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Abstract

Monocytes are innate immune cells that develop in the bone marrow and are continually released 

into circulation, where they are poised to enter tissues in response to homeostatic or inflammatory 

cues. Monocytes are highly plastic cells that can differentiate in tissues into a variety of 

monocyte-derived cells to replace resident tissue macrophages, promote inflammatory responses, 

or resolution of inflammation. As such, monocytes can support tissue homeostasis as well as 

productive and pathogenic immune responses. Recent work shows previously unappreciated 

heterogeneity in monocyte development and differentiation in the steady state and during 

infectious, autoimmune, and inflammatory diseases. Monocyte-derived cells can differentiate 

via signals from cytokines, pattern recognition receptors or other factors, which can influence 

development in the bone marrow or in tissues. An improved understanding of these monocyte-

derived cells and the signals that drive their differentiation in distinct inflammatory settings could 

allow for targeting these pathways in pathological inflammation.
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Introduction

In the past decade, we have come to understand monocyte development, differentiation, 

and homeostasis in much greater detail. Much of this fundamental work has been in 
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the mouse system, which is infinitely tractable with sophisticated genetic, cell labeling 

and tracking techniques. However, recent studies in human systems have given us new 

insights into these same processes. Several excellent recent reviews have been published 

on monocyte development, differentiation, and homeostasis in the steady state [1–3]. Here, 

we focus on these processes during infection and inflammation, highlighting signals that 

lead to alterations in these programs during infectious, inflammatory, and autoimmune 

diseases, which can lead to changes in progenitor production of monocytes and in monocyte 

differentiation in tissues.

Blood monocytes comprise at least three populations of cells, typically defined by cell 

surface receptor expression: the “classical” or “inflammatory” monocytes (defined as Ly6Chi 

in mouse and CD14++CD16- in humans), the “non-classical” or “patrolling” monocytes 

(Ly6Clo in mouse, CD14+CD16++ in humans), and the “intermediate” monocytes. Both 

mouse and human monocytes share high CCR2 and intermediate CX3CR1 expression 

on classical, inflammatory monocytes, and low CCR2 and high CX3CR1 expression on 

non-classical, patrolling monocytes [4–6]. Classical monocytes are the major population, 

comprising ~85% of blood monocytes, and give rise to patrolling monocytes through an 

intermediate monocyte transition [7,8]. Classical monocytes are also the principal monocyte 

population that differentiate into various macrophage and monocyte-derived dendritic cell 

(DC) populations. Therefore, classical monocytes are highly plastic cells on which we will 

focus.

Monocyte development and heterogeneity

Myelopoiesis in the bone marrow (BM) begins with committed myeloid progenitors (CMPs) 

that generate monocytes, neutrophils, and dendritic cells. It was originally thought that 

a simple linear pathway leads from common myeloid progenitors (CMPs) to classical 

monocytes via granulocyte macrophage progenitors (GMPs), monocyte dendritic cell 

progenitors (MDPs), and finally a restricted common monocyte progenitor (cMoP). Work 

by Yanez et al. showed that monocyte development in the BM proceeds via two parallel 

pathways during homeostasis—one more closely related to neutrophils, and one more 

closely related to DCs [9]. These pathways diverge at the common myeloid progenitor 

(CMP), with some monocytes developing in a CMP→GMP→MP→monocyte trajectory, 

while other monocytes develop in a CMP→MDP→cMOP→monocyte trajectory (Figure 

1A). In vitro differentiation and in vivo adoptive transfer studies coupled with gene 

expression analyses showed that these pathways give rise to highly related, yet distinct 

Ly6ChiCCR2hi classical monocytes. GMP-derived monocytes express higher levels of genes 

typically associated with neutrophils and have been termed neutrophil-like monocytes, while 

MDP-derived monocytes express genes involved in antigen presentation and DC function 

and have been termed DC-like monocytes [9]. MHCII+CD209a+ monocytes in the blood 

had previously been identified by Menezes et al. as progenitors of monocyte-derived DCs 

[10] and are likely the same population of MDP-derived monocytes characterized by Yanez 

et al. [9]. A recent study using clonal barcoding of hematopoietic progenitors followed by 

in vitro and in vivo differentiation and single cell (sc)RNA-Seq of progeny also supports 

these two routes of monocyte differentiation [11]. scRNA-Seq studies of human peripheral 

blood myeloid cells have also supported heterogeneity within the CD14hi classical monocyte 
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population [12,13], though whether similar parallel monocyte development pathways exist in 

humans remains to be determined.

