramatic expansion of their potential 

applications; in this regard, a variety of surface modified magnetic NPs with biodegradable 

polymers have been utilized for environmental remediation. Generally, starch nanocrystals 

help conceive more sustainable solutions to current technological challenges. Very recently, 

Sharma, Bhardwaj, Kour, and Paul (2017) fabricated a series of versatile magnetic Pd 

NP catalysts functionalized with starch and amine (Pd NPs@Fe3O4-NH2/Starch); they 

accomplished the reductive amination of nitroarenes in EtOH:H2O at ambient temperature 

with reuse for five successive cycles. Nevertheless, the adsorption capacity of easily 

retrievable magnetic nano-composites/nanosorbents functionalized with crude biopolymers 

is low which could be ameliorated by chemical modification. For instance, magnetic CMS/

poly(vinyl alcohol) hydrogel (mCMS/PVA) was fabricated for MB removal from wastewater 

(Gong, Zhang, Cheng, & Zhou, 2015) and the catalyst was reused for eight successive 

cycles.

2.3.2.2. Removal of inorganic pollutants.: Other researchers (Sekhavat Pour & Ghaemy, 

2015) have studied the adsorption of Cu2+, Pb2+, and Cd2+ contaminants from drinking 

water by versatile magnetic nano-composite hydrogel bead (mCVP) based on PVA/CMS-g-

poly(vinyl imidazole) as is illustrated in Fig. S5. The adsorption capacities of mCVP beads 

for Cu2+, Pb2+, and Cd2+ were found to be 83.6, 65, and 53.2 mg g−1, respectively with 

reuse of nanocomposite for four successive cycles.

Several studies on the documented exploitation of starch-based (nano)materials for handling 

of organic/inorganic contaminants in wastewater has been summarized in Table 4.

2.4. Gum-based (nano)materials

2.4.1. Chemistry and properties—Gums are an outstanding representative of eco-

friendly, green bio-polymers and these natural polysaccharides and their derivatives have 

been used to produce a large number of materials for varied applications. Guar gum 

(GG), a natural water soluble, biodegradable, mucoadhesive, polysaccharide, is obtained 

from the endosperm of guar beans, comprising linear chains of D-mannopyranosyl with D-

galactopyranosyl units. Gum arabic (GA) or acacia gum is a branched heteropolysaccharide 

and a complex exudate of Acacia seyal and Acacia senegal trees composed of D-

galactopyranosyl units and is one of the oldest amongst all known gums with broad 
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applications in pharmaceutical and food industries (Padil, Senan, & Černík, 2019; Patel 

& Goyal, 2015; Yadav, Igartuburu, Yan, & Nothnagel, 2007).

GG and GA have been extensively used as a binder, ion exchange resin and dispersing 

agent, thickening agent due to their good capability to alter rheological properties (Iqbal & 

Hussain, 2013; Miao et al., 2018; Patel & Goyal, 2015; Soumya, Ghosh, & Abraham, 2010). 

They have also been applied for stabilization or the reduction of nanomaterials and ordained 

to effectively stabilize magnetic NPs (Kattumuri et al., 2007; Padil, Wacławek, Černík, & 

Varma, 2018; Williams, Gold, Holoman, Ehrman, & Wilson, 2006) besides being used as 

additive, emulsifying and reducing agent, and potential stabilizer in preparation of various 

nanocatalysts (Devi et al., 2011; Padil et al., 2018), and as biosorbent in various applications 

(Fig. 7) (Sharma et al., 2018).

One of the straightforward biological methods for the assembly of inorganic materials 

is the biomimetic synthesis of various metal NPs on the surfaces of branched natural 

polysaccharides which serve as reducing, supporting, additive, emulsifying, and stabilizing 

agents; metal NPs have been stabilized on gum acacia (Chasteen & Harrison, 1999; 

Devi et al., 2011; Xie, Lee, Wang, & Ting, 2007). Along this theme, Supriya, Srinivas, 

Chowdeswari, Naidu, and Sreedhar (2018) have reported a series of Pd-based nanomaterials 

supported on modified ZnO/TiO2 NPs built by gum acacia (GA) support (GA-Pd/ZnO 

and GA-Pd/TiO2), and evaluated their catalytic prowess in the selective hydrogenation of 

highly toxic nitroarenes under very mild conditions. The remarkable activity of as prepared 

nanocomposite ensued from inherently biocompatible and nontoxic properties of GA, which 

could be applied as a modifier of crystal growth, stabilizer, and reductant in the preparation 

of nanostructures. The nanocomposite was reused for five successive cycles.

