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Highlights
In non-human primates (NHPs), charac-
teristic radiographic abnormalities (best
observed by high-resolution imaging),
combined with concordant immunologi-
cal, virological, and lung histopatholo-
gical findings, mirror mild-to-moderate
human disease.

Noninvasive medical imaging can visual-
ize otherwise ‘silent’ disease at high
resolution and generates quantifiable
measurements that are particularly im-
portant in sublethal models, providing
an essential complement to standard im-
munological, virological, and pathological
Chest X-ray (CXR), computed tomography (CT), and positron emission
tomography–computed tomography (PET-CT) are noninvasive imaging techniques
widely used in human and veterinary pulmonary research and medicine. These
techniques have recently been applied in studies of severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2)-exposed non-human primates (NHPs) to
complement virological assessments with meaningful translational readouts of
lung disease. Our review of the literature indicates that medical imaging of
SARS-CoV-2-exposed NHPs enables high-resolution qualitative and quantitative
characterization of disease otherwise clinically invisible and potentially provides
user-independent and unbiased evaluation of medical countermeasures (MCMs).
However, we also found high variability in image acquisition and analysis protocols
among studies. These findings uncover an urgent need to improve standardization
and ensure direct comparability across studies.
assays, which can only be performed as
snapshots (not longitudinally) or may be
difficult to perform.

The incorporation of advanced medical
imaging tools in NHP studies for corona-
virus disease 2019 (COVID-19) research
is not without challenges, including high
experimental costs due to the limited
availability of equipment in high contain-
ment environments, frequency of anes-
thesia events required for imaging, and
the number of animals that can practi-
cally be imaged at a single time point.
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The role of medical imaging in the assessment of coronavirus disease 2019 in
humans and NHPs
A hallmark of coronavirus disease 2019 (COVID-19) is lower respiratory tract infection and viral-
induced pneumonia in most hospitalized patients [1]. In humans, parenchymal lung involvement
in COVID-19 is typically evaluated using medical imaging, most commonly CXR (see Glossary)
and CT. A spectrum of lung imaging features characteristic of COVID-19 has now been estab-
lished, including alveolar, interstitial, pleural, and vascular abnormalities. Most found COVID-19 ab-
normalities are alveolar ground glass opacities (GGOs), often with interlobular and intralobular
septal interstitial thickening (crazy-paving pattern) in a bilateral, multilobar, and peripheral distribu-
tion [1,2]. In patients, these readouts have been found to uniquely complement real-time reverse
transcription qPCR (RT-qPCR) measurements of SARS-CoV-2 loads and to aid the evaluation of
COVID-19 progression and severity [3]. However, the host–virus determinants of parenchymal
pulmonary disease and radiographic pulmonary abnormalities in the pathogenesis of COVID-19
remain unclear. Specifically, a clear understanding of the relationship between upper or lower
respiratory tract viral loads and pulmonary immunopathology is lacking. These shortcomings
arise, at least partially, because collecting serial imaging data that can be rigorously mapped to
clinical, virological, and immunological markers is an operational challenge in the clinical setting,
frequently limited by the absence of baseline pre-infection lung imaging.

Noninvasive, longitudinal imaging of established animal models of SARS-CoV-2 infection and
COVID-19 may allow more effective delineation of the pathogenesis of lung disease in vivo in
controlled experimental settings. NHPs are arguably well suited as animal models of COVID-19
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due to their overall close evolutionary relationship to humans and the consequent physiological
similarities [4], including elicited host immune responses and systemic distribution of angiotensin-
converting enzyme 2 (ACE2), the cellular receptor of SARS-CoV-2 [5]. Some of the typical
manifestations of SARS-CoV-2 infection in humans (i.e., asymptomatic, subclinical, infection, or
mild disease) are modeled successfully in NHPs (see Clinician’s corner and Box 1) [6,7].

During the COVID-19 pandemic, medical imaging with CXR, CT, and PET-CT has been applied
to characterize lung involvement in SARS-CoV-2-exposed NHPs, for which it has proven a
meaningful, noninvasive complement to standard virological assessments. Serial imaging (including
pre-exposure baselines) enables longitudinal data collection through frequent examination of each
animal and uses a limited number of animals [8,9]. In addition, because the animals are imaged
using the same modalities and scanners used to examine patients, readouts of SARS-CoV-2-
exposed NHPs are highly translational. However, as is the case with other viral pathogens, imaging
of SARS-CoV-2 infection in NHPs has suffered from a lack of standardization across different
laboratories, impacting image acquisition, analysis, and, ultimately, reported imaging metrics. Efforts
to harmonize imaging approaches in the setting of SARS-CoV-2/COVID-19 modeling are urgently
needed.

In this review, we provide a summary of noninvasive imaging studies in NHPCOVID-19models com-
pleted thus far. We identify current challenges and future needs in this arena and offer guidance to en-
hance future imaging studies of SARS-CoV-2 exposure and disease progression in NHPs.

