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ABSTRACT: Sulfonimidamides (SIAs) and sulfoximines (SOIs) have
attracted attention due to their potential in agriculture and in medicinal
chemistry as bioisosteres of biologically active compounds, and new synthetic
methods are needed to access and explore these compounds. Herein, we
present a light-promoted generation of perfluorinated aromatic nitrenes, from
perfluorinated azides, that subsequently are allowed to react with sulfinamides
and sulfoxides, generating achiral and chiral SIAs and SOIs. One of the
enantiopure SIAs was evaluated as a novel chiral auxiliary in Grignard
additions to the imines yielding the product in up to 96:4 diastereomeric
ratio.

■ INTRODUCTION

During the last decades, the utility of sulfonimidamides
(SIAs)1−5 and sulfoximines (SOIs)6−12 has been demonstrated
in synthesis, agrochemical applications, and as bioisosteres in
medicinal chemistry due to their notable properties, such as
basicity, nucleophilicity, and solubility in polar solvents. The
classical synthetic routes13 to access SIAs usually rely on the
formation of sulfonimidoyl chloride as a precursor, followed by
an amidation reaction (Figure 1).
Sulfonimidoyl chloride can be generated in several different

ways, such as oxidative imidation (Figure 1a),14 oxidative
chlorination (Figure 1b),15 deoxychlorination16 (Figure 1c),
and via Grignard addition to a sulfinylamine, followed by
chlorination (Figure 1d).17 Similarly, sulfur−fluorine exchange
reactions (Figure 1e) with sulfonimidoyl fluoride as the key
intermediate have been used to yield SIAs.18,19 Other
approaches to form SIAs involve copper-catalyzed trans-
amidation of sulfinamides (SAs) or copper-catalyzed oxidation
of methyl SOIs.20,21 Furthermore, several metal-free ap-
proaches using N−H transfer to SAs have been disclosed.22

One of the most convenient ways to synthesize chiral SOIs23

involves the formation of a sulfur−nitrogen bond between
chiral SOs and nitrenes, either using metal-catalyzed
procedures (Fe, Rh, and Ag)24−28 or hypervalent iodine or
bromine reagents (Figure 1f).29−32 Other approaches involve
stereospecific oxidation of enantioenriched sulfinimines
(Figure 1g), desymmetrization of homochiral SOIs33,34 (Figure
1h), and stereospecific Salkylation of chiral SOIs (Figure
1i).35

The introduction of fluoro-substituents into drug-like
molecules and agrochemicals can tremendously affect their

properties by, for example, decreasing their basicity and
improving their bioavailability,36−38 and in this context, several
different methods to synthesize fluorinated SOIs were
developed.39−46 In addition, SOIs containing N−Caryl−F
bonds can be accessed either via copper-catalyzed direct
sulfoximination or via SNAr.

47,48 An alternative approach is to
incorporate aromatic fluorinated moieties via perfluorinated
aromatic azides (PFAAs). Phenyl azides can generate, either
via photo- or thermolysis, highly reactive nitrenes that rapidly
rearrange via ring-expansion to form ketenimines. These
ketenimines will ultimately lead to polymeric tar unless
intercepted with a good nucleophile.49 On the contrary,
PFAAs are regarded as superior phenylnitrene precursors,
enabling higher yields of the C−H and N−H insertion
products.50,51 The improved selectivity is attributed to the
“ortho-difluoro effect” where fluorine atoms in the ortho-
position to the azide effectively retard the ring-expansion
pathway and instead promote a long-lived singlet nitrene that
is responsible for the productive bimolecular reaction.52 The
reaction between dimethyl sulfoxide (DMSO) and perfluori-
nated phenylnitrene, generated via the thermolysis of 4-azido-
2,3,5,6-tetrafluoropyridine, was first observed by Banks and
Sparkes,50 but no attempts to expand the nitrene-promoted
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coupling between PFAAs and SOs or related derivatives were
undertaken. In this work, we investigated a light-promoted
approach to ortho-fluoro nitrenes from PFAAs, leading to the
stereospecific addition to SAs and SOs. In addition, one of the
chiral SIAs was evaluated as a chiral auxiliary in the
stereoselective addition of Grignard reagents to SIA-derived
imines, yielding the addition products in high stereoselectivity
(up to 96:4).

■ RESULTS AND DISCUSSION
Upon the irradiation of PFAA (1a) in DMSO with a 390 nm
light-emitting diode (LED) light, we noticed the formation of
an SOI adduct between the in situ generated perfluoroaryl
nitrene and DMSO. In our group, we have previously
developed procedures for the catalytic formation of sulfini-
mines from chiral SAs and aldehydes,53,54 and therefore, we
became interested in investigating the reactivity between
perfluoroaryl nitrenes and optically active SAs or SO. Our
initial screening started with 1a and (S)-tert-butylsulfinamide
in different solvents and with an irradiation of 390 nm light for
1.5 h at room temperature. In most of the solvents (Table 1,
entries 1−9), SIA (S)-1 is formed together with varying
amounts of the perfluorinated aniline.
In tetrahydrofuran (THF) and ethanol, perfluorinated

aniline was the major product (Table 1, entries 1−2), while
reactions in toluene, acetone, dichloromethane, chloroform,
and acetonitrile led to increased yields of (S)-1 and with less

formation of the aniline derivative (Table 1, entries 3−7). The
highest yields, together with the lowest formation of side
products, were obtained in ethyl acetate and α,α,α-trifluor-
otoluene (PhCF3) (Table 1, entries 8 and 9), while DMF gave
a complex mixture of fluorinated products and the reaction in
water led to the formation of the perfluorinated azo-compound
mainly (Table 1, entries 10−11). The reaction also proceeded
using blue light (440 nm), but the reaction times increased
significantly (about 10 times).
Next, we explored the substrate scope of the photopromoted

coupling between enantiopure tert-butylsulfinamides and
different PFAAs using PhCF3 as the solvent (Table 2). Methyl
4-azidotetrafluorobenzoate reacted with both (S)- and (R)-tert-
butylsulfinamides to form SIAs (S)-1 and (R)-1 in good yields
(66 and 65%, respectively) and without the loss of
enantiopurity, as determined by chiral high-performance liquid
chromatography (HPLC). The cyano-substituted PFAA
derivative showed increased reactivity than the ester-containing
substrate and yielded product (S)-2 in 62% yield upon
irradiation at 390 nm for merely 2 h in the presence of (S)-tert-
butylsulfinamide. The pyridine-based PFAA gave similar yields
toward the formation of products (S)-3 and (R)-3 (64 and
65%, respectively) but required a considerably longer
irradiation time (16 h). Next, the reaction was extended to
other PFAA derivatives, such as pentafluoroazidobenzene and
4-azido-tetrafluorobenzoic acid. However, this afforded lower
yields of the target products (S)-4 and (S)-5 (32 and 34%,
respectively) compared to the other derivatives (1−3). This
highlights the importance of the substituent in para-position in
influencing the reactivity of the photogenerated nitrene.
The photopromoted reaction of PFAAs with p-toluenesulfi-

namide was less satisfying, and (S)-6 was only obtained in
trace amounts together with other side products. Better results
were obtained for the more reactive cyano-substituted PFAA
yielding the product (S)-7 in 42% yield. The poorer reactivity
was ascribed to the scarce solubility of p-tolylsulfinamide
compared to that of tert-butylsulfinamide. A secondary SA,
racemic 1-(phenylsulfinyl)piperidine, was made to react with

Figure 1. (1) Routes to SIAs: (a) oxidative imidation, (b) oxidative
chlorination, (c) deoxychlorination, (d) Grignard addition and
chlorination, (e) sulfur−fluorine exchange via sulfinimidoyl fluoride;
(2) routes to SOIs: (f) imidation, (g) oxidation, (h) desymmetriza-
tion of SOIs, and (i) S-alkylation; and (3) this work: SIAs and SOIs
via photogenerated nitrenes.