2.4.2. Applications for water treatment

2.4.2.1. Removal of heavy metals.: Gum kondagogu (GK) is a natural, partially 

acetylated, harmless polymer and in view of its various functional groups, the native gum 

itself could be deployed as a potential biosorbent for elimination of toxic metal pollutants 

(Vinod, Sashidhar, & Sreedhar, 2010; Vinod, Sashidhar, & Sukumar, 2010; Vinod et al., 

2009). In this context, Saravanan et al. (Saravanan, Vinod, Sreedhar, & Sashidhar, 2012) 

described a magnetic nanosorbent by surface modification of Fe3O4 NPs (8~15 nm) with 

gum kondagogu (GK) for the adsorption/removal of highly toxic metal cations from water. 

The removal efficiencies of the GK grafted magnetic NPs (GK-MNPs) as a magnetic 

nanosorbent was investigated for the removal of diverse toxic metals namely Cd2+, Cu2+, 

Zn2+, Ni2+, Hg2+ and Pb2+; a lowest of 35.07 mg g−1 and a highest of 106.8 mg g−1 

adsorption competences were reported for the Hg2+ and Cd2+ cations, respectively.

In another work, a novel class of easily retrievable magnetic Fe3O4 nanocomposite 

comprising poly(methyl methacrylate) and Tragacanth gum [P(MMA)-g-TG-MNs] were 

reported by Sadeghi, Rad, and Moghaddam (2014), for highly selective elimination of Cr6+ 

from waste-water in presence of Cr(III). Notably, the excellent selectivity of the nanosorbent 

for Cr6+ ions in presence of Cr3+ (at pH 5.5), lower adsorbent dosage (3 g L−1), high 

percent removal (~95 %), and ease of separation from solution, make this nanosorbent more 
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effective and valuable compared to others (Hu, Chen, & Lo, 2005; Singh, Kumari, Pandey, 

& Narayan, 2009).

2.4.2.2. Removal of dyes.: One of the most premier adsorbents, 3D hydrogels, are suitable 

for the treatment of complex wastewater owing to their excellent concentration or adsorption 

capacities and high (photo)catalytic degradation. The 3D biopolymer-based hydrogels 

could be prepared from natural GG through self-assembly or using a cross-linking agent. 

Recently, GG based hydrogel nanocomposites have displayed potential in drug delivery, 

biosorption and separation owing to their intrinsic superior properties e.g. biocompatibility, 

biodegrad-ability, high active-site availabilities, large surface areas, and low-mass transfer 

limitations (Dai, Liu, Hu, & Si, 2017; Sharma, Kalia et al., 2015). Duan et al. (2020) 

prepared a versatile 3D hybrid nanocomposite hydrogel based on MIL-100(Fe) and Ag NPs 

via simple blending and self-crosslinking, and studied the activities of the resulting Ag 

NPs@MIL-100(Fe)/GG hybrid hydrogels in adsorption/(photo)catalytic degradation of dye 

pollutants, antibacterial property, and oily waste-water purification (Fig. 8).

Other documented studies on the use of gum-derived (nano)materials for the removal of 

heavy metals/dyes are summarized in Table 5.

2.5. Alginate-based (nano)materials

Among the low cost biomaterials, alginates are useful linear block copolymers comprising 

two uronic acid residues, e.g. β-D-mannuronic and α-L-guluronic acid linked by β−1,4-

glycosidic bonds. This biopolymer has been extensively utilized in wastewater remediation 

due to its stability, high water permeability, biodegradability, and nontoxic nature (Ahmed, 

Moustafa, El-Masry, & Hassan, 2014; Xu, Nasrollahzadeh, Sajjadi et al., 2019) for the 

adsorption of contaminants, particularly, heavy metal cations (An, Lee, Lee, Lee, & Choi, 

2015; Idris, Ismail, Hassan, Misran, & Ngomsik, 2012; Kuang et al., 2015; Li et al., 2013).

