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Abstract

Considerable progress has been made recently in defining the interactions of linker histones (H1s) 

within nucleosomes. Major advancements include atomic-resolution structures of the globular 

domain of full-length H1s in the context of nucleosomes containing full-length linker DNA. While 

these studies have led to a detailed understanding of the interactions and dynamics of H1 globular 

domains in the canonical on-dyad nucleosome binding pocket, more information regarding the 

intrinsically disordered N-terminal and C-terminal domains is needed. In this review, we highlight 

studies supporting our current understanding of the structures and interactions of the N-terminal, 

globular and C-terminal domains of linker histones within the nucleosome.
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Introduction

Nucleosomes not only represent the initial level of packaging of the eukaryotic genome, but 

also are a critical node of connectivity in condensed chromatin structures. Each nucleosome 

contains a nucleosome core region, linker DNA, and in metazoans, most are bound by 

one molecule of linker histone (H1). [1–3]) (see Box 1). H1s stabilize the compaction of 

nucleosome arrays into higher order chromatin structures and are essential proteins in higher 

organisms [4]. H1s bind to the DNA surface that crosses the nucleosomal dyad, as well 

as to the entering/exiting linker DNA to stabilize DNA wrapping, and bring the two linker 

DNA strands closer together to form a stem-like structure [2,3,5]. The resulting decreased 

entry-exit angle of nucleosomal linker DNAs might contribute to a unique zigzag folding 
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pattern of nucleosomes within oligonucleosome arrays which further facilitates chromatin 

compaction and gene regulation [3,6–9]. Although the detailed structure of the protein, 

including the H1 globular domain, and DNA organization within the nucleosome core 

has been determined at high resolution [1,10], many questions remain regarding how the 

disordered NTD and CTD of H1 interacts with the nucleosome and linker DNA.

In higher eukaryotes, H1s have a tripartite structure composed of a short (20-35 residue) 

N-terminal domain (NTD), followed by a conserved ~80 residue trypsin-resistant central 

globular domain (GD) and by a long intrinsically disordered ~100 residue C-terminal 

domain (CTD), which accounts for about half of the H1 sequence [2] (Figure 1).

The N-terminal Domain

The NTD exhibits greater sequence divergence both across species and between different 

H1 subtypes than the GD, but it contains two distinct subdomains, one with an N-terminal 

region enriched in hydrophobic residues, devoid of basic amino acid residues, and another 

region closer to the GD that is enriched in basic amino acid residues and contains an ARKS 

sequence similar to that found in the H3 tail domain [11,12]. Indeed, the NTD is acetylated 

and phosphorylated like the core histone tails [13–16]. While the NTD is not required for 

higher-order chromatin structure formation, replacing it with that of another H1 variant, or 

point mutants within the NTD appears to affect H1-nucleosome binding affinities [17–19].

The amino acid composition of the H1 NTD is characteristic of an intrinsically disordered 

region (IDR). H1 NTD peptides are unstructured in aqueous solution but acquire α-helical 

structure in the presence of helix-stabilizing solvents or upon interaction with DNA 

[20]. Molecular dynamics simulations indicate that NTDs undergo a disorder-to-order 

transition upon nucleosome binding, with extents of α-helical structure correlating with the 

nucleosome binding of the H1 [21]. Unfortunately, the dynamic nature of the NTD precludes 

a detailed picture of H1 NTD secondary structure in H1-nucleosome complexes [3,22,23].

The Globular Domain

The ~80 amino acid residue globular domain is required and sufficient for structure-specific 

binding of nucleosomes but is deficient in promoting chromatin condensation [4,24,25]. 

Interestingly, the H1 GD alone protects an additional 20 base pair (bp) linker DNA from 

micrococcal nuclease digestion beyond the 147 bp core DNA protected by the histone 

octamer [24]. The GD is more conserved among subtypes than either the N- or C-terminal 

domains, and unlike these domains, it adopts a stable ‘winged’ helix-turn-helix DNA 

binding motif [26,27] that interacts with the exposed minor groove at the nucleosome dyad, 

and with the two linker DNAs [3,22,23].

