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SUMMARY.

Influenza A virus (IAV) surveillance in migratory waterfowl in the United States has primarily 

occurred during late summer and the autumn southern migration. Data concerning the presence 

and ecology of IAVs in waterfowl during winter and spring seasons in the U.S. northern latitudes 

have been limited, mainly due to limited access to waterfowl for sampling. The southwestern 

Lake Erie Basin is an important stopover site for waterfowl during migration periods, and over 

the past 28 years, 8.72% of waterfowl sampled in this geographic location have been positive for 

IAV recovery during summer and autumn (June–December). To gain a better understanding of 

influenza A viral dynamics in waterfowl populations during winter and spring migration (February 

through April), cloacal swabs were collected from overwintering and spring-migrating waterfowl 

in Ohio and Michigan in 2006, 2007, 2013, and 2014. A total of 740 cloacal swabs were collected 

and tested using virus isolation in embryonating chicken eggs, resulting in the recovery of 33 

(4.5%) IAV isolates. The influenza A isolates were recovered from eight waterfowl species in the 

order Anseriformes. Antigenically, the IAV isolates represent 15 distinct hemagglutinin (HA) and 

neuraminidase (NA) combinations, with seven (21%) of the isolates reported as mixed infections 

based on antigenic HA subtyping, NA subtyping, or both. This effort demonstrates the presence 

of antigenically diverse IAV in waterfowl during overwintering and spring migration at northern 

latitudes in the United States, thereby contributing to the understanding of the maintenance of 

diversity among waterfowl-origin IAVs.

RESUMEN.
Nota de investigación- Los virus de la influenza A partir de aves acuáticas migratorias durante el 

invierno y primavera en la cuenca del lago Erie, en los Estados Unidos.

La vigilancia de los virus de la influenza A en las aves acuáticas migratorias en los Estados Unidos 

se ha llevado a cabo especialmente durante finales de verano y durante la migración hacia el sur en 

el otoño. Los datos relativos a la presencia y la ecología de los virus de este tipo de aves acuáticas 

durante las temporadas de invierno y primavera en las latitudes del norte de Estados Unidos han 

sido limitados, debido principalmente a un acceso limitado a las aves acuáticas para el muestreo. 

El sudoeste de la cuenca del lago Erie es un sitio de parada importante para las aves acuáticas 
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durante los periodos de migración y en los últimos 28 años, 8.72% de las aves acuáticas en la 

muestra en esta ubicación geográfica han sido positivos en la recuperación del virus de influenza 

aviar durante el verano y el otoño (Junio a Diciembre). Para obtener una mejor comprensión de 

la dinámica viral de la influenza A en las poblaciones de aves acuáticas durante el invierno y 

la migración de primavera (Febrero a Abril), se recolectaron hisopos cloacales de aves acuáticas 

durante el invierno y durante la migración de primavera en Ohio y Michigan en 2006, 2007, 2013, 

y 2014. Se recolectaron un total de 740 hisopos cloacales se analizaron mediante aislamiento del 

virus en huevos embrionados, dando como resultado la recuperación de 33 (4.5%) aislamientos 

de influenza aviar. Los aislamientos de influenza aviar fueron recuperados de ocho especies de 

aves acuáticas del orden Anseriformes. Antigénicamente, los aislamientos del virus de la influenza 

aviar representaron 15 combinaciones distintas de hemaglutinina (HA) y de neuraminidasa (NA), 

con siete (21%) de los aislamientos reportados como infecciones mixtas con base en los subtipos 

de HA, de NA o de ambos. Este esfuerzo demuestra la presencia diversa antigénicamente del virus 

de influenza aviar en las aves acuáticas durante el invierno y durante la migración de primavera 

en latitudes septentrionales en los Estados Unidos, lo que contribuye a la comprensión de la 

conservación de la diversidad entre los virus originados en este tipo de aves acuáticas.
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Migratory waterfowl, (order Anseriformes), are a major reservoir for influenza A viruses 

(IAVs). Waterfowl play an important role in the natural history of IAVs, contributing to 

the dispersal of diverse IAVs to naïve populations, thereby perpetuating the transmission 

of IAVs in waterfowl populations (1,3,14,17). Low pathogenic (LP) IAVs infect migratory 

waterfowl mainly in the digestive tract and are shed in feces for up to 28 days, providing 

ample opportunity for fecal-oral viral transmission between individual birds (5,14). More 

recent studies have shown peak vial shedding in experimentally infected waterfowl occurs 

during the first 5 to 7 days postinfection, with intermittent shedding after 7 to 10 days 

(4). Most of the IAV surveillance in the United States has primarily been conducted in 

late summer and early autumn during the premigration staging season and during southern 

migration. Less is known about the presence and ecology of IAVs during the northerly 

spring migrations because access to waterfowl is more limited during spring when they 

are not hunted (3,9,10,11,17). Two previous studies have shown decreased viral shedding 

in waterfowl during spring migration compared with autumn migration; however, spring 

sampling efforts are much less expansive (15,17). Therefore, the current knowledge base 

regarding the diversity of IAVs in the waterfowl reservoir in the United States is largely 

based on late summer–autumn surveillance efforts. The movement of diverse IAVs from 

southern wintering grounds to northern breeding grounds has been reported in shorebirds; 

however, little information is available regarding similar IAV movement in waterfowl (8). 