Alginate-based adsorbents have recently garnered attention as they could form stable 

biohydrogel beads and can be applied as a catalytic support material with numerous benefits, 

e.g. high surface area, network structure, and their rich surface functionalities (Li, Mo 

et al., 2016; Wang, Vincent, Roux, Faur, & Guibal, 2017). For example, mesoporous 

calcium-alginate/titania hybrid beads were prepared as a biosorbent for treating aqueous 

solutions comprising Cr6+, Co2+, Cr3+, Cd2+, and Cu2+ ions (Wu, Wei, & Zhang, 2012); 

adsorption capacity of 8.4 mg g−1 for Cr6+was reported with reusable capacity for six 

successive cycles. Besides, Gupta et al. (Gupta et al., 2014) fabricated bimetallic and 

core/shell Fe@Ag NPs (15~20 nm) involving modified aminothiophenol-calcium alginate 

(Fe@Ag-ATP-CA) beads for the reduction of 2-NP and 4-NP in wastewater using NaBH4. A 

heterogeneous core/shell Fe3O4@alginate-Fe magnetic nanocomposite has been fabricated, 

via an oxidation-precipitation technique, for the degradation of bisphenol A from aqueous 

media in the catalytic ozonation (Ahmadi, Rahmani, Takdastan, Jaafarzadeh, & Mostoufi, 

2016); degradation or mineralization of bisphenol A is influenced by concentration of 

pollutant (10 ppm)/H2O2 (30 mmol L−1)/nanocatalyst (0.7 g L−1), and O3 dosage (0.1 g 

h−1).
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In addition to alginate-derived biohydrogel beads, carbon beads can provide an outstanding 

catalytic support, ensuring good dispersion of NPs and stability of nanocatalysts, and thus 

attracted interest due to their elevated porosity, large surface area, excellent mechanical 

stability, and adjustable surface chemistry (Teng, Wu, Fan, Zhang, & Zhao, 2015). Zheng 

et al. (2016) presented the fabrication of a novel alginate-obtained carbon beads (Alg/CB) 

with an advanced nano-network via a facile combinational carbothermal reduction and 

acid treatment of Ca2+ gelled sodium alginate biohydrogel beads (Fig. S6); they were 

successfully used/reused in the decoloration and removal of Cr6+ from wastewater in six 

successive runs.

One interesting property of alginate-based biosorbents is their selective cationic interactions 

with multivalent ions such as Ca2+, Fe3+, Ba2+, Ag+, Al3+, etc. to transform them 

into macromolecular hydrogels, creating a 3D network structure (Cheng, Luo, Payne, 

& Rubloff, 2012; Topuz, Henke, Richtering, & Groll, 2012; Yang et al., 2013). In this 

context, Yang et al. (2013) successfully used a variety of multivalent cations to prepare a 

crosslinked alginate/polyacrylamide hydrogel, thereby, improving the mechanical features 

of the biopolyanionic network. Furthermore, Ai et al. (2012) fabricated Ag NPs in situ 
grown on a magnetic alginate/magnetite hybrid (Ag@AMH) biohydrogel via an eco-friendly 

light-driven technique (Fig. S7). Ag+ ions could be simply fixed and uniformly dispersed 

onto the AMH biohydrogel, thereby ensuring the next in situ photochemical preparation of 

Ag NPs (~72 nm) with good distribution; ensuing bio-hydrogel efficiently accomplished the 

catalytic reduction of toxic 4-NP in aqueous solutions and the catalyst could be reused for 

successive three cycles.

As mentioned earlier in Section 3.3, the integration or surface modification of fibrous 

clay with starch, guar gum or alginate has boosted water absorbency or water absorption 

rate of the catalytic systems. Along this theme, Olad and Farshi Azhar (2014) reported 

a facile method to synthesize an effective alginate/montmorillonite/polyaniline (Alg/MMT/

PANI) hybrid nanocomposite by a chemical oxidative polymerization for the removal of 

Cr6+. Additionally, Ahmad and Mirza (2015) synthesized Meth-bent/Alg nano-composite by 

integrating methionine-modified bentonite onto sodium alginate that lead to the enhanced 

performance of the as prepared nanosorbent; biosorption capacities of 217.39 and 30.86 mg 

g−1 for Cd2+ and Pb2+, respectively, was discerned. This nanocomposite could be reused for 

five successive cycles.