An in-depth look at the role of CXR, CT, and PET-CT in the evaluation of COVID-19
Diagnostic confirmation of SARS-CoV-2 infection/COVID-19 requires virus-specific nucleic acid
amplification (e.g., RT-PCR) or antigen detection, and chest imaging is not recommended for
Box 1. Similarities and differences in phenotype of symptomatic SARS-CoV-2 infection in NHPs versus
humans

The aim of experimental animal models is to understand infection and disease to enable effective prevention or treatment.
Studies in NHPs have explored the natural history of infection and disease, including viral dynamics, host immune
responses, and host pathology. NHP models have been used to evaluate vaccine and therapeutic countermeasures.
Evaluation of these results requires an understanding of how well (or not) the NHP models SARS-CoV-2 infection and
COVID-19 in humans [58].

The clinical manifestations of SARS-CoV-2 infection observed in current NHP models are variably present but have in-
cluded fever, weight loss, loss of appetite, pale appearance, dehydration, diarrhea, and nasal discharge. These signs
are comparable with the spectrum of clinical symptoms detected in humans with mild disease. In most NHP studies,
and similar to humans with mild disease, no clinical differences were consistently observed between males and females
or young and old macaques. In addition, severe and critical disease, though reported in a few aged NHPs, has not been
observed reliably [34].

In NHPs, viral replication was mainly observed in the respiratory tract (nasal cavity, oropharynx, and lungs) and gastrointestinal
system. At necropsy, lungs showed mild-to-moderate interstitial pneumonia and swollen lymph nodes. In humans, viral
replication is most prominently detected in the upper respiratory epithelia and may be found in other parts of the body [101];
in addition to severe respiratory failure, human autopsy data show systemic involvement of multiple organ systems, including
cardiovascular, renal, and neurologic, but apart from the respiratory tract, it is challenging to describe morphological alterations
attributable to SARS-CoV-2 infection [102]. Innate and adaptive immune responses to SARS-CoV-2 infection paralleled those
observed in humans, including adaptive humoral [e.g., anti-SARS-CoV-2 nucleocapsid (N) and spike (S) IgG antibodies] and
cellular (e.g., antigen-specific T cell) responses. After infection, innate and adaptive cytokine/chemokine production in NHPs
alsomirrors human responses, though the dysregulated cytokine storm described in humanswith severe disease has not been
observed in NHPs.

In short, current NHP models of COVID-19 [rhesus monkeys, crab-eating (cynomolgus) macaques, grivets/vervets, and
common marmosets] recapitulate mild-to-moderate disease in humans in both clinical and radiological presentation; se-
vere and fatal disease has not yet been effectively modeled [8,18–20,31,39,58,103–107].

*Correspondence:
stammes@bprc.nl (M.A. Stammes).
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Glossary
Acute respiratory distress
syndrome (ARDS): an acute, diffuse,
inflammatory injury to the lungs that is
associated with a variety of etiologies,
including infections, and is associated
with high case fatality.
Bronchoalveolar lavage (BAL): used
to collect a sample from the lungs, a
bronchoscope is used to instill saline
solution and then the fluid is collected.
Chest X-ray (CXR): exposure of lungs
to ionizing radiation to produce pictures
used to diagnose and monitor lung
conditions.
Computed tomography (CT): several
X-ray scans from numerous angles are
processed by a computer to create
cross-sectional images, referred to as
‘slices’.
Dual-energy CT (DECT): a recently
developed CT technology that
combines two separate X-ray
sources with different spectra to
produce CT images at different energy
levels.
DOTATATE: a peptide specific for
SSTR2 receptors, which are expressed
on certain kinds of inflammatory cells.
When labeled with gallium-68 or
copper-64, this peptide can be used as
a tracer for PET imaging.
Ground glass opacity (GGO):
abnormalities seen on chest X-rays and
CT imaging of lungs. They present as
hazy areas that indicate increased
density.
Half-maximum infection dose (ID50):
the estimated number of organisms or
virus particles required to produce
infection in 50% of normal subjects
when exposed by a given route.
Magnetic resonance imaging (MRI):
MRI scanners use computer-generated
radio waves and a magnetic field to
create detailed images of organs and
tissues.
Percent change in lung
hyperdensity (PCLH): to quantify lung
abnormalities, the lung volume involved
in pneumonia is identified above a
‘hyperdensity’ threshold and then
tracked by comparing the same region
of interest over time.
Positron emission tomography
(PET): diagnostic imaging test that uses
radioactive tracers to show functional
activity of body tissue cells through 3D
mapping. Different tracers are used for
different targets.
Positive predictive value (PPV):
when screening patients, this is the
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routine screening and diagnosis or in patients with mild symptoms or without symptoms
[1,10,11]. However, chest imaging may complement the initial evaluation to inform management
in patients with lower respiratory symptoms and signs and/or in patients with worsening respira-
tory status as the clinical syndrome evolves and/or in patients with potential alternative diagnoses.
When indicated, CXR and CT are predominantly used. CXR is a fast, relatively inexpensive,
portable, and widely available imaging technique frequently used in clinical settings [9,12–35].
Particularly early during the course of infection, and especially in patients with mild disease, the
sensitivity of CXR compared with RT-PCR is relatively low, at only 69% [although the overall
positive predictive value (PPV) remains high at 95.7%] [1,3,36–41]. By contrast, multiple
studies and meta-analyses have shown chest CT to be more sensitive (94% versus 89% for
RT-PCR [42]), although at a recognized cost of specificity, which is dependent on local prevalence
and pretest probability [42]. Notably, chest CT has been able to identify patients with COVID-19
even when RT-PCR testing was negative early during disease progression [43]. The emerging
evidence base regarding the use of CXR and CT imaging in COVID-19 has led to consensus
guidelines that detail relative strengths and weaknesses and provide recommendations
[1,10,11]. These sensitivity limitations also apply to imaging of SARS-CoV-2-exposed NHPs, and
CXR has been widely used in research studies. Although most human CXR examinations are
inconclusive during the early stages of COVID-19 [37], 28 studies of SARS-CoV-2-exposed
NHPs detected CXR abnormalities early after exposure [9,13–17,20–23,26,27,29,32,35,44–46].
However, CXR imaging was inconclusive in other studies [12,13,23–25,28] and was generally
found to be uncorrelated with the degree of lung abnormalities at necropsy (Figure 1).

