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Abstract

Mesoscopic fluorescent molecular tomography (MFMT) enables to image fluorescent molecular 

probes beyond the typical depth limits of microscopic imaging and with enhanced resolution 

compared to macroscopic imaging. However, MFMT is a scattering-based inverse problem that 

is an ill-posed inverse problem and hence, requires relative complex iterative solvers coupled 

with regularization strategies. Inspired by the potential of deep learning in performing image 

formation tasks from raw measurements, this work proposes a hybrid approach to solve the 

MFMT inverse problem. This methodology combines a convolutional symmetric network and 

a conventional iterative algorithm to accelerate the reconstruction procedure. By the proposed 

deep neural network, the principal components of the sensitivity matrix are extracted and the 

accompanying noise in measurements is suppressed, which helps to accelerate the reconstruction 

and improve the accuracy of results. We apply the proposed method to reconstruct in silico and 

vascular tree models. The results demonstrate that reconstruction accuracy and speed are highly 

improved due to the reduction of redundant entries of the sensitivity matrix and noise suppression.
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1. Introduction

The proliferation and metastasis of cancerous tissue highly depend on the generation of 

neovascular networks. Many studies have proved that angiogenesis plays a pivotal role 

in the occurrence, invasion, and metastasis of cancer [1]. To detect the abnormality of 

vascular networks early many studies have shifted from traditional structural imaging to 

molecular scale imaging [2]. By injecting specific molecules (fluorescent dyes) into the 

tissues, utilizing the different absorption capability of the diseased tissues and healthy 

tissues for the fluorescent dyes to detect biological tissues at the molecular level and obtain 

internal information [3]. Among multiple forms of fluorescence molecular tomography 

(FMT), mesoscopic FMT (MFMT) can be viewed as a special kind of FMT with millimeter-

depth differentiation and high resolution, which fills the vacuum zone of microscopic 

and macroscopic imaging spatial resolution. Comparing with FMT, MFMT can reach 

achieve 100 μm–200 μm resolution at depths of 3–5 mm, and retrieve the concentration 

and distribution of fluorophores along the vessel inside the tissue from the weak two-

dimensional fluorescence intensity measurements collected from the surface of the tissue 

[4]. However, due to insufficient measurements compared to the unknowns and complex 

propagation process of photons such as absorption, scattering, and reflection of light in 

tissue, MFMT reconstruction is an intrinsically ill-posed inverse problem.

As a promising data-driven approach, deep learning [5] has verified its advantages in terms 

of solving the ill-posed inverse problem in medical fields such as computer tomography 

(CT), magnetic resonance imaging (MRI), positron emission tomography (PET), diffuse 

optical tomography (DOT). Sinha et al. [6] employed deep neural network (NN) (U-net) to 

recover phase objects. Wu et al. [7] employed artificial NN to quickly obtain a fluorescence 

lifetime image. Yoo et al. [8] designed a deep convolutional neural network to invert 

the Lippman-Schwinger integral equation to solve the inverse problem for DOT. Zhang 

et al. [9] developed an end-to-end three-dimensional deep encoder-decoder network to 

directly establish a nonlinear mapping relationship between the distribution of internal 

fluorescent sources and boundary fluorescent signals. However, the major drawback of 

applying deep NN as shown above is it obviously covered the clear physical relationship 

between measurements and reconstructions, thus, turned the reconstruction procedure into 

a purely data-driven process, which is widely known to be possibly misled by the training 

datasets [10], especially when the datasets are flawed or lacked any appropriate physical or 

mathematical explanations of the trained network.

As a result, compared with other optical imaging technologies, there is little study on the 

emerging technology MFMT, and the application of deep learning to this background is 

even rarer. Therefore, inspired by the above-mentioned various optical imaging algorithms, 

in view of the problems of enlargement of solution space, lengthy iteration time, and 

lower reconstruction accuracy caused by the large-scale sensitivity matrix generated 

in the reconstruction process of multi-excitation point MFMT, we proposed a hybrid 

reconstruction strategy combining deep convolutional symmetric network and simultaneous 

algebraic reconstruction technique (SART) [11], and is verified that the hybrid strategy has 

better processing effects and faster reconstruction speed than the conventional method by a 
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series of computer simulation experiments to retrieve the three-dimensional distribution of 

the vascular system.

