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Abstract 

Recently, DNA nanostructures with vast application potential in the field of biomedicine, especially in drug delivery. 
Among these, tetrahedral DNA nanostructures (TDN) have attracted interest worldwide due to their high stability, 
excellent biocompatibility, and simplicity of modification. TDN could be synthesized easily and reproducibly to serve 
as carriers for, chemotherapeutic drugs, nucleic acid drugs and imaging probes. Therefore, their applications include, 
but are not restricted to, drug delivery, molecular diagnostics, and biological imaging. In this review, we summarize 
the methods of functional modification and application of TDN in cancer treatment. Also, we discuss the pressing 
questions that should be targeted to increase the applicability of TDN in the future.
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Introduction
A safe and effective drug delivery system is urgently 
required to treat tumor growth, multidrug resist-
ance, metastasis, and recurrence in cancer treatment. 

Open Access

Journal of Nanobiotechnology

*Correspondence:  sunyong@qdu.edu.cn; liangyan072@foxmail.com
1 Department of Pharmaceutics, School of Pharmacy, Qingdao University, 
Qingdao 266021, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-1084-6117
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12951-021-01164-0&domain=pdf


Page 2 of 16Yan et al. Journal of Nanobiotechnology          (2021) 19:412 

Multiple studies have been conducted to design and 
develop broad-spectrum of theranostic nanoplatforms 
to address this issue. The ideal nano-drug delivery sys-
tem (NDDS) should simultaneously fulfill the follow-
ing critical functions: (1) protect drugs from enzymatic 
degradation in  vivo, (2) cross various physiological bar-
riers, (3) provide accurate and controllable drug release, 
(4) reduce toxic and adverse effects of the delivered drug, 
(5) exhibit good biocompatibility and safety to the human 
body. Currently, multiple NDDSs are available, including 
organic nano-carriers such as liposomes [1, 2], polymeric 
micelles [3, 4], dendrimers [5, 6], metallic nanomaterial 
[7, 8] and inorganic nanoparticles like carbon nanotubes 
[9, 10], mesoporous silica [11], etc. [12, 13]. Although a 
variety of NDDSs have been used clinically, their hetero-
geneity, low biocompatibility, and low drug delivery effi-
ciency limit the applications in cancer therapy. Therefore, 
it is important to increase the therapeutic index of drug 
delivery systems by developing innovative NDDSs with 
high clinical performance.

Deoxyribonucleic acid (DNA) is a biological macro-
molecule composed of four different deoxynucleotide 
monomers, which form supercoil structure by the com-
plementary pairing of the basic group, thereby creating 
one the most vital biomolecules in the body [14]. The 
unique property of DNA molecules provides DNA nano-
materials unparalleled merits, including outstanding 
biocompatibility, good resistance to acidic and alkaline 
environment precise and adjustable structural control, 
and relatively straightforward computer-aided design 
of structure and function [14–17]. Compared with tra-
ditional NDDSs, the DNA nanotechnology is bringing 
revolutionary changes to the development of NDDSs for 
tumor treatment.

Tetrahedral DNA nanostructure (TDN) is a pyramidal 
three-dimensional nanostructure formed by the comple-
mentary pairing of four single-stranded DNA [14, 18]. 
TDN has been proposed as promising drug carriers due 
to their high stability, biocompatibility, rich functional 
modification sites, suitability for different drugs and 
excellent cellular uptake rates [19–22]. In Scheme 1, this 
review focuses on the functional modifications of TDN, 
intelligent NDDSs construction, and the prospects of 
TDN-based drug delivery systems for tumor treatment.

Functional modification of TDN
Currently, TDNs are mainly used as duplexes and double 
bundles, among which the duplex TDNs are studied bet-
ter. The functional modifications of TDN include fluores-
cent dyes [23–25], bioligand molecules [26], functional 
proteins [27], small molecule anticancer drugs [23], and 
even nucleic acid molecules [28], etc. (Table 1). Accord-
ing to the different positions of functional groups or 

molecules in the TDN, there are mainly four key modi-
fication ways, including vertex modification, mosaic 
modification, capsule modification and cantilever modi-
fication (Fig. 1).