Although consensus guidelines [1,10,11] have not clearly defined the relative merits of CXR
versus CT imaging in assessing COVID-19, chest CT is recommended for the evaluation of pa-
tients with COVID-19, typically to inform clinical management in patients who are severely ill or de-
teriorating, including the exclusion of other diagnoses, such as pulmonary embolism. CT
imaging has been applied in 16 published studies of SARS-CoV-2-exposed NHPs (Table 1)
[47]. As a tomographic imaging modality that acquires data in 3D and at higher resolution com-
pared with CXR, chest CT is more sensitive and affords more detailed qualitative and quantitative
characterization of lung abnormalities [38]. The risks and benefits associated with chest CT ver-
sus CXR are only partly applicable to NHPs in a research setting: higher radiation exposure has
less consequence because most studies are terminal; staff in contact with research animals
are always in biosecure personal protective equipment; and potential contamination of imaging
suites is mitigated by scheduled rigorous decontamination [1,48].

In NHP studies, CT imaging generally mirrored imaging of human lung abnormalities both in
character and distribution. The reported prevalence of common CT findings in SARS-CoV-2-
exposed NHPs is shown in Table 1 and Figure 2. Compared with human disease, CT abnormalities
(most commonly GGOs) in NHPswere detected at a much earlier disease stage and resolved fairly
rapidly, albeit with considerable intersubject heterogeneity; most abnormalities were first observed
starting at 2 days post-exposure and resolved within 2 weeks [33].

CXR and chest CT are mainly anatomical imaging modalities that provide structural characterization
(i.e., the location, volume,morphology, and texture of lung abnormalities). By contrast, PET-CT com-
bines the high-resolution anatomical information from CT with quantitative functional assessments
by PET. When performed with the metabolic radiotracer [fluorine-18]fluoro-2-deoxyglucose (18F-
FDG), a glucose analog that is internalized but not metabolized by metabolically active inflammatory
cells], PET-CT enabled the quantification of heightened metabolic activity as a proxy of
inflammation in lung parenchyma, regional lymph nodes, heart, kidneys, bone marrow, brain, and
other organs in the context of COVID-19 [8,9,49–51]. However, its limited availability in many
Trends in Molecular Medicine, February 2022, Vol. 28, No. 2 125
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proportion of positive results in statistics
and diagnostic tests that are true
positives.
Translocator protein (TSPO):
transmembrane protein located on the
outer mitochondria membrane and
mainly expressed in glial cells in the brain
and on activated macrophages.
Somatostatin receptor 2 (SSTR2):
protein-coding gene acting as a general
inhibitor of the release of hormones and
secretory proteins in the cerebrum and
kidneys.
Standard uptake value (SUV): a way
of determining activity in PET. Computer
software converts the visual data into
numerical values for the measured
activity, normalized for body
weight/surface area, and injected dose.
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Figure 1. Comparison of chest X-ray (CXR), computed tomography (CT), and positron emission tomography–
computed tomography (PET-CT) imaging. To compare results in non-human primate (NHP) lungs after severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure, images on the same row originate from the same animal
and were obtained on the same day (day 4 post-exposure). For the animal in the upper row, the lesion located in the
middle part of the left lung (marked by the crosshairs and arrows) is clearly visible using all three imaging modalities. By
contrast, alterations in lung density for the animal shown in the bottom row could only be clearly distinguished from
healthy lung using CT (marked by the crosshairs and arrows) but are hardly visible on CXR and PET-CT. Adapted from [9].
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countries and emergency settings has restricted its application as a frontline COVID-19 diagnostic
imaging modality in the clinic. In preclinical research settings, PET-CT is being increasingly used in
NHP studies to evaluate human respiratory diseases, most notably tuberculosis [52]. However,
even in preclinical settings, this imaging modality is not widely available in biocontainment laborato-
ries; PET-CT imaging has been used in only six studies of SARS-CoV-2-exposedNHPs (Table 1 and
Figure 1) [8,9,34,49–51]. Other imaging modalities can be applied in both humans and NHPs for di-
agnosis of COVID-19 (Box 2).