The related works on the application of alginate-based (nano)materials in the wastewater 

remediation are summarized in Table 6.

2.6. Pectin-based (nano)materials

Pectin, as biocompatible, flexible, nontoxic, high-molecular weight and anionic naturally 

occurring polysaccharide, is extractable from the higher plant cell walls. Pectin is a linear 

polysaccharide as most plants contain it in intercellular layer between primary cell walls 

of adjoining cells. In recent years, pectin as a class of complex polysaccharides has gained 

increasing importance with applications in pharmaceutical, biotechnology and a number 

of other industries. Similar to most other polysaccharides, pectin’s composition differs 

with source and conditions deployed during isolation (Mualikrishna & Tharanathan, 1994; 
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Ridley, O’Neill, & Mohnen, 2001). Pectin mainly consists of D-galacturonic acid molecules 

that are joined in chains by α-(1–4) glycosidic linkage in which a number of carboxyl/

hydroxyl groups are distributed along backbone, in addition to a certain amount of neutral 

sugars present as side chains (Mukhiddinov, Khalikov, Abdusamiev, & Avloev, 2000; Sundar 

Raj, Rubila, Jayabalan, & Ranganathan, 2012). Some of the carboxyl groups are naturally 

occurring as methyl esters while others can be treated with ammonia to prepare carboxamide 

groups; these functional groups can form complexes with metal ions in solution and reduce 

them to metal NPs without using any toxic reducing/stabilizing agents.

One of the simplest greener methods for the preparation of naturally recoverable Pd 

nanocatalysts is the direct immobilization of Pd NPs on the surface of carbohydrate-

based materials; in this regard, Pd NPs were stabilized on polysaccharides such as Pd/

starch, Pd/gelatin and Pd/chitosan (Balanta, Godard, & Claver, 2011; Budarin, Clark, 

Luque, Macquarrie, & White, 2008; Primo, Liebel, & Quignard, 2009; Sun et al., 

2005). Hybrid organic/inorganic nanocomposites are of tremendous interest owing to their 

multifunctionality via combined incorporation of diverse compounds. Fe-pectin (Rakhshaee 

& Panahandeh, 2011), Fe°-PO-CHA (pectin derived orange skin-carboxylic acid) and 

Fe°-PO-IPA (isopropylglutaricacid) (Rakhshaee, 2011), FeNPs/Fe3O4NPs-CPA (crosslinked 

pectin adipic acid) (Rakhshaee, 2014), Fe3O4-pectin and Fe3O4-humic acid nanocomposites 

(Liu, Zhao, & Jiang, 2008) have been used for the adsorptional elimination of heavy metals 

and/or dyes. The combination of unique properties of NPs and carbohydrate-based materials 

leads to a novel nanomaterial with high mechanical/thermal stability, large surface area 

and sorption properties. Baran (2018) prepared Pd NPs (34~54 nm) immobilized on the 

natural agar/pectin composite (PdNPs@APC) and evaluated their catalytic abilities in the 

reduction of o-nitroaniline reduction using aqueous NaBH4 at room temperature. The agar/

pectin composite with highly active surface, high thermal stability (up to 239 °C), and 

strong covalent bonds was designed as a stabilizer. Subsequently, Pd NPs were synthesized 

through in situ reduction Pd ions and immobilized on the surface of APC without any 

hazardous reducing agents under greener conditions. Catalytic activity in reduction reactions 

showed that biopolymer composites could be efficiently used as stabilizers for various noble 

metallic NPs. Recycling studies of the nanocomposite were also conducted for o-nitroaniline 

reduction to 1,2-benzenediamine, wherein the reaction yield decreased approximately from 

100 % to 83 % after eight cycles.