Table 1. Optimization of Reaction Conditions for the
Synthesis of (S)-1a

entry solvent yield (S)-1 (%)b aniline (%)b

1 THF 23 77
2 EtOH 21 59
3 toluene 52 21
4 acetone 51 9
5 CH2Cl2 47 4
6 CHCl3 57 6
7 MeCN 47 6
8 EtOAc 65 5
9 PhCF3 66 4
10 DMF −b −
11 H2O 0b 1

aReaction conditions: azide (0.075 mmol, 0.05 M), (S)-tert-
butylsulfinamide (0.15 mmol, 1.5 equiv), degassed solvent (1.5
mL), and 390 nm Kessil LED light, 1.5 h. bDetermined by 1H NMR
with an internal standard.
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methyl 4-azidotetrafluorobenzoate to yield the target product
rac-8 in 42% yield.

In addition to the synthesis of perfluorinated SIAs, the
generality of the nitrene addition was expanded through
reactions with SOs to yield perfluorinated SOIs (Table 3).
The photopromoted PFAA-nitrenes readily reacted with

SOs to form SOIs and did not react further under prolonged
light irradiation. This differs from the reactivity in the work by
Bolm and coworkers where they observed the light-promoted
formation of nitrenes from SOIs.55 For example, DMSO
reacted with the photogenerated nitrene to yield SOI 9 in high
yield (78%) after only 2 h. A fast reaction was also observed for
racemic methyl phenyl SO, yielding product 10 in good yield
(61%). Racemic phenylvinyl SO led to the formation of
product 11 (56%) without affecting the double bond. The
lower yield was accompanied by an increased formation of the
corresponding aniline derivative (methyl 4-amino-2,3,5,6-
tetrafluorobenzoate), which was also observed in the reaction
with racemic methyl 2-phenylsulfinylacetate, affording rac-12
in 47% yield. An enantiomerically pure SO was also converted
to (R)-13 in a stereospecific addition of the PFAA-nitrene in
66% yield. Furthermore, the reaction was feasible with the
racemic SO derived from the pesticide chlorbensid, but due to
poor solubility in PhCF3, ethyl acetate was used as the solvent,
yielding product rac-14 in moderate yield (53%) after 2 h.
Finally, the reaction was tested with methionine SO, derived
from the oxidized form of the amino acid L-methionine, which
is associated with aging when present in increased levels in
tissues.56,57 The Boc-protected SO yielded the target product
15 after merely 1 h and was obtained in 49% yield again with
an increased formation of the aniline derivative as the side
product.
The use of enantiopure tert-butylsulfinamide is an

established strategy to access valuable chiral amines. In the
standard approach, the chiral auxiliary group is introduced via

Table 2. Synthesis of SIAs from PFAA and SAsa

aReaction conditions: PFAA (0.3−0.9 mmol, 0.05 M), SA (0.45−1.35
mmol, 1.5 equiv), degassed PhCF3, 390 nm Kessil LED light, 2−16 h,
r.t. bAverage yield of two syntheses. cFrom the racemic starting
material.

Table 3. Synthesis of SOIs from PFAA and SOsa

aReaction conditions: PFAA (0.3 mmol, 0.05 M), SO (0.45 mmol, 1.5 equiv), degassed PhCF3, 390 nm Kessil LED light, 1−4 h, r.t. bEtOAc as the
solvent.
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condensation with aldehydes or ketones, followed by stereo-
selective nucleophilic addition and chiral auxiliary removal to
yield the enantioenriched amine.58,59 We hypothesized that the
free NH2 group in enantiomerically pure SIAs could act as a
chiral auxiliary via the reaction with carbonyl compounds to
yield imines, which could subsequently be used in stereo-
selective addition reactions. Previously, SIAs were used in
asymmetric reactions as ligands,60,61 organocatalysts,62 or
nitrene-transfer agents,63−71 but there are no reports of SIAs
as chiral auxiliaries.
Indeed, the chiral pyridine-based (R)-3 formed stable imines

from pivaldehyde and aromatic benzaldehydes using reaction
conditions reported by Cid and coworkers.72 The reactions
proceeded to completion after 20−44 h at reflux in CH2Cl2,
yielding the target imines in high to excellent yields (78−90%,
Scheme 1).

Unfortunately, enolizable aldehydes, such as butyraldehyde,
led to a complex reaction mixture with side products. The
obtained imine derivatives 16a−c were used to investigate the
ability of SIAs to function as chiral auxiliaries in stereoselective
carbonyl addition reactions with Grignard reagents.
Initially, the addition of phenylmagnesium bromide to imine

(R)-16a was investigated in several different solvents (Scheme
2). After 6 h of the reaction at −78 °C, the results revealed that

both CH2Cl2 and THF failed to give full conversion, while
toluene provided full conversion and high stereoselectivity
according to 1H NMR. Conducting the reaction in diethylether
and hexane also gave full conversion of the starting material
but with slightly lower diastereoselectivity.
With the optimal reaction conditions in hand, we

investigated the scope of the Grignard addition to imines
derived from SIA (R)-3. The imines were made to react with
Grignard reagents at −78 °C for 6 h, and the reaction mixtures

were allowed to reach room temperature overnight. The
reaction was quenched and extracted, and the product yield
was determined using 1H NMR with tert-butylmethyl ether as
the internal standard.
Addition of aromatic Grignard regents (Table 4, entries 1−

3) to the imine derived from pivaldehyde gave the addition

product in high yields (86−98%) and with high diastereomeric
ratios (up to 96:4) which are comparable to Grignard
additions to tert-butyl sulfinyl imines.73 Methyl magnesium
bromide yielded the product (86%) but with much lower
selectivity compared to tert-butyl sulfinimines,73 while aliphatic
isopropylmagnesium chloride gave only small amounts of the
addition product together with the reduced product derived
from a hydride transfer (Table 4, entries 4−5). The addition of
aromatic Grignard reagents to the SIA imine derived from
aromatic benzaldehyde provided products in high yields and
diastereomeric ratios (Table 4, entries 6−10) that are
comparable with the selectivities obtained with the tert-butyl
sulfinyl imines.74,75 Methyl magnesium bromide gave low
selectivity in toluene, while an improved selectivity (dr 84:16)
was observed in CH2Cl2 (Table 4, entry 8).
Finally, we performed the synthesis between imine 16a and

3-methoxyphenylmagnesium bromide in a 0.3 mmol scale
which gave product 17 in 95% yield and 95:5 diastereomeric
ratio (Scheme 3).
The classical approach used to cleave the SA auxiliary

involves acidic condition in protic solvents, typically HCl or
trifluoroacetic acid in methanol.76,77 Unfortunately, those
conditions did not work and a complex reaction mixture was
obtained. Finally, the SIA chiral auxiliary was removed by
treatment with triflic acid and anisole in CH2Cl2

78 and the
amine was obtained in 90% yield and 95:5 dr (Scheme 3).