Indeed, multiple structural studies have shown that a wide variety of H1 subtypes interact 

with the DNA at the nucleosomal dyad and with both linker DNAs, including H1.5 [5], 

Xenopus H1.0 and B4 [3,7], GH5 [22], and human H1.0, H1.4 and H1.10 [23,28,29]. In 

contrast, NMR data suggested that the sole H1 from Drosophila containing four ‘stabilizing’ 

mutations in the GD and lacking the NTD binds in a position off the nucleosome dyad, 

bridging the central wrap and one linker DNA [30]. Moreover, a later NMR analysis 
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found that replacing five residues in the free GD of H5 with the corresponding residues 

in Drosophila H1 shifts the binding mode to off-dyad [31], and an early cryo-EM study 

also reported a distinct off-dyad binding mode for human H1.4 when in complex with 

a condensed 12-nucleosome array [32]. However, the 12-nucleosome array was fixed by 

glutaraldehyde, which appears to affect H1 binding [28], and all high-resolution structures 

of full-length H1s bound to nucleosomes show GDs located in only the on-dyad position 

[23,33]. Moreover, a recent MD simulation indicates the GD of Drosophila H1 has a 

significant enthalpic preference for on-dyad vs off-dyad binding, which may compensate 

for the greater entropic penalty for constraint of linker DNA predicted to occur upon GD 

binding at the dyad site [34]. However, the CTD contributes substantially to linker DNA 

organization, and helps constrain the dynamics of the GD [5,35,36]. Thus, taken together, 

current data strongly suggest the on-dyad position is preferential in the context of the 

full-length H1s.

The C-terminal domain (CTD)

H1 CTD is required for high affinity nucleosome binding of H1s both in vitro and in vivo, 

and is essential for chromatin condensation [17,24,37,38]. FRAP (fluorescence recovery 

after photobleaching) experiments indicate H1.5 and H1.4 have the highest nucleosome 

binding affinity, while H1.3 and H1.0 have intermediate affinity, and H1.1 and H1.2 

have the lowest affinity [17]. Interestingly, the binding affinities seem correlated with 

the length of H1 CTD, which decreases in the order of H1.5, H1.4, H1.3, H1.2 and 

H1.1. However, H1.0 is an exception, as it exhibits intermediate binding affinity, but has 

the highest positive charge density in the CTD (42 basics residues in 97 amino acids). 

While the primary sequences of H1 CTDs are not well conserved among H1 isoforms, 

the amino acid compositions are similar across species and subtypes, with about 40% 

of CTD residues consisting of basic amino acids, mostly lysine, amounting to a net 

positive charge of 30 to 50 |e| [39], consistent with the function of shielding the negatively 

charged DNA in condensed chromatin [40,41]. These positively charged residues are evenly 

distributed across the CTD with about 70% of the Lys residues in doublets. The CTDs 

of mammalian H1 isoforms contain one or more copies of the consensus sequence, (S/

T)-P-X-(K/R), where the first residue can be phosphorylated by cyclin-dependent kinases 

(CDKs) (here, X represents any amino acid). H1 CTDs also include a significant fraction 

of residues represented by alanine and proline, and an almost complete lack of acidic and 

aromatic residues, characteristic of IDRs [42]. Indeed, scrambling the primary sequence 

of the H1 CTD did not affect its chromatin condensing function, indicating that the 

amino acid composition, rather than the specific sequence, is the basis for its chromatin 

condensing ability [37]. Although the H1 CTD exists as a random coil in aqueous solution, 

numerous studies indicate that CTD peptides can adopt folded structures in the presence 

of secondary structure stabilizers or upon interaction with DNA [43,44]. Importantly, the 

CTD undergoes a significant compaction consistent with a disorder-to-order transition upon 

binding nucleosomes [45,46]. However, the fully compact state may still retain the dynamic 

properties of the disordered peptide [23,47]. The intrinsic disorder within the H1 CTD 

and the entropic cost of ordering this domain upon binding allow fine control over its 
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DNA binding affinity, balance of extensive charge neutralization, and permit rapid and 

promiscuous binding to its physiological targets.