Qualitative and quantitative analysis of COVID-19-related lung abnormalities
detected by CT and PET-CT
Reliable quantification of lung abnormalities identified by in vivo imaging within (and among)
experimental NHP groups is of great interest to allow meaningful correlations with histopatholo-
gical data and for the evaluation of both therapeutic and prophylactic treatment efficacy
[8,33,35,49,53,54]. Although data continue to accumulate, COVID-19-related lung abnormalities
detected by CT have already been successfully matched with gross pathology of NHP samples
(Figure 3). Several semiquantitative scoring systems based on lesion volume and type
126 Trends in Molecular Medicine, February 2022, Vol. 28, No. 2
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Figure 2. Common lung abnormalities detected by computed tomography (CT) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-
exposed macaques. Distribution of CT scan abnormalities in a 3D reconstruction image of a SARS-CoV-2-exposed macaque at peak disease, day 4 (left panel: blue,
airways; gray, normal lung; red, vessels; yellow, imaging abnormalities). Selected characteristic abnormalities include: (i) peri-bronchial consolidation in the left accessory
lobe (top-middle panel day 2: top inset, red arrow); (ii) posterior ground glass opacities (GGOs) with reticulation in the posterior right lung (top-middle panel day 2: bottom
inset, red arrow); (iii) bilateral posterior GGOswith reticulation (top-right panel day 2: top and bottom insets, red arrows); (iv) GGOswith superimposed crazy-paving pattern
(interlobular septal thickening) in right posterior lung (bottom-middle panel day 4: top inset, red arrow) and mixed GGOs with pleural-based consolidation in left posterior
lung (bottom-middle panel day 4: bottom inset, red arrow); and (v) pleural-based mixed GGOs and consolidation (bottom-right panel day 6: inset, blue arrow). Adapted
from [8]. Abbreviation: COVID-19, coronavirus disease 2019.
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(e.g., GGOs, consolidation, crazy-paving pattern, and pleural thickening) have been developed to
allow monitoring of disease progression by lung CT of NHPs (Table 1). These scores reflect the
extent and longitudinal course of qualitative findings. However, poor scoring standardization
across studies makes it challenging to compare experimental data from different research groups
in detail outside the determination of a general pattern and peak. Recognizing that semiquantitative
scoring relies on qualitative radiological assessments potentially subject to bias, several research
groups have invested in the development of semiautomated, user-independent, quantitative
readouts of radiographic abnormalities. For instance, normalized changes from pre-exposure
baselines can be measured longitudinally as the percent change in lung hyperdensity
(PCLH) [55] using CT data (Figure 4) [8,33]. Further development of such quantitative readouts
should be encouraged.

A limited number of NHP studies have used PET-CT to measure 18F-FDG uptake as a proxy for
metabolic activity in the lungs and regional lymph nodes via anatomical co-registration with CT.
Average, maximum, or peak (as robust alternative to maximum values, which could be affected
by noise) standard uptake values (SUVs) in lung lesions, lymph nodes, or total lungs were
used asmeasures of 18F-FDG uptake and as surrogates of inflammatory activity. 18F-FDG uptake
was generally found to co-register with CT-identified structural abnormalities (e.g., GGOs and
Trends in Molecular Medicine, February 2022, Vol. 28, No. 2 133
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Box 2. Other imaging techniques

Besides CXR, CT, and PET-CT, other imaging techniques are used for visualizing the lungs in NHPs exposed to SARS-
CoV-2. In the clinic, ultrasound is commonly used for the diagnosis of pneumonia and to evaluate the integrity of the pleural
space [37,108]. In COVID-19, ultrasound detected B-lines, consolidations, GGOs, and pleural thickening, and diagnostic
accuracy was found to increase with disease severity [37,108]. However, the presence of air in non-lung parenchyma can
impair the assessment of deeper parenchymal abnormalities [37], making it difficult to use this imaging modality to assess
lung involvement in SARS-CoV-2-exposed NHPs. Additionally, interoperator and inter-reader variability makes standard-
ization challenging. Thus far, ultrasound imaging has only been used in a single SARS-CoV-2-related NHP study, which
concluded that ultrasound sensitivity to detect lung abnormalities was high, whereas the diagnostic efficacy for mild-to-
moderate disease was relatively low [67]. With the drawbacks outweighing the advantages, ultrasound is not likely to gain
traction in evaluating SARS-CoV-2-exposed NHPs.

