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Discoidin domain receptor 2 
activation of p38 mitogen‑activated 
protein kinase as an important pathway 
for osteonectin‑regulating osteoblast 
mineralization
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Abstract 

Objective:  The present study aimed to determine the role of the discoidin domain receptor 2 (DDR2) in the oste‑
onectin (ON) regulation of osteoblast mineralization through the activation of p38 mitogen-activated protein kinase 
(MAPK).

Methods:  Four groups were established: the ON group, the inhibitor group, the Ddr2-small interfering ribonucleic 
acid (siRNA) group, and the control group. Osteoblasts from the parietal bones of neonatal Sprague–Dawley rats were 
isolated and cultured. In the ON group, 1 µg/mL ON was added to the osteoblasts. The gene expressions of collagen 
1 (Col 1) and Ddr2 were detected using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). In the 
inhibitor group, the osteoblasts were added to WRG-28 (a specific DDR2 inhibitor), and in the Ddr2-siRNA group, the 
osteoblasts were transfected with Ddr2-siRNA. The gene and protein expressions of DDR2, bone sialoprotein, osteoc‑
alcin, osteopontin, and p38 MAPK were determined using RT-qPCR and western blot analysis. Alizarin red staining and 
transmission electron microscopy were used to detect mineralization.

Results:  The results showed that ON enhanced the osteoblast Col 1 and Ddr2 gene expressions, while the use of a 
Ddr2-siRNA/DDR2-blocker decreased the OPN, BSP, OCN, and P38 gene and protein expressions and reduced osteo‑
blast cellular activity and mineralized nodules.

Conclusion:  The present study demonstrated that DDR2 activation of p38 MAPK is an important approach to ON-
regulating osteoblast mineralization.
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Introduction
Osteonectin (ON) is an important non-collagenous pro-
tein, also known as SPARC (secreted protein acidic and 
rich in cysteine) or BM‐40, and it has a high affinity for 
binding with collagen and hydroxylapatite [1]; ON also 
participates in the overall osteoblast mineralization pro-
cess [2] and plays an important role as a type of func-
tional regulatory protein in the function of osteoblasts 
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and the synthesis of collagen and extracellular matrices 
[3–7]. An important signaling pathway, regarded as a sig-
nal regulatory hub in bone repair and reconstruction, is 
p38 mitogen-activated protein kinase (MAPK) [8–11]. 
Previous studies of Zhu et  al.  verify the importance of 
P38 for ON regulation in osteoblast mineralization [12]. 
Although P38 pathway activation using ON has been 
fully proven as a potential mechanism in various other 
cellular physiological and pathological processes [13–15], 
this signal event was first reported in osteoblast minerali-
zation; however, its specific mechanism remains unclear.

Domain receptors (DDRs) on cell surfaces are widely 
expressed tyrosine kinase receptors; they can be slowly 
and continuously activated by triple-helix collagen [16]. 
Triple-helix collagen peptides contain crystalline struc-
tures of discoid protein domains, which can lead to struc-
tural changes and direct phosphorylation of DDR2. [17]. 
Existing studies have comprehensively demonstrated that 
ON regulates the growth and deposition of collagen fib-
ers and can stimulate collagen conformational changes 
[2]. In addition, the fact that DDR2 and ON share the 
same collagen recognition pattern and combine the same 
GVMGFO motif suggests a correlation between the two 
[18, 19]. Their association has also been illustrated in 
experimental studies, where DDR2 phosphorylation pro-
moted fibroblast responses to tissue regeneration and 
healing, while DDR2 deletion seriously delayed wound 
healing; accordingly, ON expression was isotropically 
reduced [20].

The DDR2 tyrosine kinase domain is considered a key 
signal transmission site for P38 activation in many cell 
activities. The DDR-initiated downstream p38 MAPK 
pathway is the major mechanism for matrix metallo-
proteinase regulation [21]. Many transforming growth 
factors can adjust the release of calcified extracellular 
vesicles and affect collagen deposition in vascular smooth 
muscle cells through the activation of p38 MAPK via 
DDRs [22, 23]. DDR2 is also considered to be a key regu-
lator of osteoblast differentiation, and its stimulation of 
p38 MAPK is a necessary condition for DDR2-induced 
activation of RUNX2 and OCN promoters [24]. The pur-
pose of this study is to investigate whether DDR2 is also 
an important pathway for ON activation of P38 in the 
regulation of osteoblast mineralization.