The H1 CTD may serve as a nexus for signaling in chromatin. The CTD inhibits 

epigenetic posttranslational modification of the H3 tail domain in chromatin, and modulates 

its interactions with linker DNA [48]. In addition, H1 CTD structure is linked to the 

compaction state of the chromatin fiber at the earliest levels of chromatin folding, as 

extended ‘beads on a string’ structures transition to contacting zig-zag arrays [49]. H1 

CTD structure is dependent upon linker trajectory, suggesting a mechanism by which 

chromatin structure and CTD structure may be coupled [49]. Of note, H1 CTD structure is 

distinct in oligo-nucleosomes compared to mononucleosomes and can be altered by binding 

of constituents to the linker DNA. [49]. Importantly, several chromatin modifications 

associated with transcriptional permissibility or other functional chromatin states appear 

to impinge on the H1 CTD. HMGNs, architectural transcription factors that bind to the 

nucleosome core, are enriched in active regions of chromatin, however the mechanism 

by which they promote H1 exchange and transcription remain unclear [50]. Interestingly, 

HMGNs bind to H1-bound nucleosomes, abrogate H1-dependent stabilization of compact 

nucleosomal arrays, and alter H1 CTD conformation in mononucleosomes [51]. In addition, 

transcription-associated acetylation in the H3 tail domain alters H1 CTD conformation in 

manner that appears independent from changes in linker DNA conformation [52]. Finally, 

cell-cycle dependent phosphorylation of H1 CTD directly alters the extent of H1 CTD 

condensation [53,54]. Evidence suggests that the effect of phosphorylation may be through 

structural changes rather than changes in charge [53,54]. This notion is supported by the fact 

that the CTD is most heavily phosphorylated in mitosis where the chromatin is in its most 

compact state.

H1-nucleosome structures

Obtaining high-resolution structures of H1-bound nucleosomes by cryo-EM has been 

challenging due to highly dynamic binding of linker histones to nucleosomes and the 

flexibility of the linker DNA arms [3,55]. Of note, binding of a single-chain antibody 

fragment to the core histone surfaces of the nucleosome was found to stabilize dissociation 

and increase resolution in cryo-EM [23,56], but may alter the dynamic of histones and 

DNA, and cause allosteric changes in structure [57,58]. Nevertheless, several high-resolution 

(3-5 Å) H1-nucleosome structures containing full-length linker histones and nucleosomes 

with full-length linker DNA have been elucidated by both X-ray crystallography and cryo-

EM [3,7,23] (Table 1), including a recent crystal structure of an H1-containing 355 bp 

dinucleosome which showed one copy of H1 bound in the on-dyad position and a second 

H1 positioned in between the two nucleosomes [29]. In addition, informative structures 

containing partial H1 molecules, and/or partial segments of linker DNA, have also appeared 

[3,22]. (Of note, no structures of a true “chromatosome” [59] have yet appeared (See 

Table 1)). All high-resolution structures with full-length proteins show very similar on-dyad 

binding for the GD, and asymmetric interactions with the two linker DNAs (Figure 2) 

[3,22,23]. The GD makes stronger interactions with the linker DNA that faces its third helix 

(α3), thereby coining the term “α3-linker”. This helix represents a critical DNA-binding 

interface in other DNA-interacting winged-helix proteins as well [60]. The second linker, 
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the “L1-linker”, faces the first loop region, L1, which separates helices α1 and α2. This 

loop contains a critical Arginine, R42 in Xenopus H1.0, that is well-conserved across 

H1 subtypes [3]. The dyad interface is broader and more complex as spanned by the 

charged and polar residues of the β2-L3-β3 segment as well as contributions from some 

of the N-terminal end residues of helix α2. Residues of the dyad interface are generally 

well-conserved, albeit with exceptions. For example, N110 of human H1.10, a position 

generally occupied by a serine in most isoforms, permits a firm dyad-binding as seen in 

cryo-EM and verified by molecular dynamics [23].

While interactions of the NTD and CTD are, as yet, not well-defined due to their highly 

dynamic nature (see above), hints of CTD location are gleaned from a comparison of 

cryo-EM structures of full-length H1 and a CTD deletion, where the H1 CTD appears to be 

associated with the L1 linker DNA [3]. In the absence of H1, the DNA linkers are highly 

flexible likely due to “breathing” of the histone-DNA interactions near NCP exit (Bednar 

et al, 2017). Binding of linker histones and localization of the CTD stabilizes the most 

convergent linker DNA conformation and draws them closer together to form a stem-like 

structure [3,23,35]. Hydroxyl radical footprinting suggests that the CTD aligns along one 

side of the linker DNA arms in the center of the DNA stem structure [5,33,35]. Indeed, the 

C-terminus of H1 was found to be responsible for decreasing nucleosome linker flexibility 

and the formation of the stem structure of the linkers [Meyer, 2011; Bednar, 2017). In 

the stem structure, the angles between the dyad and the linkers showed a very narrow 

distribution.