Another often used clinical imaging modality ismagnetic resonance imaging (MRI). MRI has been used for evaluation
of patients with COVID-19, primarily for examination of neurological complications. It is appealing for longitudinal imaging
because of the lack of exposure to ionizing radiation. However, artifacts from cardiorespiratory motion and the intrinsically
low MR signal of the lungs require dedicated sequences for lung evaluation. Although not the primary imaging modality of
choice, the signs of interstitial pneumonia can nevertheless be detected by MRI [109,110]. The application of specific non-
contrast- or contrast-enhanced MR sequences [111–114] has been investigated in clinical research settings (outside of
infectious diseases) to provide free-breathing, high-resolution evaluation of lung anatomy and ventilation.
Furthermore, hyperpolarized MRI using 129Xe has been used to detect gas–blood exchange defects in patients with
COVID-19 [115,116].

The last imaging modality discussed herein is a CT technique that differs from conventional CT, in which two data sets with
different X-ray spectra are generated, called dual-energy CT (DECT). DECT is a form of quantitative CT and has been
used, with iodine as a contrast agent, in the evaluation of patients with COVID-19 to provide quantitative assessment of
lung perfusion and detection of vascular abnormalities, including pulmonary embolism [117–121]. This technique was able
to detect lung vascular impairment even in patients with asymptomatic COVID-19 [118], thereby holding promise for the
evaluation of these parameters in the mild-to-moderate NHP model.
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consolidation) during the course of the studies. Higher 18F-FDG uptake was detected 2 days
[8] or 4 days post-exposure [9] and resolved by day 11 or day 12 but increased again at later
time points (up to day 35) [49]. Imaging from NHPs vaccinated against SARS-CoV-2 showed
lower or no 18F-FDG uptake in abnormalities within the lungs compared with unvaccinated
control animals [50].

Challenges in applying medical imaging for the evaluation of SARS-CoV-2
infection in NHPs
Medical imaging of SARS-CoV-2-exposed NHPs is providing deeper insight into the pathophysiolo-
gical processes related to lung abnormalities in patientswith COVID-19. Indeed, themajority of clinical
disease would be inapparent by clinical assessment (observation, physical examination, and labora-
tory blood markers), which justifies higher-resolution imaging evaluation. However, many challenges
need to be overcome before noninvasive imaging readouts of the lungs can be reliably used as
COVID-19 markers and to fully exploit their potential complement to standard immunological and
virological assays. Some of these challenges are related to the NHP model. The clinical disease
elicited by SARS-CoV-2 exposure in NHPs is generally mild to moderate (even radiographically),
although some abnormalities associated with more severe disease (e.g., alveolar consolidation)
have been reported occasionally [8,22,45,49,51,53,56–58]. Mild-to-moderate disease progression
in NHPs mirrors that observed in humans (e.g., in the evolution of initial GGOs to organizing
pneumonia and consolidation). Unsurprisingly, in (typically) young healthy animals without significant
comorbidity, consistent radiographic abnormalities associated with acute respiratory distress
syndrome (ARDS) in humans are absent, and the model has failed to assist in the evaluation of
more serious lung pathology. Since COVID-19 severity in humans (and, therefore, also likelihood of
hospitalization) has been associated with several risk factors, including advanced age and obesity
[59], a handful of experiments used comorbid or aged NHPs to increase the likelihood of severe
COVID-19 development. The few studies performed with aged NHPs [29,33,34,60–63] suggested
134 Trends in Molecular Medicine, February 2022, Vol. 28, No. 2
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Figure 3. Lung abnormalities detected by computed tomography (CT) matched with gross pathology. Obtained just before euthanasia (day 7 post-
exposure), these images were matched to gross pathology photographs. Lesions found reflecting the same location are marked with similarly colored circles. Adapted
from [61]. Abbreviation: NHP, non-human primate.
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that local inflammatory innate immune responses in the lungs are induced earlier than in younger
NHPs and are responsible for protection against severe disease, although final outcomes were not
significantly affected [33,60]. Similar to body mass index (BMI) in humans, obesity in NHPs is
measured with a weight-for-height index (WHI). Values above 62 kg/m2.7 and 67 kg/m3 are indicative
of obesity in crab-eating macaques and rhesus monkeys, respectively [64]. On average, these values
correspond to body weights over 10 kg. Most NHPs used in SARS-CoV-2-related studies (Table 1)
weighed less than 10 kg; therefore, the effect of obesity on NHP disease progression has yet to be
addressed.