Monocyte development in the bone marrow during inflammation or infection

The process of emergency myelopoiesis induces preferential myeloid over lymphoid 

development, yielding increased monocytes and neutrophils to rapidly respond to pathogens. 

A variety of signals can promote emergency myelopoiesis, including both cytokines and 

direct sensing of pathogen products through pattern recognition receptors such as Toll-like 

receptors (TLRs) (Figure 1B). These signals can act on cells as early as hematopoietic 

stem cells (HSCs) and multipotent progenitors (MPPs), as well as cells already committed 

to the myeloid lineage, such as CMPs (reviewed in [14–16]). All hematopoietic stem and 

progenitor cells express some TLRs that can directly drive macrophage differentiation in 
vitro, though in vivo TLRs can have both direct and indirect effects via cytokines [17–23]. 

TLR signaling in vivo differentially induces monocyte expansion downstream of GMPs 

and MDPs, giving rise to GMP-derived monocytes after LPS treatment and MDP-derived 

monocytes after CpG DNA treatment (Figure 1A, Table 1) [9]. However, whether this effect 

is direct or indirect remains an open question. More recently, the inflammasome family 

of innate sensors has been implicated in driving emergency myelopoiesis through mature 

IL-β release during injury [24]. Interestingly, Tyrkalska et al. demonstrated that caspase-1 

cleavage of GATA-1, a key erythroid lineage determining factor, in HSCs promoted 

myelopoiesis over erythropoiesis during chronic infection in a zebrafish model (Figure 1C) 

[25]. Thus, infection and inflammation can be sensed in the BM to shape myeloid output.

Unique monocyte differentiation fates during inflammation and signals driving these fates

Under homeostatic conditions, monocytes migrate into tissues and differentiate into 

macrophages or specialized monocyte populations depending on environmental signals or 

can remain as a monocyte reservoir. During infection or inflammation, monocytes rapidly 

enter inflamed tissues, and work by several groups has identified unique monocyte fates 

with specialized functions in different inflammatory settings. Here, we highlight several 

monocyte-derived populations defined recently and discuss signals identified to drive their 

differentiation. Although the terminology defining these cell populations (e.g. monocyte vs. 

monocyte-derived macrophage vs. monocyte-derived DCs) often differs depending on the 

biological context, it is important to note that some of these populations may overlap due to 

a lack of consistent markers distinguishing these cells. Thus, it is important to keep an open 

mind when comparing cells described by different laboratories.

Early work often focused on classical monocytes entering inflamed tissues and becoming 

bactericidal, inflammatory macrophages. Pioneering work from Eric Pamer’s lab defined 

the role of the chemokine receptor CCR2 in releasing mature classical monocytes from the 

BM into circulation during infection, increasing available blood monocytes for recruitment 

into tissues [26]. They used Listeria monocytogenes infection to define signals for monocyte 

release from the BM and monocyte differentiation in the spleen required for control of 

this infection. Monocytes upregulate inflammatory markers during infection and participate 

in bacterial clearance (Table 1). These cells were initially called Tip-DCs (TNF iNOS-

producing DCs) [27,28] and have since been identified in many infectious and inflammatory 
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settings [29]. Interestingly, this splenic monocyte differentiation process required NK cell-

derived interferon (IFN) γ [30]. More recently, the circulating precursors that differentiate 

into these iNOS+ inflammatory macrophages during Listeria infection were identified as 

a specific classical monocyte subpopulation [10] (Table 1), but whether these monocytes 

include or overlap with the GMP-derived monocytes described by Yanez et al. [9] has not 

been investigated.