2. Materials and methods

2.1. Imaging platform

The proposed reconstruction strategy is performed on our 2nd generation MFMT system 

described in detail in the previous works [12]. Herein, we elaborate the influence of 

the significant configurations and parameters of the optical system related to the inverse 

problems. Briefly, the system is a multi-wavelength MFMT platform which is powered 

by an electron-multiplying CCD camera (EMCCD) (iXonEM + DU-897 backlight, Andor 

Technology) acquiring data in a descanned mode.

2.2. Forward model and inverse problem

In our MFMT application both dense sampling and fine discretization are employed 

to acquire more measurements to achieve mesoscopic spatial resolution. However, it is 

challenging for some traditional methods to accurately imitate the photon propagation in 

tissue with a high scattering property of light. The diffusion equation is not accurate in the 

mesoscopic regime as it cast the problem as an isotropic scattering one. Moreover, at short 

source detector separation, one may collect photons with only a very few scattering events 

[13]. Consequently, we apply the Monte Carlo (MC) simulation, a golden standard based on 

stochastic method, to construct a forward model for photon propagation in biological tissue 

by combining the optical properties of the tumor [14]. Given the light source is at rs and the 

detector is at rd, the photon weight [15] of the excitation light detected on the detector is 

expressed as equation (1):

W rs, rd, r = Gx rs, r × Gm r, rd (1)

where Gx and Gm are the Green’s functions of excitation and emission, respectively [16]. rs, 

rd, and r are locations of source, detector, and the voxel in the image space, respectively. The 

measurements Y of fluorescence intensity for the corresponding source-detector pair U(rs, 

rd) can be formulated as the integral equation (2) [17]:

U rs, rd = ∫
Ω

W rs, rd, r η(r)dr (2)

where η(r) is the 3D distribution of the fluorophore effective quantum yield. With m source-

detector pairs and n discretized voxels of the Region of Interest (ROI), the ill-posed inverse 

problem for MFMT then can be cast as the following equation (3):

AX + v = Y (3)

where A∈Rm×n is the sensitivity matrix, X∈Rn×1 represents the effective quantum yield, v is 

the ever-present noise, and Y∈Rm×1 is the detector readings at all scanning spots. Because 

of the ill-posedness of the inverse problem in MFMT, we set up a least square optimization 
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problem with the weighted l1-norm [18] minimizing an objective function given by equation 

(4):

argmin
x

1
2 AX − Y 2

2
+ λ αX 1 (4)

where α is a weight, which is continuously updated with the number of iterations in the 

subsequent reconstruction algorithm. λ is a spatially variant regularization parameter to 

compensate for the spatial dependence of the contrast and resolution in the reconstruction 

[19], and is set to 1.9 according to our experiments.

The objective function (4) is a nondifferentiable convex function resulting in it being 

difficult to solve analytically. Herein, we employ SART to quickly approximate the sparse 

solution:

X(k + 1) = X(k) + λ 1
aj

∑
i = 1

ri aij
ai

yi − yi X(k) (5)

where ai = ∑i = 1
ri aij, aj = ∑j = 1

n aij, and aij are the entries of the condensed sensitivity 

matrix A and yi is the principal components of the measurements Y. k is the iteration 

number. With the help of the simultaneous iterative algorithm, each row of the augmented 

matrix can simultaneously be applied to the iterative procedure, which permits the 

achievement of higher computational efficiency. Then, the 3D structure and spatial 

distribution of the vessel inside the tumor can be retrieved by the solution of equation (5).

2.3. Data preprocessing

To generate computer simulation measurements, we copied the imaging system 

configuration used in the actual experiment: 441 illumination scan locations and 48 detectors 

per source location produce a Jacobian determinant (sensitivity matrix A) with a size of 

21168 by 6615 elements, the light intensity measurements Y is 21168 × 1. As a result of 

the large scale of experimental data due to intensive sampling, directly reading will lead 

to computer memory overflow. Therefore, in the application, a targeted preprocessing plan 

was developed on the premise of choosing to compress large-scale data to facilitate network 

reading data.

Data preprocessing is a critical step for implementation of training. However, the 

preprocessing method adopted highly depends on specific scenarios. In our application, 

we take four steps to produce the training datasets and testing datasets, as shown in Fig. 