Vertex modification
Vertex modification refers to the modification of func-
tional groups at the vertex position of a TDN, such as 
amino groups [59] or sulfhydryl groups [60, 61] used 
for TDN stabilization, specific sequence [59] or bioac-
tive molecules used for molecular recognition, and azide 
groups [42] used for subsequent click reaction. In the 
process of vertex modification, functional groups are 
modified at the 5′- or 3′-end of SS-DNA, then the TDN 
is formed by self-assembly to make the 5′- or 3′-ends of 
four SS-DNA meet at the vertex of the tetrahedron. To 
enhance the therapeutic efficacy and targeting of breast 
cancer, Zhan et al. [34] attached the antimetabolite drug 
5-fluorouracil (5-FU) to the TDN-based delivery system 
modified with a DNA aptamer (AS1411-T-5-FU). Anti-
cancer reagent AS1411 could specifically bind to nucleo-
lin, inhibit NF-κB signaling and reduce the expression of 
Bcl-2 [62–64]. Cell uptake research studies demonstrated 
that AS1411-T-5-FU has a better ability to target breast 
cancer cells than T-5-FU. At the same time, AS1411-T-
5-FU and 5-FU were compared in terms of inhibiting cell 
proliferation and related protein expression. Mitochon-
drial apoptotic pathway evaluation showed that AS1411-
T-5-FU could significantly upregulate the expression of 
Bax and caspase-3, down-regulate the expression of Bcl-
2, and accelerate the process of apoptosis. Aptamer-based 

Scheme 1  Design, application, and challenges of drug delivery 
system based on TDN
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DNA materials have high recognition selectivity and 
specific binding to cancer cells, together with improv-
ing internalization efficiency. Yan et al. modified various 
numbers of D-(KLAKLAK)2 (KLA) to the apex of TDN 
and loaded the anticancer drug doxorubicin (DOX) to 
achieve the mitochondria targeting [42]. Related experi-
mental results indicated that KLA-modified TDN could 
effectively deliver DOX to mitochondria and induce 
apoptosis. 3KLA-TDN exhibited improved cellular 
uptake, mitochondria targeting, apoptosis pathway acti-
vation and in vitro anticancer efficacy (Fig. 2).

Mosaic modification
Mosaic modification means that functionalized mol-
ecules or groups are embedded in the double helix struc-
ture of TDN by conjugation, such as SYBR Green I [25] 

and other dyes [24] for fluorescent labelling, or antican-
cer drugs [23, 31–33, 42], and etc. DOX inhibits tumor 
growth by inserting DNA double strands to interfere with 
macromolecular biosynthesis [65]. DNA nanostructures 
loaded with DOX have the advantages of targeted deliv-
ery, response release, reduction of side effects and over-
coming multidrug resistance, which are highly relevant 
for cancer and other diseases treatment. Dae-Ro Ahn’s 
group [23] prepared the DOX@Td (DOX loaded on the 
side of the DNA tetrahedral double helix by physical con-
jugation method) as a carrier for drug delivery analysis. 
By exploring the uptake mechanism of free DOX and the 
interaction of p-glycoprotein (P-gp) with cell membranes, 
it is found that DOX@Td entered cells through endo-
cytosis and effectively overcomes multidrug resistance. 
Liu et  al. [31] built a TDN drug delivery system loaded 

Table 1  TDN modifications and their applications for drug delivery

Classification Example Modification Application Ref.

Small molecule Doxorubicin (DOX) Mosaic Chemotherapy [23, 29, 30]

Paclitaxel (PTX) Mosaic Chemotherapy [31]

Platinum drugs Mosaic Chemotherapy [32]

Camptothecin Cantilever Chemotherapy [33]

5-Fluorouracil Vertex Chemotherapy [34, 35]

Methylene blue Mosaic Photodynamic therapy [36]

Triphenylphosphine Vertex Mitochondrial targeting [37]

Folate Cantilever Tumor targeting [28]

Actinomycin D Mosaic Antibacterial treatment [38]

Proteins or peptide sequence Cetuximab Vertex Immunotherapy [39]

Cytochrome c Capsule Apoptosis [27]

Streptavidin Capsule
Vertex

Immunotherapy [40, 41]

D-(KLAKLAK)2 Vertex Mitochondrial targeting [42]

Angiopep-2 Cantilever Receptor binding [43]

Tumor-penetrating peptide Vertex Tumor penetrating [44]

KillerRed Cantilever Photodynamic therapy [45]

Nuclear localization signal (NLS) Vertex Nuclear targeting [46–48]

Melittin Capsule Tumor treatment [49]

Nucleic acid sequence AS1411 Vertex Tumor targeting [50, 51]

sgc8c Vertex Tumor targeting [52]

ZY11-targeting aptamer Vertex Tumor targeting [53]

17E DNAzyme Vertex Gene therapy [53]

siRNA Cantilever
Vertex

Gene therapy [28, 30]

Antisense oligonucleotides Cantilever
Vertex

Gene therapy [45, 48, 54]

CpG Vertex Immunotherapy [15]

Other Gold nanoparticles Capsule
Vertex

Tumor treatment [55, 56]

Gold nanoclusters Vertex Bacterial detection [38]

Anticancer metal complex Mosaic Tumor treatment [57]
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with PTX (PTX/TDN). PTX/TDN were efficiently trans-
ported into A549/T cells, avoiding drug efflux pumps 
because of the caveolin-dependent and exocytosis path-
ways. And PTX/TDN could significantly inhibit the pro-
liferation of multidrug-resistant and wild-type cells. TDN 
may act as P-glycoprotein (P-gp) inhibitor, down-regulat-
ing the expression of mdr-1 gene and P-gp.