In multiple inflammatory settings, monocytes differentiate into CD11c+MHCII+ 

inflammatory macrophages that promote inflammation, similar to the Tip-DCs described 

above. Interestingly, these macrophages can have a protective or pathogenic role, depending 

on the situation. Several studies found that a commonality in these CD11c+MHCII+ 

macrophages is the dependence on the transcription factor IRF5 for their differentiation 

from monocytes. During pathogenic chikungunya virus infection, monocytes required IRF5 

to differentiate into iNOS+ cells in the lymph nodes draining the site of infection, and 

these cells disrupted protective virus-specific B cell responses [31]. In atherosclerosis, 

extravasation and differentiation of monocytes to CD11chi macrophages occurs at sites of 

plaque formation where they contribute to lesion development. IRF5 deficiency skewed 

monocyte differentiation away from pathogenic CD11chi macrophages towards CD206+ 

macrophages suggested to be of a M2 (anti-inflammatory, tissue repair) phenotype, 

thereby reducing aortic lesion size [32]. Likewise, in a model of obesity-associated 

metabolic dysfunction, IRF5-deficient mice showed increased M2 macrophage number 

in subcutaneous white adipose tissue compared to control mice, ameliorating metabolic 

dysfunction [33]. These studies are reminiscent of earlier in vitro findings that IRF5 

promotes M1 (antimicrobial, inflammatory) and represses M2 fate [34]. More recently, 

using a Helicobacter hepaticus-induced colitis model, Corbin et al. found that myeloid IRF5 

deficiency protected mice from pathogenic intestinal inflammation [35]. The investigators 

used a combination of mixed BM chimeras and scRNA-Seq to demonstrate that IRF5 was a 

critical factor in differentiation of Ly6Chi monocytes into pathogenic CD11chi macrophages 

in the inflamed colon. Although the upstream signals and receptors were not elucidated, it 

is clear that IRF5 promoted the differentiation of pathogenic monocytes/macrophages in this 

model. Together, these studies show IRF5 is a key regulator of monocyte differentiation into 

CD11c+MHCII+ macrophages during inflammation. Although the signals inducing IRF5 

activation were not identified in many of these studies, previous work has shown that in vitro 
GM-CSF promotes IRF5 expression in macrophages [34], and TLR signaling is the best 

characterized pathway leading to IRF5 signaling during inflammatory responses [36,37].

In addition to providing pathogen clearance functions during infection, monocyte-derived 

cells can also protect against immunopathology. During Toxoplasma gondii infection in the 

gut, unique regulatory monocytes appear in the small intestinal lamina propria that produce 

the lipid mediator PGE2 and repress local neutrophilic inflammation [38]. Interestingly, 

these regulatory monocytes depend upon specific conditioning of cMOPs in the BM that 

develop into Ly6Chi monocytes expressing MHCII, Sca-1 and high levels of CX3CR1 [39]. 

Similar to monocyte-derived Tip-DCs during Listeria infection, these regulatory monocytes 

depend upon IFNγ, although they are not pro-inflammatory. Whether this difference is due 

to IFNγ acting on a different cell (cMOP vs. Ly6Chi monocyte), location (BM vs. spleen), or 

in combination with other soluble factors is not yet clear. In the DSS-induced colitis model, 
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Ikeda et al. also identified a Ly6ChiYm1+ monocyte that expands in the BM, is recruited 

to the inflamed colon, and promotes tissue repair [40]. These cells are reminiscent of the 

cells described by Grainger et al. in T. gondii infection [38], although the signals from the 

injured intestine were not identified in this study. Thus, cytokines produced during tissue 

inflammation can alter BM myelopoiesis to dampen excessive inflammation and may have 

different effects in distinct infections.

Monocytes can also differentiate into cells that promote tissue pathology. Segregated-

nucleus-containing atypical monocytes (SatM) promoted fibrosis following airway exposure 

to bleomycin [41]. SatMs have some similarities to neutrophil-like monocytes seen in the 

steady state [9] in that they expressed neutrophil granule proteins, such as myeloperoxidase 

and neutrophil elastase, and they differentiated in the BM from GMPs. Unlike neutrophil-

like monocytes, SatMs developed via a dedicated progenitor without a Ly6Chi monocyte 

stage. However, like all monocytes, SatMs expressed CD115 and by gene expression 

analysis, clustered more closely with Ly6Chi monocytes than neutrophils. Thus, similar to 

T. gondii infection [38], during chemically-induced lung fibrosis, the tissue state is relayed 

to the BM to affect monocyte differentiation in a specific manner. Whether these SatMs 

promote fibrosis in tissues other than the lung and develop in response to diverse stimuli, 

and what signals feed back to the BM to influence myelopoiesis and promote this fate, 

remain to be determined.