This project was conducted to examine the frequency of IAV infections in wild waterfowl 

present in Ohio and Michigan during overwintering and spring migration.
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MATERIALS AND METHODS

Cloacal swabs were collected from live-trapped, overwintering, resident, and northern-

migrating waterfowl in Ohio and Michigan in 2006, 2007, 2013, and 2014 during the 

months of February through April, as previously described (13). Waterfowl were not 

accessible 2008–2012; thus, no samples were obtained. All bird handling and sample 

collection procedures were approved and accomplished under animal use protocol number 

2007A0148 of The Ohio State University. Virus isolation attempts on each sample were 

done using 10-day-old embryonating chicken eggs by using a previously described protocol 

(12,13). All samples that demonstrated hemagglutinating activity via a hemagglutination test 

with 0.7% chicken red blood cells were tested for the presence of IAV by using the Avian 

Influenza Virus Type A Antigen Test Kit (Synbiotics Corporation, San Diego, CA). All IAV 

isolates were submitted to the National Veterinary Service Laboratory (NVSL) in Ames, 

Iowa, for antigenic hemagglutinin (HA) and neuraminidase (NA) subtyping using traditional 

methods, and all H7 isolates were pathotyped (16).

Selected IAV isolates were submitted to the J. Craig Venter Institute (Rockville, MD) or 

the University of Minnesota (St. Paul, MN) for full length genomic sequencing by using 

next-generation sequencing technologies, as previously described (3).

RESULTS

A total of 740 cloacal swabs were collected from eight species of Anseriformes from 

February to April during 2006, 2007, 2013, and 2014, resulting in the recovery of 33 IAV 

isolates (4.5%; Table 1). Isolates were recovered from 11 mallards (Anas platyrhynchos), 

two blue-winged teal (Anas discors), four ring-necked ducks (Aythya collaris), 11 redhead 

ducks (Aythya americana), one canvasback (Aythya valisineria), two American black ducks 

(Anas rubripes), one lesser scaup (Aythya affinis), and one northern pintail (Anas acuta). 

Antigenically, these isolates represent 15 distinct HA-NA combinations, with 7 (21%) 

isolates reported as mixed infections (Table 1). All H7 IAV isolates were determined to 

be LP by amplification of the cleavage site at the NVSL.

Full-length genomic sequencing was completed for 13 of the 33 isolates. The genomes 

of these isolates were found to be most similar to North American waterfowl–origin IAV 

isolates by using the Basic Local Alignment Search Tool in GenBank (data not shown). 

Genomic sequencing identified one IAV isolate (A/ring-necked duck/Ohio/06OS588/2006) 

that had multiple genomes for HA and NA genes that were not in agreement with the 

antigenic HA-NA subtyping (Table 2). These mismatches have been demonstrated in 

previous surveillance efforts, but a clear explanation is not available (2). The remaining 

12 isolates had consistent HA-NA subtypes between the two testing methods (Table 2).

DISCUSSION

Active surveillance for IAVs in waterfowl populations using the Lake Erie Basin in Ohio 

has been ongoing since 1986 during the autumn southern migration. These sampling efforts 

have demonstrated, on average, 8.75% of the tested individuals were shedding IAVs at the 

time of sampling. Lebarbenchon et al. reported an average frequency of IAV viral shedding 
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of 28% in waterfowl populations in Minnesota during the southerly migrations of 2010 

and 2011 (7). In contrast, a previous report described approximately 1% IAV recovery in 

North American waterfowl during the spring migration period in the northern latitudes of 

the United States (17). Wallensten et al. reported 3.4% frequency of IAV recovery during the 

spring of 2003 from mallards during April–June, with 6.5% recovery in May, with additional 

species having had a <1% viral recovery rate in Sweden (15). The reduced frequency of IAV 

viral recovery during the spring migration as compared with the autumn migration at the 

Lake Erie Basin is consistent with these previous reports.

Interestingly, the HA-NA subtype diversity shifted during the spring migration to subtypes 

that are less common during autumn migration. The IAV HA-NA subtypes detected in the 

autumn have been diverse, although the most frequently isolated subtype combinations are 

isolated each year and include H4N6 (16.5%), H4N8 (12.4%), and H3N8 (8.1%; Slemons, 

unpubl. data). In contrast, the most commonly isolated HA-NA subtypes during the spring 

migration were H11N2 (12.1%), H10N7 (9%), and H7N3 (9%). This phenomenon may 

be important in the maintenance cycle of IAV viral diversity; however, additional effort is 

needed to better understand this dynamic. As is the case in shorebirds, northern migrating 

waterfowl may be carrying viruses from the south, perpetuating the continuation of viral 

lineages; however, the differences in the dominant strain being shed in the autumn vs. spring 

indicate additional factors are involved (6).

Differences in the level and diversity of viral recovery between individual years could 

be a result of the variation of species sampled during each year. In 2006 and 2007, 

samples were obtained from birds collected as part of a study of foraging ecology of spring-

migrating waterfowl mallards, gadwall (Anas strepera), blue-winged teal, lesser scaup, 

and ring-necked ducks in Ohio and Michigan. In 2013 and 2014, samples were obtained 

waterfowl captured during trap-release banding of waterfowl that were using isolated open 

water sources during the otherwise frozen winter and spring months. The bird populations 

varied year to year, with redheads being the predominant species in 2013 and mallards and 

gadwalls being the predominant species in 2014. Variation in rates of viral shedding among 

waterfowl host species using a given geographic location at varying population densities 

across years would lead to a better understanding of the natural history of IAVs in reservoir 

species during winter and spring migration.

Although this effort demonstrates the presence of antigenically diverse IAVs in waterfowl 

populations during overwintering and spring migration in the northern United States, it 

was limited in size and scope and should not be overinterpreted. Viral diversity could be 

grossly underestimated due to the limited sample size and variations in host species. A more 

systematic approach, targeting the same species temporally, should be employed to better 

understand the viral diversity within migratory waterfowl populations during the spring 

migration.
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