Capsule modification
Capsule modification involves wrapping functional-
ized molecules in a caged structure inside TDN. Turb-
erfield et al. [27] estimated that the central cavity of the 
tetrahedron can accommodate a sphere with a radius of 
about 2.6  nm. They bound cytochrome C to the 5′-end 
of oligonucleotide and changed the sequence of oligo-
nucleotide to regulate the position (internal or external) 
of cytochrome C relative to the TDN. This design could 
be applied to initiate an apoptotic protease cascade. Mao 
et al. prepared the nanocomplexes with a class of core–
shell structure by encapsulating gold nanoparticles in 
DNA cages [66]. Such complexes have promising appli-
cation prospects in tumor treatment with photothermal, 

photodynamic and immunotherapeutic methods 
[67–69].

Cantilever modification
Cantilever modification involves suspending func-
tional molecules or groups on the side arms of TDN. 
For example, the intersection of the 5′ and 3′ ends of 
the SS-DNA is on the edge (middle or other non-ver-
tex) of the TDN by designing the base sequence of SS-
DNA, where the 5′ or 3′ ends without complementary 
pairing extend outwards for modification of functional 
molecules. Utilizing the hydrophilicity and editability 
of DNA nanostructures, Tian et al. [43] modified TDN 
with angiopep-2 (ANG-TDN), which showed a strong 
binding to the low-density lipoprotein receptor-related 
protein-1 (LRP-1) of glioma and the blood–brain bar-
rier (BBB) cells. ANG-TDN was found to be stable in 
the serum for at least 12 h, indicating high stability. The 
modification of angiopep-2 could efficiently improve 
the uptake of TDN by brain capillary endothelial cells 
and Uppsala 87 malignant glioma (U87MG) cells. 
Meanwhile, experiments in  vitro and in  vivo showed 

Fig. 1  The schematic depicts TDN self-assembly (A) and double-bundle TDN [58] (B). C The key functional modifications of TDN are shown
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that ANG-TDN could effectively cross the blood–brain 
barrier and precisely target U87MG human glioblas-
toma xenograft in nude mice. It had also been reported 
that siRNA or chemotherapy drugs can be loaded to 
TDN by cantilever modification [28, 33], and that 
exchanging the hydrogen bonds of branched DNA 
structures for covalent bonds can further enhance TDN 
stability.

Although different biomolecules had been linked to 
TDN for drug delivery, biological detection [59, 61, 
70] and imaging applications [71, 72], it is still unclear 
whether TDN may carry molecules beyond its size and 
molecular weight. If different biomolecule is modi-
fied on the vertex or arm of TDN, the subtle balance of 
conformational flexibility of the TDN could probably 
be destroyed, resulting in the altered stability, rigidity, 
and geometric structures of obtained assemblies [73]. 
It is known that the size, shape, and number of charges 
of DNA nanostructures will affect their cellular uptake 
pathways, intracellular transport, and destination [74]. 
Whether attaching a nucleic acid with complex second-
ary structure will interfere with the TDN uptake process 
needs to be further explored [20], and choosing smaller 
sizes and charges is promising.

Programmable TDN
The traditional NDDSs is generally not programmable, 
resulting in the drug being released once entering the 
organism, and the distribution in the organism is not 
selective, and eventually relatively large side effects. 
Only a few drug carriers could reach the tumor tissues 
through the enhanced permeability and retention (EPR) 
effect, but the drug has low bioavailability and poor 
efficacy. With the increasing understanding of tumor 
microenvironment, researchers have proposed build-
ing intelligent NDDSs to enhance antitumor efficacy. 
Because of the differences in the microenvironment of 
the tumor and normal tissues, the release of antican-
cer drugs at tumor sites can be controlled to improve 
their bioavailability and efficacy, meanwhile reduce 
their toxic and side effects on the non-affected organs. 
Programmability of TDN implies that the structure can 
recognise tumor microenvironment and target it. Pro-
grammable TDNs can recognize changes in pH [25, 75], 
excitation light wavelength [76], various components 
and their concentrations [77] to initiate modifications 
that meet different application requirements.