The SARS-CoV-2 exposure route may also be a factor influencing lung abnormality pattern and
severity in NHPs. NHPs have been exposed to SARS-CoV-2 in various ways, most commonly
via combined intranasal and intratracheal inoculation [12,22,27,35,49,50,53,54,56,57,65–67].
Multiple routes [9,13,16,20,23,26,28,29,31,33,34,46] lead to SARS-CoV-2 shedding. However,
although infection is not necessarily dependent on respiratory tract exposure, it is plausible that
the route of exposure impacts the progression of disease. Exposure deeper in the trachea was
found to induce lung lesion development earlier compared with exposure in the upper trachea
(Table 1) [9,49,54,56,65]. Small-particle aerosol exposure is an alternative to direct inoculation
[9,32,34,44]. Overall, viral load, clinical disease progression and severity, plasma cytokine con-
centrations, and pathology are similar in aerosol-exposed NHPs compared with those exposed
via other routes [34]. Since SARS-CoV-2 particles are ~100–120 nm in diameter, aerosols with
droplet sizes of 1–3 μm have the potential to contain up to 120–460 virions per droplet [68].
The half-maximum infection dose (ID50) of SARS-CoV-2 is unknown for both humans and
NHPs but is likely to be less than 400 virions, which is the ID50 of SARS-CoV [69]. These numbers
Trends in Molecular Medicine, February 2022, Vol. 28, No. 2 135
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Figure 4. Data analysis of lung abnormalities detected by computed tomography (CT) of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2)-exposed macaques via percent change in lung
hyperdensity (PCLH). Top: representative axial CT images in three SARS-CoV-2-exposed macaques for each indicated
study day (D). The gray scale represents radiodensity in Hounsfield units (HU). Bottom: percentage change in volume of
lung hyperdensity (PCLH) measured over time in the same SARS-CoV-2 inoculated macaques shown in the upper panel.
Adapted from [8].
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suggest that one droplet will suffice to initiate infection. Studies to determine the impact of aerosol
particle size on the pulmonary disease phenotype (quality and quantity) are ongoing.

Other challenges are posed by the potential incompatibility of some experimental procedures
with medical imaging experiments. For example, bronchoalveolar lavage (BAL) is often used
to detect viruses and local immune responses in the lower respiratory tract [70,71]. In general,
BAL and imaging should be concurrently used with caution, as BAL may produce CXR or CT
imaging artifacts when performed on consecutive days [72], interfere with pulmonary patho-
genesis (within-lung spread), and potentially confound histopathology. Of the 41 NHP
SARS-CoV-2 studies examined, 24 used BAL during the infection phase and included imaging
[12–16,20,22–24,27–30,33,35,50,51,53,54,56,65,73,74]. Eight included single BAL immediately
before or at necropsy [12,20,22,33,54,57,65,73]. In one study, chest opacities and abnormalities
might have been caused by the BAL procedure [12]. In two studies, BAL was deliberately not per-
formed due to concerns of interference with imaging [8,49]. To guard against confounding findings
due to BAL, medical imaging and necropsies should be performed on days not consecutive with
BAL [72].

Additionally, incorporating quantitative, longitudinal medical imaging in high animal biosafety level
(ABSL-3) or maximum containment settings (ABSL-4), as required for research with SARS-CoV-2
[75], is not without challenges, including increased experimental costs; medical imaging equipment
136 Trends in Molecular Medicine, February 2022, Vol. 28, No. 2
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is not routinely available in most ABSL-3 and -4 settings; the maximum frequency of applied
anesthesia required for imaging and the maximum number of NHPs that can practically be imaged
at a single time point may create bottlenecks that limit optimal experimental design; and imaging
conditions and technology vary among studies and sites, which makes it challenging to directly
compare data obtained at separate sites (as highlighted herein). We foresee that advanced medical
imaging of SARS-CoV-2-exposed NHPs may be enhanced by the development of best-practice
principles and strategies to enable collaborative harmonization and standardization of data across
studies, research groups, and organizations. Specific recommendations include choice of imaging
modality (oriented to the appropriate scientific question), timing of evaluations, standardized data
collection, centralized data repositories, and agreed-upon analysis approaches. Key principles,
specific recommendations, and complex questions, based on the current knowledge of imaging
NHPs focused on, although not solely applicable for, SARS-CoV-2 infection, are enumerated in
Table 2 and the Outstanding questions section (see Outstanding questions).

Value of medical imaging, lessons from the clinic, and future directions
Although the absence of severe COVID-19 in the NHP model limits the translatability of imaging
findings to some degree, medical imaging is established as a much-needed complementary
readout to clinical, virological, or immunological assessments in the preclinical arena. Effectively
modeling COVID-19 in NHPs, especially for non-fatal disease, requires meaningful measure-
ments of infection and disease that include, but should not be limited to, viral quantification. In
the absence of apparent clinical disease and viremia, RT-qPCR assessment of nasal and/or
tracheal swab samples to measure viral load is often used as a proxy for disease severity.
However, truly quantifiable measurements are challenging due to varying swab materials and
quantities, sample site locations, RT-qPCR processes, and exposure routes, all of which may
influence results [39]. Perhaps, the most important drawback is that SARS-CoV-2 infection
involves the lower respiratory tract, which can only partly be sampled by invasive BALs. Further-
more, virological assessment alone cannot provide a complete picture of disease; indeed, histo-
pathological and virological assessment of tissue (after necropsy) have both been required to
Table 2. Key principles and recommendations for imaging of SARS-CoV-2-exposed NHPsa

Topic Key principles and recommendations

Modality CXR: low sensitivity and reader dependence limits utility of CXR in a mild-to-moderate infection model
LUS: high sensitivity, visibility of centrally located lesions is limited due to aeration, which limits its use in a
mild-to-moderate infection model

CT: recommended modality for detection of pulmonary abnormalities in SARS-CoV-2-exposed NHPs

PET-CT: provides limited additional value for detection of lung abnormalities compared with CT
(with 18F-FDG), high value for functional characterization and quantification of LNs

Frequency and
time

Obtain baseline image before infection

Minimal imaging frequency after infection, one image in first 4 days post-exposure, one on day 5–10,
and one on day 11–15.