■ CONCLUSIONS
We have developed a photopromoted reaction between
perfluorinated aromatic azides and SAs or SOs to obtain
SIAs and SOIs, respectively. The fluoro substituents on the

Scheme 1. Synthesis of Imines from SIA and Aldehydesa

aReaction conditions: (R)-3 (0.8 mmol, 0.1 M), aldehyde (2 equiv),
pyrrolidine (0.1 equiv), CH2Cl2 (8 mL, dry), molecular sieves (4 Å),
reflux, N2 atmosphere.

Scheme 2. Solvent Screening for Grignard Addition to SIA
Iminesa

aReaction conditions: phenylmagnesium bromide (0.14 mmol, 2.5
equiv), imine (0.057 mmol, 1 equiv), solvent (0.5 mL, dry), N2
atmosphere, −78 °C.

Table 4. Scope of the Addition of Grignard Reagents to
Imines Derived from SIAsa

entry R1 R2 X yieldb drc

1 tBu Ph Br 86 95:5

2 tBu 3-methoxy-C6H4 Br 90 96:4

3 tBu 4-chloro-C6H4 Br 98 93:7

4 tBu Me Br 86 67:33

5 tBu iPr Cl

6 Ph 3-methoxy-C6H4 Br 85 92:8
7 Ph 4-chloro-C6H4 Br 85 92:8
8 Ph Me Br 80 84:16d

9 4-chloro-C6H4 Ph Br 86 84:16
10 4-chloro-C6H4 3-methoxy-C6H4 Br 90 94:6

aReaction conditions: imine (0.05 mmol, 1 equiv), Grignard reagent
(2.5 equiv), toluene (0.5 mL), −78 to r.t. bThe yield was determined
by 1H NMR spectroscopy using tert-butyl methyl ether as the internal
standard. cDetermined by 1H NMR spectroscopy or chiral HPLC.
dReaction performed in CH2Cl2.
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aromatic ring of the azides were critical for accessing
synthetically useful nitrenes. The reaction proceeded via in
situ generated perfluorinated nitrenes and stereospecific
addition, enabling the formation of optically pure compounds.
One of the chiral SIAs, derived from the perfluorinated
pyridine azide, was condensed with aliphatic and aromatic
aldehydes to yield enantiopure imine-derivatives in good to
excellent yields. The use of the synthesized SIA was evaluated
as a potential chiral auxiliary for the addition of Grignard
reagents to the chiral SIA-derived imines at −78 °C in toluene.
The investigation demonstrated that Grignard reagents were
successfully added to the imines in high to excellent yields (up
to 98%) and good to excellent diastereoselectivity (up to 96:4
dr). The use of SIA as a chiral auxiliary is to the best of our
knowledge unprecedented, and we believe that these new types
of SIAs find applications as novel scaffolds in asymmetric
synthesis.

■ EXPERIMENTAL SECTION
All reagents were obtained from commercial sources and used without
further purification. The perfluorinated aromatic azides were
synthesized according to the literature.79 All solvents were purified
and dried according to standard methods prior to use, unless stated
otherwise. Degassed solvents were obtained by bubbling the solvent
with inert gas through a needle. Anhydrous dichloromethane was
obtained by distillation over calcium hydride, and anhydrous diethyl
ether, THF, and toluene were obtained from a Glass Contour solvent
dispensing system. Heating of reaction mixtures was performed in oil
baths, and experiments at lower temperatures (−78 °C) were carried
out with dry ice/acetone baths. Thin-layer chromatography (TLC)
was performed using 60 mesh silica gel plates visualized with short-
wavelength UV light (254 nm). Silica gel 60 (200−300 mesh) was
used for column chromatography. HPLC analyses were conducted
using a UV detector (Shimadzu SPD-20A) and a chiral column
(Kromasil 5-CelluCoat RP, 0.46 × 25 cm) using a flow of 1.0 mL/min
of the eluent system hexane/iso-propanol. A Bruker Ascend 400
spectrometer (400 MHz) or Bruker Avance DMX 500 (500 MHz)
spectrometer was used for the recording of 1H NMR spectra,
13C{1H} NMR spectra, and 19F NMR spectra. Proton chemical shifts
are reported as δ values (ppm) relative to tetramethylsilane with
residual undeuterated CHCl3 (δ 7.26), DMSO-d6 (δ 2.50), and
methanol-d4 (δ 3.31) as internal standards. 13C{1H} chemical shifts
are reported as δ values (ppm) relative to tetramethylsilane with
CDCl3 (δ 77.16 ppm), DMSO-d6 (δ 39.52 ppm), or methanol-d4 (δ
49.0 ppm) as internal standards. Data for 1H NMR are reported as
follows: chemical shift (δ, ppm) and multiplicity (s = singlet, d =
doublet, t = triplet, q = quartet, m = multiplet or unresolved, br =
broad singlet, and J = coupling constants in Hz, integration). High-
resolution mass spectrometry (HRMS) measurements were per-
formed on methanolic solutions of the compounds using a Bruker
maXis impact II micrOTOF spectrometer [direct injection and
electrospray ionization (ESI)]. The light-promoted reactions were run
using a 390 nm light source (40 W, Kessil PR160, set to maximum
intensity) at a distance of 3.0 cm from the reaction vessel.

Experimental details, such as spectroscopic characterizations (1H,
13C{1H}, and 19F NMR), HPLC chromatograms, and HRMS, are
given in the Supporting Information.

General Procedure A for the Synthesis of SIAs. To an 8 mL
vial equipped with a magnetic stir bar, the perfluorinated aromatic
azido (PFAA) compound (1 equiv, 0.3 mmol, 0.05 M), SA (1.5 equiv,
0.45 mmol), and degassed α,α,α-trifluorotoluene (PhCF3) (6 mL)
were added. At this point, the vial was evacuated and back filled with
N2, and the vial was capped with a rubber septum. The reaction
mixture was irradiated at 390 nm (40 W, Kessil PR160, set to
maximum intensity, 3.0 cm from the reaction vessel) while stirring.
After the completion of the reaction, the crude obtained upon solvent
removal under reduced pressure was purified by flash column
chromatography using either petroleum ether and ethyl acetate
(PE/EtOAc) or petroleum ether, dichloromethane, and ethyl acetate
(PE/DCM/EtOAc) as the eluent system to afford the pure product.
All compounds were characterized via HRMS and 1H NMR, 13C{1H}
NMR, and 19F NMR spectroscopies.