Fig. 2  Schematic design of mitochondria-targeted 3KLA-TDN/DOX treatment for the breast cancer (Reprinted with permission from [42]. Copyright 
2020, Royal Society of Chemistry)



Page 6 of 16Yan et al. Journal of Nanobiotechnology          (2021) 19:412 

pH sensitive TDN
Wang et  al. [78] monitored the changes of the TDN 
and the i-motif connected TDN at pH 8.5 and pH 
4.5. The results showed that not only the orientation 
of the i-motif structure could be modulated electri-
cally to produce an “open and close” signal, but the 
structure of TDN and DNA double helix would also 
change. Another experiment showed that the TDN 
structure loaded with DOX significantly increased the 
drug release under acidic conditions, which is related 
to the structural metamorphosis of DNA material [42, 
44, 53]. Therefore, we speculate that the structure of 
the TDN deforms in an acidic buffer. At the same time, 
TDN can be purposefully modified to obtain pH sensi-
tivity. Keum et  al. [75] demonstrated a pH-dependent 
conformational change of DNA pyramids by intro-
ducing i-motif sequences (Fig.  3A). Their results dem-
onstrated that the i-motifs can regulate the DNA 
pyramids assembly and disassembly and are suitable 
for in situ encapsulation and controlled release of pro-
teins (enhanced green fluorescent protein, EGFP) by 

changing the physiologically relevant pH. Liu et al. [79] 
developed a strategy to reversibly assemble or disas-
semble DNA nanocages based on pH sensitivity. The 
pH-sensitive DNA tetrahedron was based on the DNA 
three-point star motif, which indicated that the DNA 
complex changed the structure between a single motif 
in a neutral solution (pH 8.0) and a tetrahedron in an 
acid solution (pH 5.0) to achieve the disassembly and 
disassembly of TDN. Kim et al. [80] proposed a method 
to encapsulate enzymes in TDN, which could change its 
conformation according to pH. TDN encapsulated the 
enzyme to avoid the degradation of the protein, reduce 
the binding of the enzyme and antibody, and reduce 
its activity. Due to the existence of i-motif-forming 
sequence and pH sensitivity, the conformation of TDN 
is changed, which promotes the enzyme to contact with 
other molecules. This approach can be further extended 
to reversible regulation of cell function through the 
pH-dependent activity control of enzymes. Such smart 
DNA nanostructure can potentially capture and release 
cargos on demand.

Fig. 3  Programming the TDN. A Schematic shows pH-triggered conformational changes of TDN modified with an i-motif. B The synthetic route 
and delivery process of CPT-loaded TDN as precise and responsive nanomedicine
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GSH responsive TDN
Disulfide linkage, due to its stable and covalent linkages, 
have also been employed to control the DNA structure 
[81]. Endo et  al. used disulfide linkage modified on the 
phosphorus atoms outside the DNA chain to connect two 
single DNA strands for branched DNA structures (XL-
DNA) [82]. Two XL-DNA and complementary strands 
could self-assemble into multibranched DNA nanostruc-
tures. Glutathione (GSH) is an important reducing agent 
in cells and could efficiently cleave disulfide bonds. There-
fore, multiple strategies were proposed for linking chemi-
cal compounds to DNA nanostructures with disulfide 
bonds. Zhang et al. [33] reacted phosphorothioate-mod-
ified DNA with carbonyl bromide-modified camptoth-
ecin (CPT) to form disulfide bonds (Fig.  3B). The DNA 
sequences grafted with CPT were then assembled into 
TDN structures using programmable DNA nanotechnol-
ogy. The system could adjust the hydrophilicity of DNA-
drug conjugates by regulating the amount and location 
of CPT modified on DNA to maintain its water solubility 
and molecular recognition ability. Programmable DNA 
nanotechnology could realize precise self-assembly of 
drug-containing TDN with stimulus–response proper-
ties and enhance antitumor efficacy in vivo and in vitro.

Light responsive TDN
Han et  al. [76] have successfully constructed a photon 
controlled TDN with azobenzenes. The shape of TDN 
can be controlled by alternating irradiation at different 
wavelengths. The results showed that the two isosceles 
of TDN were approximately 7 nm and the bottom edge 
was 11 nm before UV irradiation. After exposure to UV 
irradiation, some TDN contracted, causing the bottom 
side of the triangle to shrink to 4 nm. Triggering three-
dimensional changes and promoting the release of cargos 
(such as proteins or other macromolecules) encapsulated 
in TDN allows for, precise temporal and spatial con-
trol. Quet al. [83] have successfully manufactured NIR-
responsive upconversion-nanoparticle with Au20–Au30 
centered in the nanoparticles tetrahedron (UAuTe) using 
DNA self-assembly (Fig.  4). The tetrahedron selectively 
targeted aging cells and induced the apoptosis of senes-
cent cells by exposing Granzyme B under NIR light. 
When the β-2-microglobulin antibody (anti-B2MG) on 
Au NP recognizes senescent cells, applying near-infrared 
light (NIR) destroys the boronic ester linkage and induces 
the disassembly of UAuTe. In the presence of perforin, 
Granzyme B can induce target cell apoptosis via intrin-
sic adjustment. Compared with Granzyme B alone, the 
UAuTe could not only control the release of Granzyme B 
through NIR-responsivity, but also synergistically target 
the senescent cell and activate the Granzyme B without 

the need of perforin. The NIR-responsive TDN provides 
a practical strategy for aging and age-related diseases, 
and it also provides a potential for tumor therapy.

