Table A.5.
Search space for hyperparameters by technique and the best configuration obtained for predicting AvTT per hour for each hospital.
Technique | Search space | Best configuration |
||
---|---|---|---|---|
CHRU | CHIH | HNFC | ||
LGBM | max_depth: [1–12] | 6 | 12 | 5 |
n_estimators: [50–1000] | 143 | 808 | 768 | |
num_leaves: [31–100] | 40 | 61 | 45 | |
learning_rate: [0.001–1] | 0.8498 | 0.0103 | 0.0094 | |
subsample: [0.5–1] | 0.99 | 0.92 | 0.5 | |
colsample_bytree: [0.5–1] | 0.94 | 0.6 | 0.63 | |
MLP | Dense layers: 2 | 2 | 2 | 2 |
nb_neurons: [100–500] | (100, 302) | (125, 325) | (362, 562) | |
alpha: [0.00001–0.01] | 0.000029 | 0.003674 | 0.000034 | |
learning_rate_init: [0.0001–0.1] | 0.0355 | 0.003611 | 0.000543 | |
max_iter: [50–200] | 154 | 86 | 177 | |
tol: [0.00001–0.01] | 0.003731 | 0.002888 | 0.000661 | |
momentum: [0.00001–0.01] | 0.0073 | 0.006057 | 0.00479 | |
Early stopping: 20 | 20 | 20 | 20 | |
LSTM | LSTM layers and neurons: 1, (110) | 1, (110) | 1, (110) | 1, (110) |
Dense layers and neurons: 2, (128, 1) | 2, (128, 1) | 2, (128, 1) | 2, (128, 1) | |
Activation function: ReLU | ReLU | ReLU | ReLU | |
Dropout: 0.5 | 0.5 | 0.5 | 0.5 | |
Loss function: ‘mse’ | ‘mse’ | ‘mse’ | ‘mse’ | |
Optimizer: Adam | Adam | Adam | Adam | |
Early stopping: 15 | 15 | 15 | 15 | |
Max. epochs: 100 | 100 | 100 | 100 | |
Batch size: [40–250] | 93 | 142 | 112 | |
Learning rate: [0.005–0.01] | 0.00841 | 0.00595 | 0.00894 | |
Prophet | n_changepoints: [20–100] | 45 | 75 | 35 |
seasonality_prior_scale: [0–50] | 36.82 | 18.17 | 12.13 | |
holidays_prior_scale: [0–50] | 23.47 | 22.42 | 34.77 |