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Abstract

Myeloid cells (macrophages, monocytes, dendritic cells, and granulocytes) survey the body 

for signs of infection and tissue damage and regulate tissue homeostasis, organogenesis, and 

immunity. They express receptors that initiate the inflammatory response, send signals that alter 

the vascular and cytokine milieu, and oversee the recruitment, differentiation, and activation of 

other myeloid and adaptive immune cells. Their activation must therefore be tightly regulated, 

optimized for maximal innate-immune protection with a minimum of collateral tissue damage or 

disorganization. In this review we discuss what it means for myeloid cells to become activated, 

with emphasis on the receptors and signaling molecules important for the recognition of pathogen- 

and damage-associated molecular patterns. We also outline how these signals are regulated by the 

steric properties of proteins, by adhesive and cytoskeletal interactions, and by negative feedback to 

keep inflammation in check and support healthy tissue development and homeostasis. Throughout 

the text we highlight recent publications and reviews that illustrate key elements of myeloid-cell 

regulation and direct readers therein for a comprehensive bibliography.
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Myeloid cells (macrophages, monocytes, dendritic cells, and granulocytes) survey tissues for signs 

of infection and damage and regulate tissue homeostasis, organogenesis, and immunity. They 

express receptors that initiate the inflammatory response, alter the vascular and cytokine milieu, 

and oversee the recruitment, differentiation, and activation of other myeloid and adaptive immune 

cells. Their activation must therefore be tightly regulated, optimized for maximal protection with 

minimum collateral tissue damage. Here we discuss what it means for myeloid cells to become 

activated, with emphasis on receptors and signaling molecules recognizing pathogen- and damage-

associated molecular patterns. We outline how these signals are regulated by steric properties of 

proteins, adhesive and cytoskeletal interactions, and negative feedback to keep inflammation in 

check and support healthy tissue development and homeostasis. Throughout the text we highlight 

recent publications and reviews that illustrate key elements of myeloid-cell regulation and direct 

readers therein for a comprehensive bibliography.
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Introduction

Myeloid cells populate nearly every space in the body. They are first responders, sensing 

infection and tissue damage, killing pathogens, and regulating innate and adaptive immune 

functions. As part of this interplay, they direct immune-cell recruitment and differentiation, 

mediate antigen presentation, and control the amplitude and kinetics of the inflammatory 

response [1]. Myeloid cells also have critical roles in tissue architecture, remodeling 

extracellular matrix [2], guiding organ development [3], and directing vascularization [4] 

(Figure 1A). Mechanisms regulating the quality, strength, and duration of myeloid-cell 

activation are therefore critically important.

Due to their pleiotropic responsiveness to a vast array of stimuli, the spectrum of “myeloid-

cell activation” encompasses many distinct functional programs. Activation is broadly 

defined as a response to pathogen- or damage-associated molecular patterns (PAMPS, 

DAMPS), opsonized particles, or cytokines that results in an acute functional outcome. 

Generally, receptor ligation triggers a kinase cascade (within seconds); rearrangement of 

the actin cytoskeleton, phagocytosis, degranulation, and release of reactive oxygen, nitric, 

oxide, calcium, and other second-messengers (within minutes); and expression/secretion of 

cytokines and polarization-specific proteins (within hours).

“Classical” pro-inflammatory activation occurs via Toll-like Receptors (TLRs), Complement 

Receptors (CRs), intracellular Immunoreceptor Tyrosine-based Activation Motifs (ITAMs), 

and receptors for cytokines such as interferon (IFN)-γ (Figure 1B, left). Inflammatory 

responses have distinct features determined by the myeloid-cell subtype, the tissue milieu, 

and the receptor ligands presented by the pathogen. For example, gram-positive bacteria 

activate TLR2 on macrophages, whereas gram-negative bacteria activate TLR2+TLR4, 

producing tailored inflammatory responses with distinct cytokine profiles [5].
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“Alternative” activation is defined as the myeloid response to interleukins (ILs) (e.g. IL-4, 

−13, −5, −33) that induce anti-helminth or tissue-repair functions, depending on other 

environmental cues [4]. The functional results of these cues vary but include metabolic 

changes that promote oxidative phosphorylation in macrophages [6], degranulation of 

eosinophils and mast cells, and tissue reorganization [7].

