Skip to main content
. 2021 Jun 4;109:107561. doi: 10.1016/j.asoc.2021.107561

Table A.5.

Search space for hyperparameters by technique and the best configuration obtained for predicting AvTT per hour for each hospital.

Technique Search space Best configuration
CHRU CHIH HNFC
LGBM max_depth: [1–12] 6 12 5
n_estimators: [50–1000] 143 808 768
num_leaves: [31–100] 40 61 45
learning_rate: [0.001–1] 0.8498 0.0103 0.0094
subsample: [0.5–1] 0.99 0.92 0.5
colsample_bytree: [0.5–1] 0.94 0.6 0.63

MLP Dense layers: 2 2 2 2
nb_neurons: [100–500] (100, 302) (125, 325) (362, 562)
alpha: [0.00001–0.01] 0.000029 0.003674 0.000034
learning_rate_init: [0.0001–0.1] 0.0355 0.003611 0.000543
max_iter: [50–200] 154 86 177
tol: [0.00001–0.01] 0.003731 0.002888 0.000661
momentum: [0.00001–0.01] 0.0073 0.006057 0.00479
Early stopping: 20 20 20 20

LSTM LSTM layers and neurons: 1, (110) 1, (110) 1, (110) 1, (110)
Dense layers and neurons: 2, (128, 1) 2, (128, 1) 2, (128, 1) 2, (128, 1)
Activation function: ReLU ReLU ReLU ReLU
Dropout: 0.5 0.5 0.5 0.5
Loss function: ‘mse’ ‘mse’ ‘mse’ ‘mse’
Optimizer: Adam Adam Adam Adam
Early stopping: 15 15 15 15
Max. epochs: 100 100 100 100
Batch size: [40–250] 93 142 112
Learning rate: [0.005–0.01] 0.00841 0.00595 0.00894

Prophet n_changepoints: [20–100] 45 75 35
seasonality_prior_scale: [0–50] 36.82 18.17 12.13
holidays_prior_scale: [0–50] 23.47 22.42 34.77