During sustained systemic inflammation, we identified a unique monocyte differentiation 

pathway for macrophages specialized for hemophagocytosis [42]. We first identified 

inflammatory hemophagocytes (iHPCs) in a mouse model of the autoimmune disease 

systemic lupus erythematosus (SLE) driven by transgenic overexpression of TLR7 

[43], which develop severe anemia and thrombocytopenia reminiscent of Macrophage 

Activation Syndrome (MAS) [42]. iHPCs differentiated from Ly6Chi monocytes and were 

identified in multiple blood-rich organs. Interestingly, iHPCs correlated with anemia and 

thrombocytopenia in this lupus-like MAS model, and depletion of Ly6Chi monocytes led 

to a rescue from MAS. Similar to inflammatory macrophages discussed above, IRF5 

participated in the differentiation of iHPCs downstream of TLR7 signaling. iHPCs were 

also associated with anemia in a model of severe malarial anemia, where signaling through 

the adaptor MyD88 and the chaperone UNC93b1 was required for iHPC differentiation, 

implicating endosomal TLR signaling as an important initiating signal in this monocyte 

differentiation process [42]. Together, these findings suggest differentiated monocytes 

promote pathological hemophagocytosis both in autoimmunity and infection.

Another monocyte fate preferentially seen during inflammation is the monocyte-derived 

DC (moDC), originally defined in humans by monocyte differentiation in the presence of 

GM-CSF and IL-4. In the past, many mouse monocyte-derived populations have been called 

moDCs due to the upregulation of CD11c and MHCII on cells during bacterial and viral 

infections, including the Tip-DCs discussed above. However, the recent finding that CD11b+ 

classical cDC2s express Ly6C in many inflammatory situations calls into question many 

previous descriptions of moDCs (reviewed in [44]). Even excluding these newly defined 

cDC2s, whether moDCs should be called DCs remains controversial. To some, a strict 

definition of a DC requires the ability to migrate in a CCR7-dependent manner from tissues 

Orozco et al. Page 5

Curr Opin Immunol. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to lymph nodes via lymphatics, where the cells prime naïve T cells. Following this view, 

moDCs are not DCs [45]. To others, moDCs are monocyte-derived cells, developmentally 

distinct from the classical DC (cDC) lineage that stimulate activated or effector T cells in 

tissues via MHCII [44]. By this definition, many monocyte-derived cells in tissues could be 

termed moDCs if they can locally present antigens to T cells. Further discussion of moDCs 

is beyond the scope of this review.

As previously discussed, classical monocytes differentiate into patrolling monocytes during 

homeostasis, a process that is accelerated during TLR7 and TLR9-mediated inflammation 

as well as by Nod2 signaling [46–48]. This process also occurs in models of lupus-like 

disease, where patrolling monocytes increase in the blood and accumulate in the kidney in 

a TLR7/9 and MyD88-dependent manner, driving the development of glomerulonephritis, 

a common complication of lupus [49]. This is supported by scRNA-Seq studies of kidney 

leukocytes in individuals with lupus nephritis [50]. During TLR7-driven inflammation, 

Notch2 was required for patrolling monocyte differentiation, though the Notch ligands 

contributing to patrolling monocyte differentiation were not identified [51,52]. In the 

absence of Notch2, TLR7 signaling drives classical monocyte differentiation to moDCs 

and F4/80+MHCII+ macrophages [52], highlighting the differentiation choices of monocytes 

in different inflammatory settings and the signals that balance those pathways.

Conclusions

As highlighted here, in recent years we have begun to appreciate that there is heterogeneity 

in classical, inflammatory monocytes both during homeostasis and during inflammation. 