Inflammatory polarization

Tissue- and perturbation-specific signals alter gene transcription to bias activation of specific 

signaling pathways, immediate cellular functions, and transcriptional programs [8,9]. For 

instance, macrophage exposure to IFN-γ, Granulocyte-Macrophage Colony-Stimulating 

Factor (GM-CSF), or Tumor Necrosis Factor (TNF) increases subsequent sensitivity to 

pathogens and alters myeloid-cell and lymphocyte recruitment, differentiation, polarization, 

and activation [10]; C-C motif chemokine ligand (CCL)2 and macrophage inflammatory 

protein (MIP)-1 induce similar responses through G-Protein-Coupled Receptors (GPCRs) 

[11] (Figure 1B, right). PAMPs and DAMPs are dually activating and polarizing. For 

example, ligation of the hemi-ITAM-containing receptor Dectin-1 by cell-wall β-glucans 

induces phagocytosis and TNF production (acute, classical activation) [12], and increases 

transcription of inducible nitric oxide synthase (iNos) and other pro-inflammatory factors to 

increase the sensitivity to future activation [13].

Due to their near-ubiquity and myriad functions, inappropriately activated myeloid cells 

underlie drive many pathologies (Figure 1C). Chronic inflammatory activation, often 

resulting from a feedback cycle of increased signaling amplitude downstream of ITAMs 

[14], TLRs [15], or CRs [16] and increased myeloid-cell infiltration of tissues, drives 

autoimmune, allergic, and other inflammatory diseases [17–19]. Megakaryocytes, platelets, 

and neutrophils have been particularly highlighted in the recent literature. Defects in 

megakaryocyte autophagy reduce platelet function in immune thrombocytopenic purpura 

[20]. Megakaryocytes can also mediate inflammatory exchange between neutrophils 

and platelets through emperipolesis, a cell-engulfment process [21]. Neutrophils and 

macrophages drive diseases such as RA and endometriosis via classical inflammatory 

activation and by the formation of extracellular traps. Dysregulation of these myeloid cells 

also drives the cytokine storm and respiratory disruption that accompany the most severe 

forms of sepsis [22], influenza [23], and COVID-19 [24,25].

Alternative polarization

Myeloid cells can be alternatively polarized to repair or remodel tissue, suppress or end 

the antimicrobial response, and antagonize the effects of inflammatory cytokines [4]. The 

combined effects of tissue- and context-specific signals on different types of myeloid cells, 

however, are complex and defy simple categorization. As with inflammatory polarization, 

immunosuppressive or tissue-remodeling polarization may be effected through multiple 

receptor pathways [4] (Figure 2A). The effects of these signals depend on receptor 

availability, cell type, and other factors in the tissue. IL-4 and IL-13, for instance, can 

trigger anti-inflammatory signaling, leading to reduced production of IL-1β and TNF by 

macrophages, but they are also components of type 2 inflammation, driving host defense 
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against parasites. Detection of neutrophil apoptotic cell debris can comprise a second signal 

to induce a tissue-repair polarization in macrophages during wound healing [26,27].

The effects of inflammatory and tissue-remodeling polarization may be shared or 

distinct. For instance, either IFN-γ or IL-4 increases upstream and downstream kinase 

phosphorylation in macrophages responding to fungal cell wall [12], but these cytokines 

have different functional outcomes with respect to phagocytosis and transcription—how 

specificity is achieved is complex [28] and incompletely understood. Combinatorial effects 

of tissue- and danger-specific inputs yield a spectrum of polarization states. Via coordinated 

changes in receptor, effector, and negative-regulator expression, initial triggering and signal 

amplitudes are sensitized or desensitized to bias pathway activation. For example, the 

activation of T-cells by dendritic cells via antigen presentation, induces an increase in 

expression of ligands for Tyro/Axl/Mer (TAM-family) receptor tyrosine kinases on myeloid 

cells. Ligation of these kinases then restrains inflammatory activation of dendritic cells [29].

Polarization also time-regulates the inflammatory response, mediating shifts from anti-

pathogen to tissue-repair functionality (Figure 2B). While simultaneous detection of intact 

pathogen and apoptosis mediates an antimicrobial response [30,31], the detection only 

of apoptosis and tissue signals such as IL-4 induces healing and inflammation resolution 

[26]. Therefore, a time- and environment-dependent shift from inflammatory to alternative 

polarization after a tissue insult ensures that pathogen elimination is accompanied by repair 

of damaged tissue and return to homeostasis [32,33].