Outlook

Of immediate interest is fixing the location(s) and interactions of the H1 NTD and CTD. 

Questions include which basic residues (all?) interact with DNA, where the primary 

interactions occur and to what extent these domains adopt secondary and tertiary structures 

and equilibrate with intrinsically disordered states. Other questions include whether linker 

histones on adjacent nucleosomes orient at all with respect to each other, and to what 

extent the H1 CTDs on adjacent nucleosomes interact or cooperate in the formation of 

condensed chromatin. What are the structural differences between CTDs of H1 isotypes? 

Moreover, how exactly do chromatin modifications including H3 tail acetylation, CTD 

phosphorylation, and HMGN binding modulate CTD structure? Finally, given the influence 

of chromatin modifiers and posttranslational modifications on H1 structure, it will be 

important to understand how CTD structure and linker DNA trajectory are coupled and 

to what extent this coupling influences chromatin folding.
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Definitions of Basic Chromatin Terms

• Nucleosome core: The portion of the nucleosome consisting of the core 

histone octamer and the ~147 ± 1-2 bp* of DNA in tight association with the 

core histones.

• Nucleosome core particle: Entity produced by micrococcal nuclease (MNase) 

digestion of native or reconstituted chromatin, containing 147 ± ~10 bp** of 

DNA and the core histone octamer.

• Chromatosome: Entity produced by MNase digestion of native or 

reconstituted chromatin containing ~ 168 ± ~10** bp DNA (roughly 

symmetrically distributed to either end of the nucleosome core region), the 

core histone octamer, and one molecule of full-length linker histone (ref 

59). (NB: The term “Chromatosome” should not be used to indicate a 

full nucleosome bound by a linker histone; continued MNase digestion of 

chromatosomes results in nucleosome core particles.)

• Nucleosome: The complete basic repeating subunit of chromatin, typically 

contains ~200 ± 40 bp DNA, a nucleosome core, variable lengths of linker 

DNA and, in many instances, a single molecule of a linker histone. Thus a 

nucleosome may or may not contain H1.

*As defined by Luger et al., 1997, in the absence of sequence effects, the nucleosome 

core must contain an odd number of base pairs as the nucleosome dyad passes through 

a central base pair. The noted variance in total DNA within the core region is due to 

sequence-dependent variations in DNA twist [Muthurajan, 2003]

**The estimate of variance in DNA fragment sizes is due to the small variance in DNA 

twist noted above, plus a larger variance due to the sequence-dependent DNA cleavage 

activity of MNase.
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Figure 1. Tripartite structure of metazoan linker histone.
Model of H1 showing the N-terminal domain (NTD), globular domain (GD), and the 

C-terminal domain (CTD). Model of the GD of built from 5NL0 (Xenopus H1.0b) [3]. 

The disordered regions are based on the FASTA of H1.0b. Images rendered using PyMol 

version 1.8 and VMD version 1.9.4. The location of Lysines (Lys), prolines (Pro) and serines 

within SPXK motifs (Ser) are indicated. Italicized numerals indicate residues delineating 

domains.
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Figure 2. H1 globular domain located in the dyad position within a 197 bp nucleosome bound by 
full-length H1.0b
(5NLO) [3]. Left: Nucleosome, rotated ~40° about the vertical (dyad) axis from normal for 

clarity. Note that the NTD and CTD were not included in the model due to disorder. Right, 

blowup of up the area in the box (right) showing details of the globular domain orientation 

and interactions with both linker DNAs. Images prepared as in Figure 1, see text for details.
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Table 1.

High-resolution structures of nucleosomes bound by H1 or partial H1 molecules.

Protein Organism Protein Method Reference GD location

Full-length nucleosome with full-length H1

H1.0 Xenopus Full length cryoEM Bednar et al., 2017 On-dyad

H1.0 Xenopus Full length crystal structure Bednar et al., 2017 On-dyad

H1.0 Human Full length cryoEM Zhou et al., 2021 On-dyad

H1.4 Human Full length cryoEM Zhou et al., 2021 On-dyad

H1.10 Human Full length cryoEM Zhou et al., 2021 On-dyad

GH1.10-ncH1.4 Human Full length cryoEM Zhou et al., 2021 On-dyad

Partial H1/partial DNA

H1.5del50 Human 50 residue
CTD- deletion

cryoEM Bednar et al., 2016 On-dyad

GH5 Chicken GD of H5 crystal structure Zhou, 2015 On-dyad
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