Methyl (S)-4-((Amino(tert-butyl)(oxo)-λ6-sulfaneylidene)amino)-
2,3,5,6-tetrafluorobenzoate (S)-1. The compound was obtained
according to general procedure A using azide 1a (75 mg, 0.3 mmol, 1
equiv) and (S)-tert-butylsulfinamide (64 mg, 0.5 mmol, 1.7 equiv).
The reaction was completed after 6 h of the reaction. The pure
product was obtained after flash column chromatography (eluent:
PE/DCM/EtOAc, 6:1:1 → 3:1:1) (rf: 0.25, eluent: 4:1:1) as a pale-
yellow precipitate (72 mg, 70%). HPLC (Kromasil 5-CelluCoat RP,
0.46 cm × 25 cm, n-hexane/isopropanol = 90/10, flow rate = 1.0 mL/
min, λ = 220 nm) tR = 22.8 min (major), 41.4 min (minor). mp:
154−155 °C. 1H NMR (CDCl3, 400 MHz): δ 4.31 (br, 2H, NH2),
3.94 (s, 3H, OCH3), and 1.60 (s, 9H, t-Bu); 13C{1H} NMR (CDCl3,
100 MHz): δ 161.1, 146.0 (dm, J = 256 Hz), 142.9 (dm, J = 243 Hz),
127.4, 105.1, 62.1, 53.0, and 24.3; 19F NMR (CDCl3, 376 MHz): δ
−141.1 (m, 2F) and −149.2 (m, 2F). HRMS (ESI-TOF) m/z: [M +
Na]+ calcd for C12H14F4N2O3SNa, 365.0554; found, 365.0554. [α]D

20

+ 32 (c 0.5, CHCl3).
Methyl (R)-4-((Amino(tert-butyl)(oxo)-λ6-sulfaneylidene)amino)-

2,3,5,6-tetrafluorobenzoate (R)-1. The compound was obtained
according to general procedure A using azide 1a (77 mg, 0.3 mmol, 1
equiv) and (R)-tert-butylsulfinamide (55 mg, 0.5 mmol, 1.4 equiv).
The reaction was completed after 6 h of the reaction. The pure
product was obtained after flash column chromatography (eluent:
PE/DCM/EtOAc, 6:1:1 → 3:1:1) (rf: 0.25, eluent: 4:1:1) as a pale-
yellow precipitate (68 mg, 65%). HPLC (Kromasil 5-CelluCoat RP,
0.46 cm × 25 cm, n-hexane/isopropanol = 90/10, flow rate = 1.0 mL/
min, λ = 220 nm) tR = 23.4 min (minor), 41.7 min (major). mp:
150−153 °C. 1H NMR (CDCl3, 400 MHz): δ 4.49 (br, 2H, NH2),
3.93 (s, 3H, OCH3), and 1.58 (s, 9H, t-Bu); 13C{1H} NMR (CDCl3,
100 MHz): δ 161.1, 145.9 (dm, J = 256 Hz), 142.9 (dm, J = 244 Hz),
127.6, 104.9, 62.1, 53.0, and 24.3; 19F NMR (CDCl3, 376 MHz): δ
−141.3 (m, 2F), −149.2 (m, 2F). HRMS (ESI-TOF) m/z: [M +
Na]+ calcd for C12H14F4N2O3SNa, 365.0554; found, 365.0555.
[α]D20 − 32 (c 0.5, CHCl3).

(S)-N′-(4-Cyano-2,3,5,6-tetrafluorophenyl)-2-methylpropane-2-
sulfonimidamide (S)-2. The compound was obtained according to
general procedure A using azide 1b (68 mg, 0.3 mmol, 1 equiv) and
(S)-tert-butylsulfinamide (54 mg, 0.5 mmol, 1.5 equiv). The reaction
was completed after 2 h of the reaction. The pure product was

Scheme 3. Larger Scale Synthesis and Removal of Chiral Auxiliarya

aReaction conditions: 3-methoxyphenylmagnesium bromide (0.75 mmol, 2.5 equiv), imine (0.3 mmol, 1.0 equiv), toluene (2.5 mL, dry), N2-
atmosphere −78 °C to r.t. Compound 17 (0.09 mmol, 1 equiv), anisole (20 equiv), TfOH (9 equiv), CH2Cl2, 0 °C to r.t.
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obtained after flash column chromatography (eluent: PE/DCM/
EtOAc, 10:1:1 → 6:1:1) (rf: 0.15, eluent: 6:1:1) as an off-white
precipitate (60 mg, 62%). mp: 126−127 °C. 1H NMR (CDCl3, 400
MHz): δ 4.46 (br, 2H, NH2), and 1.59 (s, 9H, t-Bu); 13C{1H} NMR
(CDCl3, 125 MHz): δ 147.8 (dm, J = 259 Hz), 142.5 (dm, J = 246
Hz), 130.9, 108.6, 85.95, 62.6, and 24.2; 19F NMR (CDCl3, 376
MHz): δ −135.4 (m, 2F), −146.9 (m, 2F). HRMS (ESI-TOF) m/z:
[M + Na]+ calcd for C11H11F4N3OSNa, 332.0452; found, 332.0451.
[α]D27 + 68 (c 0.4, CHCl3).
(S)-2-Methyl-N′-(perfluoropyridin-4-yl)propane-2-sulfonimida-

mide (S)-3. The compound was obtained according to general
procedure A using azide 1c (62 mg, 0.3 mmol, 1 equiv) and (S)-tert-
butylsulfinamide (56 mg, 0.5 mmol, 1.5 equiv). The reaction was
completed after 16 h of the reaction. The pure product was obtained
after flash column chromatography (eluent: PE/DCM/EtOAc, 8:1:1
→ 4:1:1) as an off-white precipitate (58 mg, 64%). mp: 123−125 °C.
1H NMR (CDCl3, 400 MHz): δ 4.44 (br, 2H, NH2) and 1.60 (s, 9H,
t-Bu); 13C{1H} NMR (CDCl3, 125 MHz): δ 144.1 (dm, J = 241 Hz),
137.6 (dm, J = 253 Hz), 136.1, 62.4, and 24.0; 19F NMR (CDCl3, 376
MHz): δ −93.2 (m, 2F) and −151.5 (m, 2F). HRMS (ESI-TOF) m/
z: calcd for C9H11F4N3OS [M + Na]+, 308.0451; found, 308.0449.
[α]D

30 + 280 (c 0.3, acetonitrile).
(R)-2-Methyl-N′-(perfluoropyridin-4-yl)propane-2-sulfonimida-

mide (R)-3. The compound was obtained according to general
procedure A using azide 1c (58 mg, 0.3 mmol, 1 equiv) and (R)-tert-
butylsulfinamide (51 mg, 0.5 mmol, 1.5 equiv). The reaction was
completed after 16 h of the reaction. The pure product was obtained
after flash column chromatography (eluent: PE/DCM/EtOAc, 6:1:1
→ 3:1:1) (rf: 0.3, eluent: 4:1:1) as an off-white precipitate (56 mg,
65%). mp: 122−123 °C. 1H NMR (CDCl3, 400 MHz): δ 4.37 (br,
2H, NH2) and 1.60 (s, 9H, t-Bu); 13C{1H} NMR (CDCl3, 100
MHz): δ 144.2 (dm, J = 241 Hz), 137.5 (dm, J = 251 Hz), 62.6 and
24.2; 19F NMR (CDCl3, 376 MHz): δ −93.1 (m, 2F) and −151.5 (m,
2F). HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C9H11F4N3OSNa,
308.0451; found, 308.0451. [α]D