ITAM size sensors

ITAMs and hemi-ITAMs trigger myeloid-cell activation through the Src-family kinases 

(SFKs) and Syk kinase [34]. Unlike T cells, which can be activated by as few as 4–6 

high-affinity T-cell receptor (TCR)/peptide/MHC interactions [35], most myeloid cells must 

interact closely with intact pathogens that ligate receptors over a large surface area to 

enable phagocytosis and minimize the toxic effects of inflammation, degranulation, and 

reactive oxygen. Macrophages, dendritic cells, and neutrophils sense the valency of receptor 

interactions as a proxy for the size of an interacting particle, functioning as sensors of 

stimulus size: high-valency ligands such as those presented by an intact pathogen (μm-scale) 

ligate receptors through highly multimeric cell-wall components or opsonins, initiating an 

antimicrobial response and inflammatory polarization. Low-valency (nm-scale) receptor 

ligation [36] or intracellular kinase activation alone [37] is not fully activating (Figure 3A). 

The probability of cell activation via ligation of ITAM-coupled receptors varies according to 

cell type, polarization, and receptor identity. Mast cells, for example, have a lower triggering 

threshold than macrophages [38], with the potential to signal through lower-valency ligation 

of FcεR [39,40]; mechanisms of mast-cell regulation are discussed later.

One component of the ITAM particle-size sensor involves kinetic protection of ITAM/

signalosome phosphorylation. Inspired by earlier studies of the T-cell synapse [41], the 

kinetic segregation model applied to myeloid cells postulates that the rigid/glycosylated 

extracellular domains of the tyrosine phosphatases CD45 and CD148 are sterically excluded 

from the phagocytic synapse, protecting activating phosphorylation of ITAMs, SFKs, and 
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other molecules (Figure 3B). Lower-valency ITAM nanoclusters lack the requisite steric 

occlusion and are thus reversed before signal propagation [36,42,43].

At the other extreme, if phagocytosis is frustrated in an encounter with an overly large 

foreign object (e.g. fungal hypha), ITAM/hemi-ITAM signaling and subsequent production 

of reactive oxygen act as molecular timers, swapping classical activation for extracellular 

trap formation [44,45]. Inflammation associated with neutrophil extracellular traps (NETs) 

is also a hallmark of chronic inflammation, production of anti-nuclear antibodies, and 

autoimmune disease [46].

Regulation by actin and integrin barriers

Activation of myeloid cells by pathogen-associated ligands (via Dectin-1) and antibodies 

(via FcRs) is regulated by constraints on lateral diffusion. Hyaluronan fences interact with 

CD44 pickets, anchored intracellularly to cortical actin filaments. While diffusion in two 

dimensions within the resulting actin corrals is relatively unrestricted, diffusion between 

corrals is limited. Spontaneous formation of higher-order receptor clusters is blocked, 

protecting against amplification of spurious or stochastic initiating signals [47]. With 

sufficiently robust receptor activation (straddling multiple corrals and/or with high-affinity/

low-off-rate ligand-receptor interactions), the activities of SFKs and Syk initiate remodeling 

of cortical actin, reorganizing corrals, relieving constraints on lateral diffusion, enabling 

higher-order receptor clustering, and forming a phagocytic cup [48].

Integrins contribute to receptor clustering and activation by stabilizing interactions between 

myeloid and target cells via interactions with complement and cell-wall β-glucans. This 

close-contact region favors formation of new interactions and rebinding of high-off-rate 

interacting partners, so the two cell surfaces zip together. Positive feedback through 

integrins during phagocytosis enhances receptor binding and kinetic segregation [42]. This 

is especially important when a myeloid cell interacts with non-diffusible components of a 

pathogen cell wall: a μm-scale cluster of ITAM-coupled receptors need not be continuous 

but may be punctate on the nanoscale, with integrins mediating interstitial interactions. 

Integrin-triggered signaling can also potentiate activation of other receptors, such as TLRs 

[49,50].

ITIMs, inhibitory ITAMs, protein modification, and the LynA rheostat

Negative-regulatory processes limit myeloid-cell signaling in magnitude and duration. Lipid 

and tyrosine phosphatases (e.g. SHIPs, SHPs) and negative-regulatory adaptor proteins 

(e.g. Grb2, Doks) are recruited to immunoreceptor tyrosine inhibitory motifs (ITIMs, e.g. 

Sirpα, PirB) [51] or monophosphorylated inhibitory ITAMs (ITAMis) [52] to suppress 

inflammatory signaling (Figure 3C).

Activated SFKs within receptor complexes also phosphorylate and activate Cbl-family 

E3 ubiquitin ligases, which then monoubiquitinate or polyubiquitinate nearby targets. 