ATP responsive TDN
ATP-responsiveness is advantageous for the adjustment 
of DNA decomposition. ATP is the main energy mol-
ecule in the cells, and its concentration in the extracel-
lular microenvironment (< 0.4  mM) is much lower than 
that in the intracellular microenvironment (1–10  mM). 
Moreover, the ATP concentration in tumour cells is 
higher than that in normal cells [84]. Based on these 
two differences, ATP-responsive DNA nanostructure 
DDSs can be designed [85]. Aptamer-ATP complexes 
are formed through conformational changes which pro-
mote the decomposition of DNA nanostructures and 
the release of drugs in ATP-rich environments [86]. ATP 
aptamers are commonly found in ATP-responsive DNA 
nanostructures because of their highly specific and sensi-
tive properties [87]. Pei et al. [77] developed a DNA tetra-
hedron that showed a corresponding structural switching 
response to external stimuli (Fig. 5A). By adding dynamic 
sequences (i-motif, anti-ATP aptamer, T-rich mercury-
specific oligonucleotide) to DNA tetrahedra, the configu-
ration of the tetrahedron could be changed in response to 
the input of a specific target (protons, ATP, and mercury 
ions). These TDN provide new opportunities to “logi-
cally” control the release of drugs into cells.

Fig. 4  Schematic illustration of UAuTe tetrahedron used for 
senescence clearance
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Dynamic control of the TDN structure
Abi et al. [88] showed that the reconfiguration switch-
ing of the tetrahedral structure could be efficiently real-
ized under high ionic strength conditions. Goodman 
et  al. [89] also studied and realised the dynamic con-
trol of a TDN structure designed with hairpin loops 
through specific nucleic acid sequences (Fig.  5B). In 
addition, the ability to reversibly switch the surface 
porosity of the nanocage helped to achieve the control-
lability of material transport in and out of the nanoc-
age, which is a desired characteristic of a DDS. Zhang 
et al. [90] could reversibly switch the surface pore sizes 
of TDN by controlling two three-point-star motifs.

The response of TDN to the environmental stimulus 
to achieve different application requirements is the cur-
rent research hotspot. Drug delivery to different types 
of cells requires different DDSs based on the physico-
chemical properties. These changes in conditions or 
components are stimulus factors and provide energy 
and impetus for structural changes. When these con-
ditions are changed, the structure of TDN will change 
spontaneously and intelligently. Owing to the unique 
physical and chemical properties of DNA, the precisely 
modified sequences (i.e., i-motifs) can be embedded 
into the branched DNA endowed materials with dif-
ferent characteristics. The structure and size of DNA 
nanomaterials determine their cellular uptake pathways 
[74]. Whether these modifications affect their cellular 
uptake efficiency is still unknown. At the same time, 
the unbalanced stress distribution on the edges of the 
TDN corresponding to the DNA strings would result 
in the altered stiffness of the tetrahedron [20], and its 

mechanical properties and serum stability may change. 
These issues require further attention in future studies.

Application of TDN in tumor therapy
Chemotherapy
Chemotherapy has a long history of clinical application 
and a wide range of indications, and it is currently one 
of the main methods for treating tumours. Most chemo-
therapeutic drugs are fat-soluble cellular drugs with dif-
ferent mechanisms of action, including: (1) affecting the 
chemical structure of DNA, such as cisplatin [91], (2) 
inhibition of nucleic acid synthesis, such as DOX and 
5-fluorouracil [65, 92]; (3) interfering with DNA replica-
tion, such as camptothecin drugs [93]; and (4) interfer-
ing with the synthesis of tubulin during mitosis, such as 
paclitaxel [94]. At present, a variety of DDSs based on 
TDN have delivered the above-mentioned drugs to differ-
ent organelles, such as mitochondria [37, 42] and nuclei 
[46], achieving excellent antitumour (even drug-resist-
ant) effects both in vivo and in vitro. To solve the serum 
stability problem of natural D-sugar-based Td, Kim et al. 
prepared a mirror form of natural D-Td (L-Tds) and used 
it to load DOX [29]. The results showed that L-Tds could 
selectively deliver anticancer drugs to tumour cells and 
enhance cell/tissue penetration. At the same time, the 
mirror structure has an important effect on the pharma-
cokinetics and biodistribution of DNA nanostructures. 
In addition, we demonstrated that linking redox-respon-
sive polyethyleneimine to TDN improve their serum 
stability by preventing enzymatic degradation, allow for 
tumor cell/tissue penetration, and overcome multidrug-
resistant cancer [95] (Fig. 6).