Imaging frequency can be reduced but not stopped at 14 days post-exposure

Analysis method Qualitative evaluation of extent, distribution, type, and evolution of abnormality by expert readers is
sufficient for general conclusion

Quantitative analysis is preferred, preferably in automated and user-independent manner. In general,
quantification of percentage of lung involvement, independent of type of abnormality, has been useful

Lung
abnormality

Appearance of lung lesions should be correlated with gross pathology score but not necessarily
RT-PCR values obtained from upper or lower respiratory tract sampling

Other experimental procedures in lungs (e.g., BAL) can influence appearance of lung lesions during
both imaging and necropsy

aAbbreviations: LN, lymph node; LUS, lung ultrasound.
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Clinician’s corner
At present, NHP models of COVID-19
recapitulate only mild-to-moderate
human disease.

While the development of an NHP
model of severe COVID-19 is being
pursued, current models highlight the
added benefit of longitudinal medical
imaging to characterize and quantify
otherwise inapparent or mild clinical
disease.

Thorough studies in NHP models and
standardization of quantitative imaging
readouts may shed light on COVID-19
lung pathophysiology beyond what
can be learned in the clinical setting.

The application of novel imaging
technologies in the preclinical arena
may further enhance the value of
noninvasive imaging in the assessment
of COVID-19.
describe the consequences of disease after infection, either at the organ/tissue or systemic level.
Therefore, particularly in the lower respiratory tract, medical imaging of pulmonary disease
contributes uniquely to the ability to understand and measure the consequences of infection
[76]. Advanced medical imaging of the lungs of SARS-CoV-2-exposed NHPs shows promise
in detecting and longitudinally evaluating disease. Without higher-resolution CT or PET-CT
imaging, lung abnormalities reminiscent of COVID-19 (in character, distribution, location, and
evolution; Figure 1) would not have been detected and could not have been assessed longitudi-
nally in this model or matched with gross pathology (Figure 3). To fully exploit the potential of med-
ical imaging in this setting, additional efforts should be devoted to correlate imaging results (on a
per-lung or per-lobe basis) with histopathological abnormalities measured using quantitative
scoring systems [16,60].

A limited number of human observational studies or clinical trials [77] have used medical imaging
as part of the evaluation of both therapeutic and prophylactic treatment efficacy, including evalu-
ations of tocilizumab (CT/CXR, qualitative) [78,79], favipiravir (CT, semiquantitative score), conva-
lescent plasma (CT, qualitative) [80], and hydroxychloroquine versus febuxostat (CT, percent
involvement) [81]. Generally, these have relied, at best, on semiquantitative CT scoring systems
as secondary outcomes and often report only qualitative pre-/post-treatment changes. With re-
gard to evaluation of MCMs in NHPs, a limited number of studies have been performed [82]. A re-
cent study evaluating the efficacy of dalbavancin in rhesus monkeys resulted in fewer pulmonary
infiltrates detectable by CXR in treated versus non-treated animals [83]. Other studies have in-
stead relied on the characterization of CXR abnormalities using standard scoring systems. In
the evaluation of remdesivir [20] and baricitinib [22] in rhesus monkeys, this approach was
able to capture significant differences in lung involvement between treatment and control
groups; however, in another study, no difference between groups could be observed by
in vivo imaging despite detection of a treatment effect by lung pathology scores. An efficacy
evaluation of hydroxychloroquine (either alone or in combination with azithromycin) in SARS-
CoV-2-exposed crab-eating macaques used a semiquantitative CT score, compounding infor-
mation on lesion type and volume, and found no evidence of antiviral activity or clinical benefit
(as confirmed by recent meta-analyses) [56,84].

Recognizing that expert-generated qualitative or semiquantitative scoring systems (Figure 2)
require dedicated personnel, need true blinding, and are intrinsically susceptible to bias, it
is reasonable to foresee that current efforts in standardizing fully quantitative measures
of lung disease, either by semiautomatic quantification of CT imaging abnormalities
(e.g., longitudinally tracking the PCLH; Figure 4) or PET-CT abnormalities (e.g., tracking the
SUV in specific regions of interest or globally), are likely to add value in forging host–virus–
disease correlations and evaluating MCMs. In this evolving landscape, the ability to serially
evaluate quantitative noninvasive (i.e., without serial euthanasia) measures of lung disease in
a validated well-controlled experimental setting would significantly advance the evaluation of
MCMs in these models. Furthermore, the large data sets derived from advanced imaging
analyses have promise for the application of artificial intelligence (AI)-enabled machine-
learning approaches as ‘agnostic’ evaluation of the fundamental relationship between infec-
tion and disease [85]. These are being explored in human clinical settings [86–91] but may
be of higher yield in the controlled experimental settings afforded by animal modeling, includ-
ing in uncovering findings otherwise unattainable with current readouts, such as in detecting
subclinical organ involvement at unexpected sites for which pathological significance would be
determined subsequently. Harmonization of scoring systems, or bidirectional/multidirectional
exchange of CT images among research groups, and collaborations toward this end would likely
move the field forward.
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Outstanding questions
Can (and how can) severe COVID-19 be
modeled in NHPs?