Ubiquitin-modification of signaling components may directly block their activity, flag them 

for degradation, or trigger receptor internalization [53]. SFK-mediated phosphorylation and 
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activation of c-Cbl also feeds back to downregulate all the SFKs via a slow (half-life 10+ 

min) process of polyubiquitination and degradation [37].

In addition to its more promiscuous negative-regulatory functions, c-Cbl mediates the rapid, 

selective degradation of the SFK LynA, the longer of two Lyn splice variants [34,37,38]. 

In macrophages, phosphorylation of LynA at tyrosine 32 (pY32) [38,54] targets LynA for 

rapid degradation (half-life 1 min), causing a signaling blockade downstream of PLCγ 
and PI3K [37] (Figure 3D). LynA and c-Cbl expression are regulated by cell type [38] 

and inflammatory polarization [37], lending context specificity to this signaling checkpoint 

and regulating each cell’s sensitivity to activation. For example, in resting macrophages 

high expression of c-Cbl and low expression of LynA block cell activation in the absence 

of low-valency receptor ligation. Inflammatory polarization with IFN-γ upregulates LynA, 

overcoming the signaling checkpoint and sensitizing macrophage activation [37]. Mast cells, 

in contrast, express little c-Cbl, increasing steady-state accumulation of LynA protein and 

sustaining LynA activation during signaling [38]. This sensitivity to SFK-mediated signaling 

may underlie the exquisite sensitivity of mast-cell FcεRs to low-valency receptor ligands 

[39,40]. The cell- and environment-specific expression level of LynA and c-Cbl therefore 

comprise a coordinated signaling rheostat that tunes the intensity and longevity of the LynA 

response in a cell-type- and environment-specific manner.

In contrast, the shorter splice form of Lyn kinase, LynB, has the dominant role in preventing 

autoimmune disease. In a recent study using CRISPR/Cas9-generated LynA and LynB 

isoform-specific knockout mice [55], LynB knockout mice preferentially develop the lupus 

disorder observed in total Lyn knockout mice [56]. Together, these observations suggest that 

the dual positive and negative functions of Lyn kinase shared unequally by the two splice 

forms, LynA and LynB, respectively [34,37,38,55].

Spotlight on macrophage activation and disease

Macrophages are particularly plastic cells, with myriad polarization and tissue-specific 

states. Their sensitivity to environmental cues, which induce a spectrum of substates 

with tissue-remodeling (Figure 4A) and/or inflammatory (Figure 4B) functionalities, is 

reflected in their many roles in systemic and tissue-specific disease. In autoimmune 

disease, macrophages promote immune-cell infiltration, release inflammatory cytokines 

(e.g. TNF, IL-1, IL-6) and drive a feedback cycle of chronic inflammation (Figure 

4C). In macrophage activation syndrome (MAS), for example, systemic overproduction 

of IFN-γ [57], chronic elevation of IL-18 [58], and/or sustained activation of TLRs 

[59] drives excessive and sustained release of inflammatory cytokines and dysregulates 

phagocytosis [60]. Macrophages are among the cells found in the presumably sterile 

synovia of RA and juvenile idiopathic arthritis (JIA) patients [61]. In atherosclerosis, low-

density lipoprotein induces foamy macrophage differentiation, dysregulation, and necrosis 

[62]. Proliferating intima-resident macrophages are then gradually replaced by infiltrating 

monocytes; a combination of inflammatory and tissue-resident functions then drives plaque 

progression [63]. Chronic obstructive pulmonary disorder (COPD) and acute respiratory 

distress syndrome (ARDS) are linked to downregulation of Programmed Death Ligand 

(PDL) proteins in the lung, resulting in hyperactivation of alveolar macrophages [64,65]. 
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Tumor cells establish a microenvironment in which the cytokine milieu may evoke tissue-

remodeling as well as inflammatory functions in macrophages (Figure 4D), including matrix 

reorganization [66], support for metastasis, and T-cell suppression [67,68]. Deleterious 

activation of macrophages by abnormal production or responsiveness to either pro- or 

anti-inflammatory stimuli breaks tissue homeostasis and promotes disease.