Pectin-based bio(nano)sorbents have been utilized for the heavy metal selective elimination 

from aqueous media with affinity sequence of Pb2+> Cu2+> Co2+> Ni2+> Zn2+> Cd2+ 

(Kartel, Kupchik, & Veisov, 1999). The cumbersome separation, lack of stability, or low 

recovery post desorption are the main constraints for the broad utilization of pectin-derived 

biosorbents. Mata, Blázquez, Ballester, González, and Muñoz (2009) reported the adsorption 

capacities of multimetals like Cu2+, Cd2+, Pb2+ using a sugar-beet pulp pectin biosorbent. 

In another study, Gong et al. (2012) studied the adsorption capability of magnetically 

recoverable pectin-Fe3O4 nanocomposite for the Cu2+ removal (48.99 mg g−1) from 

wastewater in 5 successive cycles. Additionally, the pectin-CuS nanocomposite (~50 nm) 

was fabricated via a facile co-precipitation route (Gupta, Pathania, Agarwal, & Singh, 2012), 

which was successfully utilized to photodegrade and adsorb MB after 10 h under solar-light 

conditions at 30 °C and could be reused for successive 10 cycles. Bok-Badura, Jakóbik-
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Koloń, Karon, and Mitko (2018) produced hybrid pectin/titanium oxide nanobeads as an 

efficient nanosorbent for the elimination of ionic heavy multimetals; adsorption capacities of 

hybrid nanobeads were 0.83, 1.37, 0.51, and 0.68, mmol g−1 for Pb2+, Cu2+, Zn2+, and Cd2+, 

respectively.

Table 7 summarizes other known examples concerning the applications of pectin-based 

(nano)materials in water/wastewater remediation.

3. Summary and discussion

There are several reports in the literature on the water treatment using different 

(nano)catalysts including natural biopolymer-based nanomaterials. The polysaccharide-

based (nano)materials utilized in the adsorption and reduction/degradation reactions are 

summarized in Table 8. Having reviewed these publications, it became clear that there 

are no special rules or general ways to theoretically predict the outcomes of a catalytic 

reduction/adsorption process. Mostly, the differences in the catalytic prowess of these 

(nano)materials depend on their amount and type, surface area, particle size, morphology 

and porosity, chemical composition, loading of metal/metal oxide on the catalyst surface, 

reaction temperature, solvent, reducing agents, etc. In other words, this comparison depends 

on the preparative method and/or reaction conditions and follows no predictive rules.

4. Conclusion and future perspectives

Natural biopolymer-based resources (particularly polysaccharides) derived from diverse 

derivatives are unquestionably the future wave of abundant resources that need 

to be exploited. Natural biopolymers are especially preferred because such they 

have unique structural, biological, physicochemical and biomechanical features and 

biodegradable properties; indeed, abundant availability, nontoxicity, renewalability, ease 

of modification, biocompatibility, and application potential have steered research in their 

direction. Importantly, aforementioned polysaccharides are considered alternative renewable 

(bio)resources and effective supports for the (nano)catalysts fabrication such as biopolymer 

supported Pd, Ag, Cu, TiO2, ZnO, Fe3O4, Au NPs; it is one of the more effective strategies 

in nanotechnologies.

Additional explorations need to be conducted to optimize the production of natural/

biopolymeric-based (nano)materials to render them viable and sustainable towards 

the industrial application e.g. the traditional adsorbents. Coagulation/flocculation of 

solid substances in wastewater has been accomplished with the assistance of natural/

biopolymeric-based (nano)materials. Among polysaccharides, cellulose and chitosan are 

promising natural/biopolymers because of their sustainability, reactivity, chemical stability, 

excellent physicochemical attributes, and considerable selectivity towards toxic metals, dyes 

and aromatic compounds that makes them competitive to the conventional activated carbon.

Treatment of water/wastewater (especially industrial water) is very critical and essential for 

safeguarding the environmental quality and maintaining human health, and it has been a 

main trepidation for public health. As is clear from this review, emerging nanotechnologies 

have the potential to make industrial water remediation more effective where the pollutants 
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could be removed using relatively greener nanotechnology, but this field still needs 

extensive explorations; major technical hurdle being their non-adaptability for industrial/

large-scale systems and competitiveness to the traditionally deployed existing treatment 

options. Nonetheless, recent efforts have identified great potential for many appliances of 

the biopolymer-based (nano)materials across diverse research domains; the preparation of 

polysaccharide-based (nano)materials via conventional approaches is quite convenient, facile 

and harmless to the environment. Thus, they have the potential to emerge as an effectual, 

cost-effective, and environment-friendly substitute for predominant treatment supplies, from 

the standpoints of both environmental remediation and resource conservation.