Fig. 5  Programming the TDN. A The scheme demonstrates the TDN changes in response to the introduction of specific targets. Reprinted with 
permission from [77]. B Dynamic control of the TDN structure by specific sequences (Reprinted with permission from [89])
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Compared with duplex TDN, the double-bundle TDN 
invented by Mao et  al. [58, 96] has better rigidity and 
stability, more modified binding sites and higher drug 
loading efficiency. Therefore, the double-bundle TDN 
has great potential as an efficient drug delivery system. 
Wu et  al. [32] embedded the platinum drug 56MESS 
into a double-bundle TDN and coupled the anti-epi-
dermal growth factor receptor (anti-EGFR) nanobody 
to the TDN to achieve multi-drug combination therapy 
for tumor (Fig. 7). The nanostructure could block EGFR 
signal transduction and exhibited excellent selectivity 
for cells with elevated EGFR expression, which exhib-
ited significant anti-tumor activity without obvious sys-
temic toxicity. In addition, drugs such as 5-fluorouracil, 
camptothecin and paclitaxel are loaded on TDN in dif-
ferent modified ways to achieve effective treatment of 
tumors [31, 33, 34]. The above-mentioned multifunc-
tional DDS provides a new approach for tumor targeted 
chemotherapy and provides practical guidelines for 
enhancing reproducibility and reliability for the com-
bined delivery of other functional components such as 
proteins.

Photodynamic therapy
Photodynamic therapy (PDT) is a minimally invasive 
therapy that has been clinically approved for cancer 
treatment with selective cell toxicity [97]. PDT has three 
main components: a light of specific wavelength, a pho-
tosensitising (PS) drug and oxygen. During the treatment 
process, the three interact to produce cytotoxic reactive 
oxygen species (ROS), which kill tumor cells through 
apoptosis or necrosis [98–100]. Typical photosensitizers, 
such as porphyrin derivatives and carbazole derivatives, 
have strong hydrophobicity and are easy to aggregate in 
aqueous solution, thus affecting the therapeutic effect 
[98, 101]. To this end, the researchers have developed 
various DNA nanostructures for the efficient delivery of 
photosensitizers. Kim et al. [36] employed TDN as a car-
rier for the intracellular delivery of methylene blue (MB) 
by taking advantage of the DNA binding property of the 
MB (MB@Td) and demonstrated photo-induced cytotox-
icity (Fig.  8). Experimental results showed that sixteen 
molecules of MB could be loaded on TDN and deliv-
ered into cells without affecting the property of MB. The 
photo-induced cytotoxicity was virtually proportional to 

Fig. 6  Schematic shows the strategy for modifying TDN with the redox-responsive polyethyleneimine. The presented functionalization method 
improves tumour cell/tissue penetration for treating multidrug-resistant tumours (Reprinted with permission from [96]. Copyright 2021, Elsevier)
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the amount of the intracellularly delivered MB in vitro. In 
addition, MB@Td produced an effective treatment effect 
of PDT and had a good tumor inhibition effect in  vivo. 
TDN is expected to have superior properties for deliver-
ing PDT agents in future tumor therapies.

Immunotherapy
In recent years, tumor immunotherapy has attracted 
increasing attention as one of the most promising strat-
egies for cancer treatment. In contrast to traditional 
radiotherapy and chemotherapy, immunotherapy use 
the host immune system to kill tumor cells and effec-
tively inhibit tumor metastasis and recurrence. Cytosine-
phosphate-guanine oligodeoxynucleotides (CpG ODN) 
can stimulate dendritic cells, B cells, macrophages to 
produce pro-inflammatory cytokines including tumor 
necrosis factor-α (TNF-α), interleukin-6 (IL-6), and 
activate the innate immune system by interacting with 
Toll-like receptor 9 (TLR9) to enhance anti-tumor activ-
ity [102–104]. The effectiveness of immunotherapy 
largely depends on the dose of the immunomodulatory 
sequences, and one of the critical problems is to increase 
the dose of agent in a single drug carrier. Functionalized 
materials can elicit specific immunological responses 

to therapy by incorporating special motifs with immu-
nomodulatory activity. Therefore, CpG ODN, as a safe 
and effective vaccine adjuvant, has been widely used in 
basic research and clinical trials of tumor immunother-
apy [105]. In recent years, the use of DNA nanostructures 
as CpG delivery vehicles has been explored. Owing to 
their inherent compatibility, CPG-rich sequences can be 
easily integrated into DNA nanostructures to enhance 
their stability and targeting. Liu et al. [40] used TDN to 
co-transport CpG and streptavidin (as a model antigen) 
to continuously induce a stronger immune response, 
and TDN alone did not elicit an immune response. Fan 
et  al. [15] used TDN functionalized with unmethyl-
ated cytosine-phosphate-guanine (CpG) motifs for the 
immune activation of macrophage-like RAW264.7 cells 
(Fig.  9). The results of this study showed that the func-
tionalized TDN are internalized by the cells and remain 
largely intact for 8  h, thereby inducing ample release of 
cytokines, including tumour necrosis factor (TNF-α), 
interleukin-6 (IL-6), and interleukin-12 (IL-12). Mean-
while, the multivalent CpG motifs also significantly 
enhanced the immunostimulatory effect of TDN. These 
studies have expanded the significantly of TDN in tumor 
immunotherapy and demonstrated the potential of 

Fig. 7  Schematic illustrates the nanobody-conjugated double-bundle TDN for targeted platinum drug delivery
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further research in this direction. TDN can serve as a 
carrier for a variety of therapeutic agents and as stable 
vehicles for the target-delivery to immune cells or tumor 
cells.