S1. First, we combine the sensitivity matrix A and the measurements Y into an augmented 

matrix A21168 × 6616 and add 8 different levels of Gaussian noise with SNR [13] ranging 

from 2 to 30 into the augmented matrix. Each group of the synthesized noisy matrix is then 

transposed and divided into 5 subgroups with size of 1324 × 21168. Note that 4 rows are 

padded in the last subgroup to form the same size as previous subgroups. We also pad two 

zero matrices with size of 1324 × 14504 besides each subgroup to form a matrix of 1324 × 

50176 in third step to ensure that the input data size is convenient for multiple convolution 
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operations. In the final stage the subgroups of datasets are normalized and reshaped into 

52960 training datasets and 6616 testing datasets with size of 224 × 224 × 1 for training and 

prediction.

2.4. Deep convolutional symmetric network

Some deep neural network architectural choices for biomedical imaging tasks have offered 

considerable insight as to how these deep learning tools can accelerate the solution of ill-

posed inverse problem [20]. Herein, a scenario-specific deep neural network is engineered 

to map the relationship between the input data and its low-dimensional hidden variables, 

which belongs to unsupervised learning. The entire network comprises two parts: an encoder 

and a decoder. In the encoder, multi-layer convolution is used to extract the features of the 

input signal and capture the abstract information in the original data, thereby obtaining low-

dimensional hidden variables. The decoder, a mirror image relationship, uses multi-layer 

deconvolution to restore data details while retaining abstract information and suppressing 

noise. At the same time, by imposing certain constraints on intermediate signal, the network 

can learn more meaningful hidden variables. To avoid the loss of information details caused 

by multiple pooling layers in the stage of restoring the underlying information, the designed 

network only performs a pooling operation. In addition, skip connection is introduced to 

prevent the gradient from vanishing and expedite the back-propagation of the gradient in the 

training phase.

As shown in Fig. S2, the encoder and decoder contain 6 convolutional blocks and 

6 deconvolutional blocks, respectively. Each block comprises different numbers of 

convolutional layers with activation function ReLU. Note that the operation of the 

deconvolutional blocks is like that of the convolutional block which are painted in different 

colors representing different operations. Eventually, a single matrix is output through the 

convolutional layer with a kernel size of 1 × 1 connected with a nonlinear activation 

function, which is the weighted sum of its input channels. On the premise of keeping the 

size of the feature map constant (that is, without loss of resolution), nonlinear features are 

greatly increased. In our application, the network training epoch and batch size are set to 5 

and 2, respectively.

Mean square error is used as the loss function to keep the predictive value close to the true 

one. Meanwhile, the standard stochastic gradient descent with momentum is employed to 

optimize the backpropagation process, where initial learning rate, momentum, and weight 

decay are preset to 0.01, 0.9, and 0.0005, respectively. The weight matrix w and the bias 

b are updated in each training process until it stops when the convergence or the preset 

iteration number is reached. Then, the testing datasets are predicted using the encoder, in 

which w and b were finally determined. The abstract representations of the augmented 

sensitivity matrix in the low-dimensional space are calculated by the following equation (6):

Outputri × ri = f wInput224 × 224 + b (6)

It gives a low-dimensional representation for the invertible linear matrix equation as 

equation (7):
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Ari2X + v = Y ri2 (7)

where Xrepresents the 3D distribution of the fluorophore to be reconstructed. Ari2 and Y ri2

are low-dimensional spatial representations of the sensitivity matrix and measurements with 

zero padding to achieve the same size as before. v is the ever-present noise. Compared to the 

original 2242-dimensional data, the reduced ri
2-dimensional data is greatly condensed but 

retains the principal components of sensitivity matrix and measurements.

The training model is set up in the Tensorflow-gpu environment. We perform the proposed 

network architecture and solving algorithm on an NVIDIA GeForce GTX 1080 Ti GPU.