In spite of notable advances in the synthetic and catalytic utilizations of natural biopolymer-

based (nano)materials, particular consideration should be paid to the following aspects in 

future investigations:

• Scalable fabrication of polysaccharide-based (nano)materials, at a relatively 

lower cost.

• Application of diverse biowaste (nano)materials as renewable alternative 

feedstocks for fabrication of biopolymers and their wastewater treatment 

application.

• Exploitation of natural supports e.g. clays, zeolites, and montmorillonite as 

cost-effective, nontoxic and abundantly available resources for the synthesis of 

(nano)catalysts and application in water/waste-water treatment.

• Manipulation of agricultural and animal residues e.g. bone, bristles, or eggshell 

for the synthesis of biopolymer-based (nano)materials and application in water 

remediation.

• Greener biological processes to reduce the cost of the biopolymer-based 

(nano)materials production under mild conditions and improve their 

(nano)catalytic prowess.

• Improvement of polysaccharide-based magnetic nanomaterials for water/

wastewater treatment.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Sustainable and environmental-friendly organic polysaccharides.
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Fig. 2. 
Significant properties and attributes of cellulosic nanomaterials.
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Fig. 3. 
Deacetylation of chitin for the preparation of chitosan.
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Fig. 4. 
Essential physicochemical properties of chitosan.
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Fig. 5. 
Preparation of Fe3O4@CS_AgNi nanocomposite, (b) Color changes observed during 4-NP 

reduction; (i) bare 4-NP, (ii) 4-NP + magnetic nanocomposite + NaBH4, (iii) easy separation 

of magnetic nanocomposite via a magnet after the complete 4-NP reduction, (c) time 

dependent evolution illustrating the 4-NP reduction to 4-AP catalyzed by Fe3O4@CS_AgNi 

nanocomposite. Reproduced with permission from Ref. (Antony et al., 2019).
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Fig. 6. 
The MNP@St-g-PVS preparation. Reproduced with permission from Ref. (Pourjavadi et al., 

2016).
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Fig. 7. 
Applications of guar gum. Reproduced with permission from Ref. (Sharma et al., 2018).
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Fig. 8. 
Adsorption and photodegradation mechanism of nanohybrid hydrogel. Reproduced with 

permission from Ref. (Duan et al., 2020).
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Table 1

Cellulosic nanomaterial-based adsorbents for the removal of pollutants in water.

Cellulosic nanomaterial-based adsorbents Contaminants Ref.

β-Cyclodextrin modified CNCs@Fe3O4@SiO2 

superparamagnetic nanorods
Procaine, imipramine (Chen, Berry, & Tam, 2014)

PEG modified CNCs Acetaminophen, 
sulfamethoxazole, N, N-diethyl-
meta-toluamide

(Herrera-Morales et al., 2017)

Pristine CNCs Chlorpyrifos (Moradeeya et al., 2017)

Dialdehyde functionalized CNCs Creatinine (Huang, Liu, Sun, & Fatehi, 2016)

Poly(acrylic acid) modified poly (glycidylmethacrylate) 
grafted CNCs

Trypsin (Anirudhan & Rejeena, 2012)

Poly(methacrylic acid-co-vinyl sulfonic acid) grafted 
magnetic CNCs

Hemoglobin, immunoglobulin G (Anirudhan & Rejeena, 2013)

Aminopropyltriethoxysilane modified, hydroxyl-carbonated 
apatite modified and Epoxy modified CNFs

Hydrogen sulphide (Hokkanen, Repo, Bhatnagar, Tang, & 
Sillanpää, 2014)

Carbonated hydroxyapatite modified CNFs Phosphate, nitrate (Hokkanen, Repo, Westholm et al., 2014)

UiO-66/polydopamine/bacterial cellulose Aspirin, tetracycline 
hydrochloride

(Cui et al., 2020)

Carboxy methyl cellulose/citric acid aerogel Nitrate, nitrite, phosphate (Darabitabar, Yavari, Hedayati, Zakeri, & 
Yousefi, 2020)
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Table 4

Various starch-based nanomaterials used for water/wastewater treatment.