What is the relative contribution of virus
(load, distribution, and kinetics) versus host
immunopathology to SARS-CoV-2-
associated lung abnormality?

How can imaging abnormalities best
be correlated to histopathological ab-
normalities? Can the relationship between
imaging abnormalities and the quality and
quantity of histopathological disease be
further defined?

Given experimental limitations, what mo-
dality or combination of modalities can
feasibly best characterize clinical dis-
ease?

What impact does disease severity have
on the relative value of each imaging mo-
dality?

What is the optimal way to harmonize
and standardize imaging data across
studies, research groups, and organi-
zations?

Can completely user-independent, fully
automated quantification metrics be de-
veloped to better enable evaluation of
medical countermeasures?

Can AI and radiomic approaches
further enhance the yield of medical
imaging data in the SARS-CoV-2/
COVID-19 NHP model?

What added value might be provided
by other imaging modalities
(e.g., optoacoustic imaging) or other
combinations (e.g., PET-MRI)?

What improvement would be provided
by the use of radiotracers other than
18F-FDG for PET-CT of the lungs, for ex-
ample, toward visualization of the
effective or pathological host immune re-
sponse?
Although requiring the adaptation of dedicated settings or hardware to preclinical ABSL-3/4
imaging settings, these and other techniques that are gaining interest in the clinic (Box 2) may pro-
vide additional insight into the pathophysiology of lung involvement in COVID-19 and may be ap-
plied in NHPs.

In NHPs, PET-CT deploying radiotracers other than 18F-FDG may provide additional insight into
specific pathophysiological processes related to COVID-19 to fulfill more hallmarks of the ideal
PET radiotracer for imaging inflammation, such as specificity and diagnostic value [92]. Some
of these PET radiotracers have already been examined in small animal models of COVID-19,
and studies in NHPs are ongoing. For example, 124I-iodo-N,N-diethyl-2-5,7-dimethylpyrazolo
[1,5-a]pyrimidine-3-acetamide (DPA-713), a radiotracer with translocator protein (TSPO) as
a target selectively trapped by activated macrophages, was found to accumulate in pneumonic
lesions in SARS-CoV-2-exposed golden hamsters [93]. The inflammation-specific peptide
DOTATATE [paired with gallium-68 (68Ga) or copper-64 (64Cu)], a radiotracer with specificity
for somatostatin receptor 2 (SSTR2), was developed to improve the diagnosis of neuroendo-
crine tumors [94]. However, because SSTR2 is expressed by several inflammatory cells, DOTATA
TE is being investigated as a potential tracer for evaluation of several conditions, including cardio-
vascular [95] and infectious diseases [96], and appears to be particularly advantageous for
imaging cardiac inflammation [92]. In one case report, DOTATATE was detected in an axillary
lymph node after COVID-19 vaccination [97,98]. PET radiotracers targeted to the ACE2 receptor
are also being developed [99]. Further in-depth studies investigating the expression levels of
imaging target molecules in key cellular populations (e.g., macrophages) may prove invaluable
in shaping the future landscape of PET-CT imaging in the context of COVID-19 [100].

Concluding remarks
Here, we have provided a detailed review of medical imaging in NHP models of COVID-19. Our
search was limited to studies of medical imaging in SARS-CoV-2-exposed NHPs published
online and found within online repositories. Several studies were limited in terms of sample size,
data availability, and methodological quality, and the reported findings should be interpreted
within that context. Nevertheless, these studies reflect current approaches. We argue that
advanced imaging tools add unique insight into (so far) poorly understood relationships of
SARS-CoV-2 exposure, infection, the host response, and disease presentation in the lungs.
Challenges to advanced imaging characterization in NHP models require careful consideration
and upstream investment that is likely well worth the return, not only in the current moment
(for SARS-CoV-2/COVID-19), but also in the longer term for numerous respiratory viruses and
diseases, known or as yet unencountered. Careful characterization of NHP models may enable
exploration of complex determinants and progression of disease (see Outstanding questions).
Advanced medical imaging of adequate resolution is vital to truly characterize (quality) and reliably
measure (quantity) disease without bias to understand and provide meaningful longitudinal
readouts of disease (in animal studies) and bridge to humans; thus, medical imaging will be an
increasingly important component of the NHP modelers’ toolkit.
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