The developmental origins of tissue macrophages add another layer of pathway bias 

and functional heterogeneity. Tissues are initially seeded by yolk-sac progenitors, which 

give rise to resident macrophages in the brain (microglia), liver (Kupffer cells), and 

other sites [69–71]. A second wave of hematopoiesis from the fetal liver gives rise to 

other tissue macrophages (e.g. intestine, lung) and circulating monocytes [70], which 

may also repopulate tissues [72]. Tissue signals imprint newly differentiated macrophages 

with site-specific activation profiles [73], restraining the inflammatory response during 

routine clearance of apoptotic cells [74]. However, these signals become dysregulated 

when embryonically derived macrophages drive fibrosis and cancer [75]. Recruitment 

and replacement of tissue-resident macrophages following tissue injury can also confer 

protection from bacterial infections, as newly differentiated macrophages may retain 

epigenetic traits from their monocyte precursors that facilitate rapid production of cytokines 

after a bacterial encounter [76]. Tissues with resident macrophages “paralyzed” by previous 

pathogen exposure [77] are thus supplemented with new, potentially pro-inflammatory 

macrophages. However, unrestrained inflammation, as in malarial infection [59], can drive 

monocyte differentiation into red-blood cell phagocytes that drive pathologic anemia. While 

the seeding of tissues by circulating monocytes and macrophage programming by the tissue 

microenvironment add flexibility to tissue homeostasis, both processes may be dysregulated 

in disease.

Concluding remarks

Myeloid cells are highly diverse, with a complex blend of overlapping abilities and cell-

specific functions. Regulation of oxidative killing, phagocytosis, degranulation, and cytokine 

secretion is complex and context-specific. Nevertheless, patterns of regulatory modalities 

emerge as general principles: polarization by cytokines and tissue signals, receptor diffusion 

barriers, and intracellular regulation of receptor activation, with the SFKs and Lyn standing 

out as a central regulatory node. Crosstalk between receptor pathways confers higher-

order regulation, sensitizing or frustrating interacting cascades. Diseases such as lupus 

and cancer be accompanied by the subversion of these regulatory features. Mechanistic 

research defining how myeloid cells integrate positive- and negative-regulatory signals from 

tissues, immune-cells, and multiple receptors to bias or sensitize their myriad signaling 

pathways will be the key to understanding the processes of homeostasis and disease and 

modulating myeloid-cell function with ever-increasing specificity to the benefit of research 

and therapeutics.
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Highlights

• Myeloid-cell regulation optimizes innate/adaptive immunity and tissue health.

• Competing positive and negative signaling biases and tunes myeloid 

activation.

• Src-family kinase (e.g. Lyn) signaling is regulated by environment and cell 

type.

• Dysregulated myeloid activation drives autoimmunity, cancer, and cytokine 

storm.

• Defining context-specific myeloid regulatory mechanisms may yield novel 

therapies.
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Figure 1. Effects and mediators of classical myeloid-cell activation.
(A) Examples of myeloid-cell functions. (B) Prominent receptor pathways (representative 

ligands above, receptors below) controlling myeloid-cell activation. Parentheses highlight 

ITAM coupling. (C) Myeloid-lineage cell types and representative diseases driven by their 

dysregulated activation. Figures created with BioRender.com and Adobe Software.
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Figure 2. Polarization alters myeloid-cell activation and function.
(A) Receptor signaling pathways that can decrease inflammatory signaling and mediate 

tissue-repair, remodeling, and immunosuppressive polarities. (B) Effects of polarization on 

myeloid-cell activation.
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Figure 3. Mechanisms regulating myeloid-cell activation.
(A) ITAM-coupled receptors in macrophages and dendritic cells function as size sensors 

to correctly identify intact pathogen cells and initiate an antimicrobial response. (B) The 

kinetic segregation model of signaling at a phagocytic synapse. (C) Negative-feedback 

pathways suppressing myeloid-cell activation, including recruitment of phosphatases and 

(***) negative-regulatory functions of adaptor proteins such as Grb2 and the Dok family. 

(D) Rapid, selective degradation and environment/cell-dependent expression of LynA and 

Cbl tune myeloid-cell sensitivity to activation.
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Figure 4. Polarization and differentiation regulate macrophage activation in healthy and 
diseased tissues.
(A) Functions and signaling components driving tissue remodeling/repair polarization. (B) 
Functions and signaling components driving an inflammatory, antimicrobial polarization. 

(C) Chronic inflammation is driven by pathological inflammatory activation of 

macrophages. (D) Macrophages can become polarized in service of tumors. Cytokines, 

signaling pathways, and transcriptional changes are heterogeneous and, in many cases, 

cannot be cleanly binned into pro- vs. anti-inflammatory.
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