30 − 290 (c 0.4, acetonitrile).
(S)-2-Methyl-N′-(perfluorophenyl)propane-2-sulfonimidamide

(S)-4. The compound was obtained according to general procedure A
using azide 1d (65 mg, 0.3 mmol, 1 equiv) and (S)-tert-
butylsulfinamide (54 mg, 0.5 mmol, 1.5 equiv). The reaction was
completed after 19 h of the reaction. The pure product was obtained
after flash column chromatography (eluent: PE/DCM/EtOAc, 10:1:1
→ 6:1:1) (rf: 0.28, eluent: 6:1:1) as an off-white precipitate (30 mg,
32%). mp: 101−103 °C. 1H NMR (CDCl3, 400 MHz): δ 4.27 (br,
2H, NH2) and 1.59 (s, 9H, t-Bu); 13C{1H} NMR (CDCl3, 125
MHz): δ 143.4 (dm, J = 243 Hz), 138.0 (dm, J = 257 Hz), 137.8 (dm,
J = 246 Hz), 118.6, 61.5, and 24.2; 19F NMR (CDCl3, 376 MHz): δ
−150.1 (m, 2F), −164.2 (m, 1F), and −164.5 (m, 2F). HRMS (ESI-
TOF) m/z: [M + Na]+ calcd for C10H11F5N2OSNa, 325.0405; found,
325.0404. [α]D

27 + 28 (c 0.3, CHCl3).
(S)-4-((Amino(tert-butyl)(oxo)-λ6-sulfaneylidene)amino)-2,3,5,6-

tetrafluorobenzoic Acid (S)-5. The compound was obtained
according to general procedure A using azide 1e (68 mg, 0.3 mmol,
1 equiv) and (S)-tert-butylsulfinamide (57 mg, 0.5 mmol, 1.5 equiv).
The reaction was completed after 10 h of the reaction. The pure
product was obtained after flash column chromatography (eluent: 5%
MeOH in CH2Cl2 + 0.5% formic acid) (rf: 0.19, eluent: 5% MeOH in
CH2Cl2 + 0.5% formic acid) as a white precipitate (31 mg, 34%). mp:
74 °C. 1H NMR (DMSO-d6, 400 MHz): δ 6.88 (br, 2H, NH2) and
1.43 (s, 9H, t-Bu); 13C{1H} NMR (DMSO-d6, 125 MHz): δ 161.0,
144.9 (dm, J = 249 Hz), 141.6 (dm, J = 243 Hz), 129.1, 103.8, 60.6,
and 23.8; 19F NMR (DMSO-d6, 376 MHz): δ −143.5 (m, 2F) and
−148.8 (m, 2F). HRMS (ESI-TOF) m/z: [M + Na]+ calcd for
C11H12F4N2O3SNa, 351.0397; found, 351.0399. [α]D

31 − 4 (c 0.4,
methanol).
(S)-N′-(4-Cyano-2,3,5,6-tetrafluorophenyl)-4-methylbenzenesul-

fonimidamide (S)-7. The compound was obtained according to
general procedure A using azide 1b (62 mg, 0.3 mmol, 1 equiv) and
(S)-p-toluenesulfinamide (55 mg, 0.4 mmol, 1.3 equiv). The reaction
was completed after 5 h of the reaction. The pure product was
obtained after flash column chromatography (eluent: PE/DCM/

EtOAc, 8:1:1 → 6:1:1) (rf: 0.12, eluent: 6:1:1) as an off-white
precipitate (41 mg, 42%). mp: 175−177 °C. 1H NMR (DMSO-d6,
500 MHz): δ 7.85 (d, J = 8.3 Hz, 1H), 7.78 (br, 2H, NH2), 7.43 (d, J
= 8.1 Hz, 1H), and 2.39 (s, 3H, CH3);

13C{1H} NMR (DMSO-d6,
125 MHz): δ 147.3 (dm J = 258 Hz), 143.0, 141.0 (dm J = 244 Hz),
140.4, 132.0, 129.6, 126.3, 109.0, 83.2, and 21.0; 19F NMR (DMSO-
d6, 376 MHz): δ −134.9 (m, 2F) and −146.4 (m, 2F). HRMS (ESI-
TOF) m/z: [M + Na]+ calcd for C14H9F4N3OSNa, 366.0295; found,
366.0296. [α]D

31 − 49 (c 0.3, acetonitrile).
Methyl 2,3,5,6-Tetrafluoro-4-((oxo(phenyl)(piperidin-1-yl)-λ6-

sulfaneylidene)amino)-benzoate rac-8. The compound was ob-
tained according to general procedure A using azide 1a (75 mg, 0.3
mmol, 1 equiv) and 1-(phenylsulfinyl)piperidine (94 mg, 0.45 mmol,
1.5 equiv). The reaction was completed after 6 h of the reaction. The
pure product was obtained after flash column chromatography
(eluent: PE/DCM/EtOAc, 20:1:1 → 10:1:1) as a white precipitate
(51 mg, 42%). mp: 85−86 °C. 1H NMR (CDCl3, 400 MHz): δ 7.94
(m, 2H), 7.62 (m, 1H), 7.56 (m, 2H), 3.93 (s, 3H), 3.05 (m, 4H),
1.54 (m, 4H), and 1.40 (m, 2H); 13C{1H} NMR (CDCl3, 125 MHz):
δ 161.1, 145.9 (dm, J = 255 Hz), 142.5 (dm, J = 245 Hz), 136.3,
133.1, 129.3, 128.1, 127.4, 104.5, 52.9, 47.6, 25.5, and 23.6; 19F NMR
(CDCl3, 376 MHz): δ −141.2 (m, 2F) and −147.8 (m, 2F). HRMS
(ESI-TOF) m/z: [M + H]+ calcd for C19H19F4N2O3S, 431,1047;
found, 431.1049.

General Procedure B for the Synthesis of SOIs. To an 8 mL
vial equipped with a magnetic stir bar, PFAA compound (1 equiv, 0.3
mmol, 0.05 M), SO (1.5 equiv, 0.45 mmol), and degassed α,α,α-
trifluorotoluene (PhCF3) (6 mL) were added. At this point, the vial
was evacuated and back filled with N2, and the vial was capped with a
rubber septum. The reaction mixture was irradiated at 390 nm (40 W,
Kessil PR160, set to maximum intensity, 3.0 cm from the reaction
vessel) while stirring. After the completion of the reaction, the crude
obtained upon solvent removal under reduced pressure was purified
by flash column chromatography using either petroleum ether and
ethyl acetate (PE/EtOAc) or petroleum ether, dichloromethane, and
ethyl acetate (PE/DCM/EtOAc) as the eluent system to afford the
pure product. All compounds were characterized via HRMS and 1H
NMR, 13C{1H} NMR, and 19F NMR spectroscopies.