This heterogeneity is seen in monocyte development in the bone marrow, in blood monocyte 

populations, and in differentiation of monocytes once they enter tissues. The inflammatory 

contexts of monocyte differentiation we have reviewed here vary widely, including a variety 

of infections, autoimmune diseases, and other pathologies (Figure 2). While monocyte 

differentiation fates can promote protective or pathogenic immune responses, some common 

themes emerge. These include the conditioning of monopoiesis in the bone marrow in 

response to infection or inflammation in distal tissues, a common role for IRF5 in promoting 

monocyte to inflammatory macrophage differentiation, and an awareness that disrupting one 

monocyte differentiation pathway can promote differentiation down an alternative pathway.

The work reviewed here is most likely the tip of the iceberg in defining monocyte 

differentiation pathways during inflammation. Although it appears that monocyte-derived 

populations share some functional and developmental similarities across different 

inflammatory contexts, much work remains to better understand the development, 

localization, and function of these cells. As we define new specialized monocyte fates during 

specific infections or diseases, it will be important to compare them to previously defined 

populations in the literature, regardless of whether we call them monocytes, macrophages, 

or moDCs. If not, we will end up with an overabundance of overlapping monocyte-derived 

populations. Understanding the signals that drive differentiation of these distinct populations 

will help classify these monocyte-derived cells and will bring greater clarity to the field. 

Additional effort should go into defining monocyte differentiation during specific disease 

states in humans and relating these to the populations and pathways identified in mouse 
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models. In particular, monocyte-derived cells in inflamed target tissues in autoimmunity, 

such as the joints in rheumatoid arthritis and the intestines in inflammatory bowel disease, 

have been characterized by cell surface markers and cytokine production. New work 

characterizing these cells by scRNA-Seq should be viewed not only through the lens of 

pathogenic functions of these cells, but also related to monocyte differentiation signals and 

pathways that could be targeted therapeutically [50,53,54].
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Highlights

• Monocyte differentiation varies widely during inflammation resulting in 

protective or pathological functions

• Emergency myelopoiesis can be induced by direct or indirect signals

• Monocyte differentiation may be conditioned in the bone marrow by signals 

from tissues

• IRF5 is implicated in inflammatory macrophage differentiation

• Patrolling monocyte differentiation is accelerated by TLR7 and Notch2 

signaling

Orozco et al. Page 11

Curr Opin Immunol. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: Bone marrow myelopoiesis during inflammation.
A) Development of DC-like and neutrophil-like monocytes in the bone marrow. HSCs and 

MPPs generate CMPs that are committed to the myeloid lineage, at which point monocyte 

development pathways diverge. CMPs can differentiate into MDPs that generate cMOPs, 

that in turn make DC-like monocytes. CMPs can also differentiate into GMPs that generate 

MPs, which then make neutrophil-like monocytes. In vivo treatment with LPS promotes 

the development of DC-like monocytes, whereas treatment with CpG DNA promotes 

the development of neutrophil-like monocytes. B) Emergency myelopoiesis promotes 

myelopoiesis over lymphopoiesis in response to infection or inflammation. This can be 

via direct signals, such as TLRs, on HSCs, MPPs, or CMPs or via indirect signals, such as 

cytokines made by other cells or progenitors themselves. C) In a zebrafish model, caspase-1 

activation in HSCs caused the cleavage of GATA-1, a key transcription factor promoting 

megakaryocyte and erythrocyte development, leading to increased output of monocytes and 

neutrophils and reduced megakaryocytes and erythrocytes.
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Figure 2: Monocyte fates induced by inflammation.
A variety of inflammatory signals can act on myeloid progenitor cells or monocytes to 

induce differentiation into specialized monocyte-derived populations. Signals can act in a 

direct (e.g. Toll-like receptors) fashion or through indirect mechanisms (e.g. cytokines) to 

promote these cell fates. Different combinations of markers and gene expression patterns 

allow for the identification of monocyte-derived cell populations. TLR, Toll-like receptor; 

Hh colitis, Helicobater hepaticus-induced colitis; CHIKV, chikungunya virus; T. gondii, 
Toxoplasma gondii; MDP, Monocyte-DC Progenitor; GMP, Granulocyte Macrophage 

Progenitor; SatM, segregated-nucleus-containing atypical monocyte; iHPC, inflammatory 

hemophagocyte; moDC, monocyte-derived dendritic cell.
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