Gene therapy
With the continuous development of gene manipulation 
technologies such as gene editing and gene silencing, 
multiple approaches were proposed for up–downregu-
lating the expression of target genes that are specific to 
the disease treatment. In recent years, gene therapy has 
gained increasing attention in the field of tumor treat-
ment. A series of tumor-related genes, such as Ras, Myc 
and polo-like kinase 1 (PLK1), have been verified and 

used in clinical trials [106]. However, gene therapy drugs 
are not easily taken up by cells and are relatively unstable 
during circulation. Therefore, the success of gene therapy 
largely depends on the safety and effectiveness of gene 
delivery vehicles. Gene therapy vectors mainly include 
viral vectors and non-viral vectors. The use of viral vec-
tors is limited because of possible insertion mutagenesis 
and immunogenicity [107]. Therefore, a major challenge 
for gene therapy is the design of non-viral vectors to 
achieve safe and efficient gene delivery. From the appli-
cation point of view, TDN are advantageous as non-viral 
vectors owing to their inherent physiological effects, 
biocompatibility, and biodegradability. Due to the high 
loading capacity and high biocompatibility of DNA 

Fig. 8  The schematic illustrates photodynamic therapy in vitro and in vivo using TDN loaded with methylene blue

Fig. 9  The schematic illustrates the assembly of CpG-bearing DNA tetrahedrons and their immunostimulatory effect
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nanostructures, TDNs can be considered as non-viral 
vectors for effective targeted gene therapy.

Anderson’s group applied TDN nanomaterials to 
deliver small interfering RNAs (siRNAs) into nude mice 
model with tumors to inhibit the expression of target 
genes for tumor treatment research [28]. In this study, 
siRNA was suspended on the side of the tetrahedron 
by complementary pairing, and the tetrahedron loaded 
with the siRNA was targeted to the lesion site through 
the ligand connected to the cancer cell receptor. The 
hydrodynamic size of the nanoparticle is approximately 
28.6  nm, which is favorable for cell uptake. DNA tetra-
hedron has a significant tumor-targeting ability after 
folic acid modification. Because the space direction of 
siRNA transported by TDN and the location and density 
of tumor-targeted ligands could be precisely controlled, 
the function of gene silencing could be maximized. Thus, 
tetrahedral DNA materials can be used for not only 
silencing the tumor target genes by delivering siRNA, but 
can also be used as a reference in the treatment of other 
diseases.

Despite the emerging evidence demonstrating exciting 
achievements, there is still much room for further devel-
opment of TDN. As single treatment no longer meets 
the high demands for the efficiency of tumor treatment, 
the combined application of multiple treatments become 
a promising research field. Zhong et  al. [53] reported a 
nanocarrier consisting of TDN, ZY11-targeting aptamer, 

DOX and 17EDNAzyme to achieve synergistic chemo-
gene cancer therapy (Fig. 10). In addition, the combined 
use of DOX and CpG could achieve chemo-immune 
combination therapy. Therefore, the applicability of tra-
ditional treatment methods can be further expanded by 
developing new strategies for tumor growth inhibition.

Challenges and prospects
TDN has decisive advantages that make them promis-
ing novel drug carriers. TDN can be synthesized eas-
ily, reproducibly, and has good biocompatibility and 
excellent performance. Through reasonable modifica-
tion, TDN can efficiently incorporate chemotherapeu-
tic drugs, nucleic acid drugs, imaging probes and etc., 
and exhibit good application potentials in drug delivery, 
molecular diagnostics, and biological imaging. However, 
TDN still have weaker sides such as poor enzyme resist-
ance and insufficient ability to cross physiological barri-
ers, including the lack of targeting, poor permeability in 
tumor tissues, and low cell entry efficiency. For efficient 
drug delivery, several roadblocks have to be removed 
before TDN can compete with existing drug carriers such 
as polymers, liposomes, and inorganic nanoparticles.