Methyl 4-((Dimethyl(oxo)-λ6-sulfaneylidene)amino)-2,3,5,6-tet-
rafluorobenzoate 9. The compound was obtained according to
general procedure B using azide 1a (75 mg, 0.3 mmol, 1 equiv) and
DMSO (32 μL, 0.45 mmol, 1.5 equiv). The reaction was completed
after 2 h of the reaction. The pure product was obtained after flash
column chromatography (eluent: PE/EtOAc, 2:1 → 1:1) (rf: 0.3,
eluent PE/EtOAc 1:1) as a white precipitate (70 mg, 78%). mp: 129−
130 °C 1H NMR (CDCl3, 400 MHz): δ 3.94 (s, 3H, OCH3), and
3.29 (s, 6H, CH3);

13C{1H} NMR (CDCl3, 125 MHz): δ 160.9, 146−
0 (dm, J = 256 Hz), 142.1 (dm, J = 243 Hz), 127.6, 104.7, 53.0, and
44.8; 19F NMR (CDCl3, 376 MHz): δ −140.8 (m, 2F) and −149.5
(m, 2F). HRMS (ESI-TOF) m/z: [M + H]+ calcd for C10H10F4NO3S,
300.0312; found, 300.0312.

Methyl 2,3,5,6-Tetrafluoro-4-((methyl(oxo)(phenyl)-λ6-
sulfaneylidene)amino)benzoate rac-10. The compound was ob-
tained according to general procedure B using azide 1a (64 mg, 0.26
mmol, 1 equiv) and phenyl vinyl SO (51 mg, 0.36 mmol, 1.4 equiv).
The reaction was completed after 4 h of the reaction. The pure
product was obtained after flash column chromatography (eluent:
PE/DCM/EtOAc, 10:1:1→ 6:1:1) (rf: 0.36, eluent: 6:1:1) as a white
precipitate (57 mg, 61%). mp: 140−142 °C. 1H NMR (CDCl3, 400
MHz): δ 8.03−7.93 (m, 2H), 7.72−7.64 (m, 1H), 7.63−7.54 (m,
2H), 3.90 (s, 3H), and 3.36 (s, 3H); 13C{1H} NMR (CDCl3, 125
MHz): δ 161.0, 145.7 (dm, J = 255.4 Hz), 141.7 (dm, J = 244.6 Hz),
139.6, 134.1, 129.9, 128.0, 127.7, 104.2, 52.9, and 47.3; 19F NMR
(CDCl3, 376 MHz): δ −141.0 (m, 2F) and −148.6 (m, 2F). HRMS
(ESI-TOF) m/z: [M + H]+ calcd for C15H12F4NO3S, 362.0468;
found, 362.0466.

Methyl 2,3 ,5,6-Tetrafluoro-4-((methyl(oxo)(vinyl)-λ6-
sulfaneylidene)amino)benzoate rac-11. The compound was ob-
tained according to general procedure B using azide 1a (75 mg, 0.3
mmol, 1 equiv) and phenyl vinyl SO (rac) (46 μL, 0.42 mmol, 1.4
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equiv). The reaction was completed after 4 h of the reaction. The
pure product was obtained after flash column chromatography
(eluent: PE/DCM/EtOAc, 10:1:1 → 6:1:1) (rf: 0.4, eluent: 6:1:1)
as an off-white precipitate (63 mg, 56%). mp: 106−107 °C. 1H NMR
(CDCl3, 400 MHz): δ 8.06−7.91 (m, 2H), 7.72−7.63 (m, 1H),
7.60−7.53 (m, 2H), 6.74 (dd, J = 16.2, 9.4 Hz, 1H), 6.56 (d, J = 16.5
Hz, 1H), 6.14 (d, J = 9.3 Hz, 1H), and 3.91 (s, 3H); 13C{1H} NMR
(CDCl3, 125 MHz): δ 161.0, 145.7 (dm, J = 255.5 Hz), 142.0 (dm, J
= 244.8 Hz), 138.6, 138.3, 134.1, 129.8, 129.4, 128.4, 127.8, 104.6,
and 52.9; 19F NMR (CDCl3, 376 MHz): δ −141.0 (m, 2F) and
−148.1 (m, 2F). HRMS (ESI-TOF) m/z: [M + H]+ calcd for
C16H12F4NO3S, 374.0468; found, 374.0467.
Methyl 2,3,5,6-Tetrafluoro-4-(((2-methoxy-2-oxoethyl)(oxo)-

(phenyl)-λ6-sulfaneylidene)-amino)benzoate rac-12. The com-
pound was obtained according to general procedure B using azide
1a (74 mg, 0.3 mmol, 1 equiv) and methyl-phenylsulfinylacetate (rac)
(91 mg, 0.45 mmol, 1.5 equiv). The reaction was completed after 2 h
of the reaction. The pure product was obtained after flash column
chromatography (eluent: PE/DCM/EtOAc, 10:1:1 → 6:1:1) (rf:
0.14, eluent: 6:1:1) as an off-white precipitate (58 mg, 47%). mp: 97−
98 °C. 1H NMR (CDCl3, 500 MHz): δ 8.05−7.96 (m, 2H), 7.83−
7.67 (m, 1H), 7.66−7.58 (m, 2H), 4.38 (s, 2H), 3.92 (s, 3H), and
3.70 (s, 3H); 13C{1H} NMR (CDCl3, 125 MHz): δ 162.4, 160.9,
145.9 (dm, J = 255.8 Hz), 141.8 (dm, J = 244.9 Hz), 137.9, 134.7,
129.8, 128.8, 127.2, 104.8, 62.8, 53.3, and 53.0; 19F NMR (CDCl3,
376 MHz): δ −140.8 (m, 2F) and −148.3 (m, 2F). HRMS (ESI-
TOF) m/z: [M + Na]+ calcd for C17H13F4NO5SNa, 442.0344; found,
442.0341.
Methyl (R)-2,3,5,6-Tetrafluoro-4-((methyl(oxo)(p-tolyl)-λ6-

sulfaneylidene)amino)benzoate (R)-13. The compound was ob-
tained according to general procedure B using azide 1a (74 mg, 0.3
mmol, 1 equiv) and (R)-methyl p-tolyl SO (64 mg, 0.4 mmol, 1.4
equiv). The reaction was completed after 2 h of the reaction. The
pure product was obtained after flash column chromatography
(eluent: PE/DCM/EtOAc, 6:1:1) (rf: 0.44, eluent: 4:1:1) as a
white precipitate (74 mg, 66%). mp: 86−87 °C. 1H NMR (CDCl3,
400 MHz): δ 7.83 (d, J = 8.2 Hz, 2H), 7.37 (d, J = 8.2 Hz, 2H), 3.90
(s, 3H), 3.34 (s, 3H), and 2.44 (s, 3H); 13C{1H} NMR (CDCl3, 125
MHz): δ 161.0, 145.9 (dm, J = 255.3 Hz), 145.2, 141.9 (dm, J = 244.7
Hz), 136.4, 130.6, 128.3, 127.7, 104.1, 52.9, 47.4, and 21.7; 19F NMR
(CDCl3, 376 MHz): δ −141.1 (m, 2F) and −148.1 (m, 2F). HRMS
(ESI-TOF) m/z: [M + H]+ calcd for C16H14F4NO3S, 376.0625;
found, 376.0626. [α]D