Chitin, chitosan and starch-based nanomaterials Contaminants Ref.

Starch stabilized Fe° NPs Cr(VI) (Alidokht, Khataee, Reyhanitabar, & Oustan, 
2011)

Monodisperse functional magnetic dialdehyde starch 
nanocomposite

Hg(II) (Wang et al., 2015)

Ag NPs base starch/PEG-polyacrylic acid hydrogel Hg(II) (Saberi, Sadeghi, & Alipour, 2020)

Fe3O4 based starch-poly (acrylic acid) nanocomposite 
hydrogel

Cu(II), Pb(II), Methylene 
Violet and Congo Red

(Saberi, Alipour, & Sadeghi, 2019)

Oxidized starch NPs Urea (Abidin et al., 2018)

Starch stabilized nanoscale zero-valent iron Cr(VI) (Chen, Xie et al., 2019)

Starch modified nano zero-valent iron Cr(VI) (Dong et al., 2016)

Starch, carboxymethyl cellulose CMC-stabilized nano zero-
valent iron

Sulfamethazine (Dong et al., 2020)

Starch modified nanoscale zero-valent iron Acid Blue-25 (Elkady, Shokry, El-Sharkawy, El-Subruiti, & 
Hamad, 2019)

Starch stabilized nanoscale zero-valent iron Nitrate (Zhou, Sun, Chen, Wang, & Yang, 2017)

Na-montmorillonite NPs/P (acrylic acid-acrylamide)-g-
starch

Safranin (Zarei, Sadeghi, & Bardajee, 2018)

Starch-modified magnetic Fe° NPs Naphthalene (Malekzadeh, Nejaei, Baneshi, Kokhdan, & 
Bardania, 2018)

Starch- stabilized Fe° NPs Nitrate (Rajab Beigy, Rasekh, Yazdian, Aminzadeh, & 
Shekarriz, 2018)

Superparamagnetic starch functionalized maghemite NPs Cr(VI) (Singh, Tiwary, & Sinha, 2015)

Starch coated Fe3O4 magnetic NPs Optilan Blue (Stan et al., 2019)

Mungbean starch/PVA/ZnS bionanocomposite Bisphenol A & MO (Yun, Kim, Shim, & Yoon, 2018)

γ-Fe2O3@starch Arsenic (Siddiqui et al., 2020)

AgNPs-base starch/PEG-poly (acrylic acid) hydrogel Hg(II) (Saberi et al., 2020)
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Table 7

Pectin-based photocatalysts/catalysts in removal of organic/inorganic contaminants.

Pectin-based photocatalysts/catalysts Contaminants Highlights Ref.

Ethylenediamine modified pectins Pb(II) High adsorption capacity (Liang et al., 2020)

(PPA3)
a
-Cu and (PPA3/Fe3O4)-Cu 

nanocomposite hydrogels

2-Nitrophenol High reduction (El Fadl, Mahmoud, & Mohamed, 
2019)
(El Fadl et al., 2019)

Modified Fe3O4 NPs with the extracted 
pectin of Azolla filicoloides

Methyl orange Maximum uptake 
capacity at 5 °C: 0.533

(Rakhshaee, Giahi, & Pourahmad, 
2011)

Magnetite/silica/pectin NPs Fluoroquinolones 
(Ciprofloxacin & 
Moxifloxacin)

Removal percent: 89 (Attallah, Al-Ghobashy, Nebsen, & 
Salem, 2017)

Pectin stabilized nanoscale zerovalent iron Cr(VI) Removal from water (Chen, Yang, Wang, Zhou, & Zhang, 
2015)

Pectin stabilized magnetic graphene oxide 
Prussian blue nanocomposites

Cesium Adsorption capacity (mg 
g−1): 1.230

(Kadam, Jang, & Lee, 2016)

a
PPA: Crosslinked pectin-(polyvinyl alcohol-co-acrylamide) hydrogel.
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