2.5. Numerical phantom experiment settings and synthetic vascular

In the numerical phantom experiment, a vascular bed model mimicking a vein region in 

tumor is designed to evaluate the performance of the proposed method. The vessel tree 

with a trunk and branches was simulated, in which the diameter of the main trunk and 

branches are 400 μm and 200 μm, and the separation between two adjacent shoots is set to 

100 μm as shown in Fig. S3 A. The imaging volume containing the imitation model has 

a size of 2.1 mm × 2.1 mm × 1.5 mm and is divided into 21 × 21 × 15 voxels with a 

discretization of 100 μm. The fluorophore concentration is assumed to be uniform in the 

vessel with effective quantum yield set to 1. The optical properties of domain are assumed 

to be homogeneous at the excitation wavelength with absorption coefficient μa, scattering 

coefficient μs’, index of refraction n, and anisotropy factor g equal to 0.02 mm−1, 1 mm−1, 

1.34, and 0.81, respectively. These values are derived from the collagen scaffold typically 

employed in our bio-printing application at 6–9 mg/ml density [4,21].

To mimic the real applications more closely, two vascular beds with different 3D structure 

and different depth distribution as shown in Fig. S3 C and Fig. S3 D, named as T1 and T2, 

are simulated based on the segmentation of the VascuSynth sample dataset depicted in Fig. 

S3 B [22]. The dataset is typically to produce 3D volumetric images with oxygen demand 

maps and a few physical parameters about the bifurcation locations, branch radii and tree 

hierarchy.

2.6. Quantitative metrics to evaluate reconstruction results

We employ the same metrics as our previous works to quantitatively evaluate the 

performance of the hybrid reconstruction strategy such as nSSD, nSAD, nR and nRMSE. 

Herein nSSD, nSAD, and nR have the same trend with a higher value approaching 1 

indicating a higher similarity between the reconstructed vessel and the ground truth [14]. As 

for nRMSE, a value close to zero means a high-quality reconstruction as defined in equation 

(8):

nRMSE =
Crec − Corg 2

Corg 2
(8)
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where Crec is the reconstructed fluorescence vessel concentration, Corg is the original 

fluorescence distribution in tumor.

3. Results

3.1. Effect of different number of principal components of sensitivity matrix on 
reconstruction

The proposed network contains different levels of extractors, which can extract different 

principal components of the sensitivity matrix via different hidden layers. We explore the 

effect that the number of principal components extracted from the sensitivity matrix by 

different convolutional layers of the encoder have on the reconstruction quality. Fig. 1 

A–E show the reconstructions from the reduced sensitivity matrix with SNR of 30 after 

400 iterations. As can be seen from these 3D reconstructions, the sensitivity matrix with 

6400 top principal components extracted by the proposed network can achieve higher 

reconstruction performance. Fig. 1 F plots the changes of five metrics with different size 

sensitivity matrices such as 12544, 10000, 6400, 4096 and 3136. As displayed in the figure, 

nSSD, nSAD, nR, and nRMSE achieve best scores and the reconstruction time significantly 

become shorter when the size of the sensitivity matrix is compressed to 6400 by 6615. Fig. 

1 G further reveals a gradual increase of the value of metrics before the plateau based on the 

optimal sensitivity matrix size of 6400 by 6615 when the number of iterations equal to 400.

3.2. Comparative experiments with different reconstruction methods

To verify that the designed deep convolutional network has more advantages than commonly 

used dimension reduction techniques, and can effectively accelerate the reconstruction of 

complex fluorescent vascular structures. Simultaneously, to prove that the hybrid strategy 

has better processing effect and faster reconstruction speed than the conventional method. 

Firstly, two traditional iterative algorithms, conjugate gradient (CG) and SART, are applied 

to the vascular reconstruction. To reflect the effective comparison of the experiments, the 

number of iterations is set to 400. As shown in Fig. 1 H and Fig. 1 I, reconstruction 

performance of SART is better than CG though they are both not effective enough to 

resolve the fine structure of the model. Then we compare the proposed network with two 

conventional methods used to dimensionality reduction, PCA and AE. To make a fair 

comparison, these methods are employed to compress the sensitivity matrix into a smaller 

size, such as 6400 × 6615 in our application. Based on the three reduced sensitivity matrix 

the SART reconstruction algorithm is utilized to reconstruct the vascular tree. The visual 

reconstruction results of the hybrid strategy have relatively higher fidelity, minimal noise 

interference, and more similarity to ground truth, as shown in Fig. 1 J–L. Compared with 

its counterparts, the proposed method can retrieve the fine structure and spatial distribution 

of vascular tree. The quantitative results in Table 1 equally confirm the advantages of 

the proposed method in terms of the accuracy and reconstruction consuming time. Other 

methods will undoubtedly increase the number of iterations to obtain better reconstruction 

results, which also means an increase in reconstruction time. Therefore, under the condition 

that the control variable is 400 iterations, Ours + SART accelerates the reconstruction of the 

fluorescent vascular structures within the acceptable reconstruction time range.