27 − 113 (c 0.4, CHCl3).
Methyl 4-(((4-Chlorobenzyl)(4-chlorophenyl)(oxo)-λ6-

sulfaneylidene)amino)-2,3,5,6-tetrafluorobenzoate rac-14. The
compound was obtained according to general procedure B using
azide 1a (56 mg, 0.2 mmol, 1 equiv) and chlorbensid SO (85 mg, 0.3
mmol, 1.3 equiv). The reaction was run in ethyl acetate (deg) and was
completed after 2 h of the reaction. The pure product was obtained
after flash column chromatography (eluent: PE/DCM, 1:1 → 1:2)
(rf: 0.15, eluent: PE/DCM, 1:1) as a colorless solid (60 mg, 53%).
mp: 109−110 °C. 1H NMR (CDCl3, 500 MHz): δ 7.61−7.49 (m,
2H), 7.48−7.41 (m, 2H), 7.33−7.22 (m, 2H), 7.16−7.05 (m, 2H),
4.79−4.34 (m, 2H), and 3.90 (s, 3H); 13C{1H} NMR (CDCl3, 125
MHz): δ 160.9, 145.9 (dm, J = 255.7 Hz), 141.7 (dm, J = 244.6 Hz),
141.18, 136.0, 135.4, 132.8, 130.2, 129.9, 129.1, 127.7, 125.8, 104.3,
64.6, and 52.9; 19F NMR (CDCl3, 376 MHz): δ −140.8 (m, 2F) and
−148.4 (m, 2F). HRMS (ESI-TOF) m/z: [M + Na]+ calcd for
C21H13Cl2F4NO3SNa, 527.9822; found, 527.9823.
(2S)-2-((tert-Butoxycarbonyl)amino)-4-(S-methyl-N-(2,3,5,6-tet-

rafluoro-4-(methoxycarbonyl)-phenyl)sulfonimidoyl)butanoic Acid
15. The compound was obtained according to general procedure B
using azide 1a (75 mg, 0.3 mmol, 1 equiv) and L-methionine SO N-
Boc protected (120 mg, 0.45 mmol, 1.5 equiv). The reaction was
completed after 1 h of the reaction. The pure product was obtained
after flash column chromatography (eluent: 2.5% MeOH in DCM +
0.25% formic acid → 5.0% MeOH in DCM + 0.25% formic acid) (rf:
0.25, eluent: 5.0% MeOH in DCM + 0.5% formic acid) as a pale-
yellow precipitate (72 mg, 49%). mp: 111−112 °C. 1H NMR (CDCl3,
500 MHz): δ 9.97 (br, 1H, CO2H), 7.05−5.52 (br, 1H, NH), 4.45−

4.40 (s, 1H, CH), 3.92 (s, 3H, OCH3), 3.57−3.66 (m, 2H, CH2),
3.21 (s, 3H, S-CH3), 2.56−2.33 (m, 2H, CH2), and 1.50−1.42 (s, 9H,
t-Bu); 13C{1H} NMR (CDCl3, 125 MHz): δ 174.1, 161.0, 156.9,
155.9, 145.9 (dm, J = 256 Hz), 142.0 (dm, J = 240 Hz), 127.5, 104.6,
83.21, 81.1, 53.3, 53.0, 52.0, 42.5, 28.3, and 25.9; 19F NMR (CDCl3,
376 MHz): δ −140.7 (m, 2F) and −149.2 (m, 2F). HRMS (ESI-
TOF) m/z: [M + Na]+ calcd for C18H22F4N2O7SNa, 509.0976;
found, 509.0973.

General Procedure C for the Condensation Reaction. To a
dry round-bottom flask equipped with a magnetic stir bar, a reflux
condenser and 4 Å molecular sieves (MSs), SIA (1 equiv, 0.8 mmol,
0.1 M), aldehyde (2 equiv), pyrrolidine (0.08 mmol, 0.1 equiv), and
anhydrous CH2Cl2 (8 mL) were added. The reaction was refluxed
under an inert atmosphere (N2). After the completion of the reaction,
the crude obtained upon solvent removal under reduced pressure was
purified by flash column chromatography using petroleum ether,
dichloromethane, and ethyl acetate (PE/EtOAc) as the eluent system
to afford the pure product. All compounds were characterized via
HRMS and 1H NMR, 13C{1H} NMR, and 19F NMR spectroscopies.

(S,E)-N-(2,2-Dimethylpropylidene)-2-methyl-N′-(perfluoropyri-
din-4-yl)propane-2-sulfonimidamide (R)-16a. The compound was
obtained according to general procedure C using compound (R)-3 (1
equiv) and pivaldehyde (2.0 equiv). The reaction was completed after
40 h of the reaction. The pure product was obtained after flash
column chromatography (eluent: PE/EtOAc 20:1) as a white
precipitate (125 mg, 90%). mp: 88 °C. 1H NMR (CDCl3, 500
MHz): δ 8.50 (s, 1H, imine), 1.54 (s, 9H, t-Bu), and 1.42 (s, 9H, t-
Bu); 13C{1H} NMR (CDCl3, 125 MHz): δ 189.4, 144.3 (dm, J = 240
Hz), 137.1 (dm, J = 252 Hz), 136.7, 62.0, 38.9, 26.1, and 23.8; 19F
NMR (CDCl3, 376 MHz): δ −93.8 (m, 2F) and −152.0 (m, 2F).
HRMS (ESI-TOF) m/z: [M + Na]+ calcd for C14H19F4N3OSNa,
376.1077; found, 376.1078. [α]D

31 − 64 (c 0.2, CHCl3).
(S,E)-N-Benzylidene-2-methyl-N′-(perfluoropyridin-4-yl)-

propane-2-sulfonimidamide (R)-16b. The compound was obtained
according to general procedure C using compound (R)-3 (1 equiv)
and benzaldehyde (2.0 equiv). The reaction was completed after 40 h
of the reaction. The pure product was obtained after flash column
chromatography (eluent: PE/EtOAc 20:1) as a white crystal (60 mg,
78%). mp: 68−70 °C. 1H NMR (CDCl3, 500 MHz): δ 9.06 (s, 1H,
imine), 7.99 (m, 2H), 7.69 (m, 1H), 7.55 (m, 2H), and 1.61 (s, 9H, t-
Bu); 13C{1H} NMR (CDCl3, 125 MHz): δ 174.6, 144.20 (dm, J =
240 Hz), 137.1 (dm, J = 252 Hz), 136.7, 135.7, 132.2, 131.6, 129.5,
62.5, and 23.9; 19F NMR (CDCl3, 376 MHz): δ −93.9 (m, 2F) and
−152.0 (m, 2F). HRMS (ESI-TOF) m/z: [M + Na]+ calcd for
C16H15F4N3OSNa, 396.0764; found, 396.0768. [α]D

31 − 404 (c 0.3,
CHCl3).