First, adverse factors such as enzymatic degradation 
and protein adsorption in the body can destroy the struc-
tural integrity of TDN, causing the untimely drug leakage 
and failure to reach the expected target site. He et al. and 
Lin et al. showed that packaging with polyethyleneimine 

Fig. 10  The schematic illustrates synergistic chemo-gene therapy targeting cancer cells
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(PEI) or PEGylated protamine could significantly avoid 
TDN enzymatic hydrolysis, promote the cellular uptake 
and lysosomal escape of TDN [95, 108, 109]. Lin et  al. 
also also demonstrated that multiple pathways, including 
micropinocytosis and caveolin- and clathrin-dependent 
endocytosis contributed to the endocytosis of PEI/TDN 
complexes. However, the toxicity or other adverse effects 
of these chemical modifications still need to be consid-
ered. For example, PEI 25  K has greater cytotoxicity 
[110], therefore, it is urgent to explore better solutions.

Second, the lysosomal escape ability of TDN needs to 
be further improved. Although DNA nanostructures 
could enter cells better than oligonucleotide, Fan’s group 
found that TDN was trapped in lysosomes after enter-
ing cells [46], prompting the collapse of TDN and the 
release of drugs. Some antitumor drugs, whose targets 
are not in the lysosome (pH value about 4.5–5.5) [111] 
and are unstable under acidic conditions and release in 
lysosomes could make them less effective or inactivated. 
Their group modified the nuclear localization signal pep-
tide (NLS) at the TDN vertex to synthesize NLS–TDN 
and endowed it with nuclear targeting capability, which 
helped the TDN escape from lysosomes and accumu-
lated in the nucleus. Therefore, improving the lysosomal 
escape ability of TDN is particularly important for the 
maximising therapeutic effect of drugs. Furthermore, to 
expand the structural and functional diversity, a more 
refined design of the structure and introduction more 
kinds of stimulating components (such as metal-sensi-
tive, and magnetic-sensitive components) are needed.

Third, there are still barriers that hinder the effective 
transportation of DNA nanostructures including TDN 
in the process of drug delivery, and the barriers include 
the blood–brain barrier and plasma membrane barrier. 
Fan et al. [46] confirmed that the entry of TDN into cells 
in a caveolin-dependent endocytosis pathway through a 
series of fluorescence imaging and biochemical experi-
ments, which is a type of receptor-mediated endocytic 
pathway. However, these energy-dependent or receptor-
recognized pathways cannot efficiently deliver DNA 
nanostructures, such as TDN. Therefore, it is particularly 
important to design TDN-based drug carriers that can 
effectively penetrate various physiological barriers, spe-
cifically target diseased tissues or cells, with little or no 
uptake by normal organs and cells [112].

Biosafety is another concern. Oligonucleotides are 
biodegradable and biocompatible. However, things may 
change when DNA is designed into nanostructures. 
The dynamic unstable state and thermodynamic stable 
state of nanostructures should conduct more in-depth 
research on the physical and chemical properties of 
TDN. The potential immunostimulatory properties of 
TDN must be systematically investigated before they can 

be used for clinical biological applications [113]. Mean-
while, research on the pharmacokinetics of TDN (in vivo 
circulation, distribution, metabolism, etc.), the effects 
on liver and kidney systems, and whether it will cause 
harmful genetic recombination are not sufficiently deep 
[114, 115]. A few studies have suggested that TDN is 
mainly excreted by the kidney [116–118], which may be 
detrimental to the accumulation of TDN in tumors. The 
biosafety of TDN and other DNA nanostructures will be 
the focus of future research. We believe that these explo-
rations in immunostimulatory properties and pharma-
cokinetics as well as the actual conformation of branched 
DNA will provide better guidance for tumor suppression 
and immune surveillance in a more predictable manner.

Finally, at present, in vivo experiments related to TDN 
are still mainly conducted in mice, and there are still 
many challenges before conducting related experiments 
in humans. The main problem is the cost of production. 
For practical biomedical applications, high-purity func-
tional DNA nanostructures must be produced in suffi-
cient quantities. Several groups have reported convenient 
and cost-effective purification methods for DNA nano-
structures at the laboratory level, but these methods have 
not been demonstrated on a larger scale. At present, the 
purification methods that have been reported for DNA 
nanostructures include agarose-gel-based separation 
method [119] and ultracentrifugation [120], and meth-
ods such as asymmetric PCR, RCA and fermentation are 
used to control costs and produce DNA in large quanti-
ties [120]. However, this remains a far cry from cheaper 
polymers. Improving the purity of DNA nanostructure, 
especially TDN, and reduce the cost is a practical prob-
lem that needs to be considered in the application.

Conclusions
Efficient drug carriers based on DNA nanostructures 
represent a promising goal of future research. Further 
increasing the yield of DNA nanostructures, exploring 
the mechanisms of cellular entry, overcoming biologi-
cal barriers to improve cellular internalization, and con-
trolling production costs are the major challenges. With 
the development of new strategies and technologies, 
including molecular design, assembly, and applications, 
we envision that DNA nanostructures will gain broader 
applicability as intelligent drug delivery carriers in the 
future.
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