Yang et al. Page 7

Biochem Biophys Res Commun. Author manuscript; available in PMC 2021 December 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.3. Comparison of reconstruction results under different noise levels

MFMT reconstruction for tumor vasculature, as an ill-posed system of equations inherently, 

is susceptible to noise. Therefore, the proposed network is engineered to suppress the noise 

of measurements in addition to compressing the sensitivity matrix. To verify the noise 

suppression performance of the proposed network, comparative experiments are performed 

on the measurements with different levels of noise. As shown in Fig. 2 A, the measurements 

with a higher SNR contribute to achieve high quality reconstructions for all the methods. 

Meanwhile, the proposed network demonstrates a higher performance than its counterparts 

in terms of noise suppression and reconstruction quality. Furthermore, the reconstruction 

time at different noise levels reveals the proposed method is robust to noise as shown in Fig. 

2 B.

3.4. Synthetic vascular network experiments

Fig. 3 displays the reconstruction results of VascuSynth sample by different methods. As 

illustrated by Fig. 3 B and G, the reconstruction results without any dimensionality reduction 

strategy using the SART only retrieve the rough contour of the vascular beds though the 

reconstruction results are better than those from CG (Fig. 3 A and F). Meanwhile, the 

results of the PCA shown in Fig. 3 C and H can reconstruction the larger branches of the 

vascular beds whereas AE provides more accurate reconstructions but still fails to recover 

more complex distributions, as shown in Fig. 3 D and I. Fortunately, the proposed method 

provides more accurate rendering of the simulated vasculatures. As illustrated in Fig. 3 E 

and J, in both cases the structures of the vascular beds are retrieved with higher fidelity at 

all depths with a resolution of 100 μm. Fig. 3 K and L shows the comparison of the metrics 

scores for T1 and T2 vasculatures under five reconstruction strategies.

4. Discussion

Herein, we propose a hybrid method combining the engineered deep neural network and 

SART to image vasculature in tumor via mesoscopic fluorescence molecular tomography, 

which provides a tool to remodel and visualize the vasculature and would enable a new 

option in tumor therapy. This approach is featured by the following advantages. Firstly, the 

proposed optical imaging modality has the potential to visualize the distribution of vascular 

network in tumor with the mesoscopic resolution (100–200 μm). To expedite the speed of 

vessel reconstruction in tumor for clinical application a well-designed deep neural network 

is employed to extract the principal components from the redundant sensitivity matrix and 

suppress the ever-present noise in measurements as well. Moreover, in all cases investigated, 

both for numerical phantom and vascular tree experiments, the reconstruction based on the 

sensitivity matrix reduction strategy outperforms their counterparts in terms of retrieving the 

structure of the inclusions with high fidelity and recovering quantitatively the distribution 

of the effective quantum yield. The proposed approach demonstrates a higher resolution, 

more accuracy, and more robustness against noise, which suggests that the combination of 

deep neural network and traditional reconstruction techniques are suitable for fluorescence 

tomographic imaging in the mesoscopic regime. However, as one refines the discretization 

of the imaging space, solving the ill-posed inverse problem becomes more challenging due 

to the sheer size of the matrices/vectors to be manipulated. In our current implementation, 
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the spatial resolution attainable for vasculature reconstruction is 100 μm. In the future, we 

plan to perform more experiments and engineer artificial intelligent methods to improve the 

spatial resolution and reconstruction speed of imaging the vasculature in tumor.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Visual reconstruction results and the plots of the metrics. (A–E) The 3D visual 

reconstruction results with the size of sensitivity matrix are 12544 × 6615, 10000 × 6615, 

6400 × 6615, 4096 × 6615, and 3136 × 6615, respectively. (F) The metrics with different 

size of sensitivity matrix. (G) The metrics with different iteration numbers when the size of 

the sensitivity matrix is 6400 × 6615. (H–L) The reconstruction results by applying different 

methods.
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Fig. 2. 
Comparison of reconstruction metrics at different noise levels by the different methods.
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Fig. 3. 
Reconstruction results and the stacked bar chart of the metrics scores for two complex 

vasculatures by five methods.
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