(S,E)-N-(4-Chlorobenzylidene)-2-methyl-N′-(perfluoropyridin-4-
yl)propane-2-sulfonimidamide (R)-16c. The compound was ob-
tained according to general procedure C using compound (R)-3 (1
equiv) and 4-chloro benzaldehyde (2.0 equiv). The reaction was
completed after 40 h of the reaction. The pure product was obtained
after flash column chromatography (eluent: PE/EtOAc 20:1) as white
crystals (254 mg, 78%). mp: 99−100 °C. 1H NMR (CDCl3, 500
MHz): δ 9.02 (s, 1H, imine), 7.93 (d, J = 8.5, 2H), 7.54 (d, J = 8.5,
2H), and 1.60 (s, 9H, t-Bu); 13C{1H} NMR (CDCl3, 125 MHz): δ
173.1, 144.1 (dm, J = 241 Hz), 142.4, 137.1 (dm, J = 252 Hz), 136.5,
132.7, 130.7, 130.1, 62.6, and 24.0; 19F NMR (CDCl3, 376 MHz): δ
−93.77 (m, 2F) and −151.89 (m, 2F). HRMS (ESI-TOF) m/z: [M +
Na]+ calcd for C16H14ClF4N3OSNa, 430.0375; found, 430.0376. [α]D

31

− 194 (c 0.2, CHCl3).
General Procedure D for the Solvent Screening of Grignard

Addition Reactions. To a dry Biotage microwave vial equipped with
a magnetic stir bar, a 0.5 mL solution of SIA-imine (1 equiv, 0.05
mmol, 0.1 M) was added. The solution was allowed to reach −78 °C
in an acetone/dry ice bath, and 47 μL of a solution (3.0 M in Et2O) of
phenyl magnesium bromine was added drop-wise. The reaction
mixture was stirred for 6 h. The crude reaction mixture was sampled,
quenched with sat. aq. sol. of NH4Cl, and analyzed via 1H NMR to
determine the conversion and the dr.
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General Procedure E for Grignard Addition Reactions. To a
dry Biotage microwave vial equipped with a magnetic stir bar, a 0.5
mL solution of SIA-imine (1 equiv, 0.05 mmol, 0.1 M) was added.
The solution was allowed to reach −78 °C in an acetone/dry ice bath
and the Grignard reagent (0.125 mmol, 2.5 equiv) was added
dropwise to the solution. The reaction mixture was stirred at −78 °C
for 6 h and then let reach r.t. overnight. The crude reaction mixture
was quenched with sat. aq. sol. of NH4Cl (2 mL) and extracted with
EtOAc (4 × 1 mL). The organic phases were combined, dried over
Na2SO4, and filtered, and the solvent was removed via rotary
evaporation in vacuo. The yield of the reaction was obtained via 1H
NMR using tert-butyl methyl ether as the internal standard. The dr
was obtained via 1H NMR analysis.
(S)-N-(1-(3-Methoxyphenyl)-2,2-dimethylpropyl)-2-methyl-N′-

(perfluoropyridin-4-yl)propane-2-sulfonimidamide 17. The com-
pound was obtained according to general procedure E using imine
(R)-16a (1 equiv, 0.3 mmol, 100 mg) and a 1.0 M solution of 3-
methoxyphenylmagnesium bromide in THF (2.5 equiv). The crude
reaction mixture was quenched with sat. aq. sol. of NH4Cl (10 mL)
and extracted with EtOAc (4 × 8 mL). The organic phases were
combined, washed with H2O, dried over Na2SO4, and filtered, and the
solvent was removed via rotary evaporation in vacuo. The pure
product was obtained without further purification as colorless powder
(124 mg, 95% yield, 95:5 dr). HPLC (Kromasil 5-CelluCoat RP, 0.46
cm × 25 cm, n-hexane/isopropanol = 98/2, flow rate = 1.0 mL/min, λ
= 220 nm) tR = 14.5 min (major), 22.1 min (minor). mp: 152−153
°C. 1H NMR (500 MHz, CDCl3): δ 7.06 (t, J = 7.9 Hz, 1H), 6.66 (m,
1H), 6.59 (m, 1H), 6.49 (m, 1H), 4.21 (d, J = 9.9 Hz, 1H, NH), 4.13
(d, J = 9.8 Hz, 1H, CH), 3.73 (s, 3Hm OCH3), 1.52 (s, 9H, t-Bu),
and 0.94 (s, 9H, t-Bu); 13C{1H} NMR (125 MHz, CDCl3): δ 159.1,
143.8 (dm, J = 243 Hz), 142.6, 137.9 (dm, J = 253 Hz), 136.1, 128.8,
120.2, 114.4, 111.5, 67.6, 64.1, 55.1, 35.8, 27.5, and 24.6. 19F NMR
(CDCl3, 376 MHz): δ −93.6 (m, 2F) and −151.2 (m, 2F). HRMS
(ESI-TOF) m/z: [M + Na]+ calcd for C21H27F4N3O2SNa, 484.1653;
found, 484.1654. [α]D

31 − 20 (c 0.2, CHCl3).
1-(3-Methoxyphenyl)-2,2-dimethylpropan-1-amine 18. Com-

pound 17 (1 equiv, 0.09 mmol, 40 mg) and anisole (20 equiv)
were introduced into a round-bottom flask, equipped with a magnetic
stirrer, containing 8 mL of dichloromethane. The reaction mixture
was cooled down to 0−5 °C (ice bath), and a 4 mL solution of triflic
acid in dichloromethane (0.2 M) was added dropwise. After the
addition, the reaction was let reach room temperature. After the
completion of the reaction (2 h), the crude mixture was quenched
with aqueous NaOH (2 M, 10 mL) and extracted with dichloro-
methane (3 × 10 mL). The reunited organic phase was dried over
Na2SO4 and filtered, and the solvent was removed via rotary
evaporation in vacuo. The pure product was obtained via
preparative-TLC (eluent: 5% MeOH in DCM) (rf: 0.2, eluent: 5%
MeOH in DCM) as a colorless liquid (15 mg, 90%, 95:5 dr). HPLC
(ReproSil Chiral-NR, 0.46 cm × 25 cm, n-hexane/isopropanol = 70/
30, flow rate = 1.0 mL/min, λ = 220 nm) tR = 6.5 min (minor), 8.4
min (major). mp: 152−153 °C. 1H NMR (500 MHz, CDCl3): δ 7.20
(m, 1H), 6.85 (m, 2H), 6.78 (m, 1H), 3.80 (s, 3H, OCH3), 2.94 (br,
2H, NH2), and 0.92 (s, 9H, t-Bu); 13C{1H} NMR (125 MHz,
CDCl3): δ 159.2, 144.8, 128.6, 121.0, 114.3, 112.2, 65.4, 55.3, 35.1,
and 26.7. HRMS (ESI-TOF) m/z: [M + H]+ calcd for C12H20NO,
194.1539; found, 194.1541. [α]D

30 − 2.4 (c 0.5, methanol).
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