Materials and methods
Primary osteoblast isolation, culturing, and purification
As previously described, osteoblasts were isolated from 
the parietal bones of neonatal (aged < 48  h) Sprague–
Dawley rats through sequential collagenase [25]. The 
released cells were collected by centrifugation (1000 rpm 
for 10 min), washed with phosphate‐buffered saline (PBS) 
(GNM-20012, China) twice, suspended in an α‐minimum 

essential medium (α‐MEM) (4150034, Gibco), seeded 
at a density of 5 × 105 cm−2, and incubated at 37 °C in a 
humidified 5% CO2 atmosphere. When the cells reached 
a confluence of approximately 80–90%, they were puri-
fied using a different attachment method with the aim to 
remove the mixture of fibroblasts and endothelial cells, 
both of which were relatively rapid adherents, so that 
most of the two cell types remained in the previous dish 
for purification after a transfer every 10  min. Following 
the identification with alkaline phosphatase (ALP) stain-
ing and alizarin red staining (ARS), the osteoblasts were 
cultured for subsequent experiments.

Ddr2‑siRNA construction and transfection
The following small interfering ribonucleic acid (siRNA) 
sequences were used: 5′-AAC​CTG​ATG​ACC​TGAA 
GGAGT-3′ (NM_006182, base pairs 621–641). The 
cells (osteoblasts) were cultured in T150 (Corning) cul-
ture flasks in a Roswell Park Memorial Institute (RPMI) 
1640 (R7509-1L, SIGMA) medium and 10% fetal bovine 
serum (FBS) (A31608-02, Gibco) without antibiotics until 
a confluence of 80% was reached. The cells were rinsed 
twice with PBS, and siRNA and 5% CO2 were added for 
5 h at 37 °C. It was then replaced with a fresh RPMI 1640 
medium containing 10% FBS, and the cells were further 
incubated for 72 h before being used in specific experi-
ments. The following items were prepared for siRNA 
transfection: (1) tube 1: 61 µL of siRNA + 2.2 mL of RPMI 
1640; and (2) tube 2: 90 µL of Lipofectamine 2000 (Lipo 
2000, no. 11668019; Invitrogen Company) + 2.16  mL 
of RPMI 1640. The tubes were incubated for 5  min at 
room temperature, then combined and further incubated 
for 20  min. Next, 13.5  mL of RPMI 1640 medium was 
added; the siRNA mix was then applied to the cells. The 
transfection efficiency was assessed using a fluorescence 
microscope.

Cell grouping and induced mineralization
The second-generation osteoblasts were re-inoculated in 
a six‐well plate at a density of 2 × 105 cells/mL; they were 
then cultured in α‐MEM with 10% FBS. After mixing the 
cells, the original medium was aspirated, and the cells 
were randomly assigned to different groups and studied 
in three stages.

Stage one
In the control group, the osteoblasts were added to a 
mineralized solution containing 50  mg/L ascorbic acid, 
10  mmol/L sodium glycerophosphate, and a 100  mL/L 
FBS α‐MEM culture solution. In the ON group, the 
osteoblasts were added to a mineralized solution + 1 µg/
mL ON (Sino Biological 8087-R08H). The medium 
was substituted every 2 days in both groups. On day 5, 
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the Col1 a1, Col1 a2, and Ddr2 gene expressions were 
detected using reverse transcription-quantitative poly-
merase chain reaction (RT-qPCR) (according to the pre-
vious study [12]). The experiments were conducted in 
triplicates.

Stage two
In the control group, the osteoblasts were added to the 
mineralized solution; in the ON group, the osteoblasts 
were added to a mineralized solution + 1  µg/mL ON; 
and in the inhibitor group, the osteoblasts were added to 
a mineralized solution + 1  µg/mL ON + 230  nM WRG-
28 (a DDR2-specific inhibitor, CAS No. 1913291-02-7, 
ChemeGen) [26]. The medium was substituted every 2 
days in each group. On day 5, the non-collagen protein 
(OPN, BSP, OCN), Ddr2, and P38 gene expressions were 
detected using RT-qPCR. The experiments were con-
ducted in triplicates.

Stage three
In the control group, the osteoblasts were added to a 
mineralized solution; in the ON group, the osteoblasts 
were added to a mineralized solution + 1 µg/mL ON; in 
the inhibitor group, the osteoblasts were added to a min-
eralized solution + 1 µg/mL ON + 230 nM WRG-28; and 
in the DDR2-siRNA group, the osteoblasts were trans-
fected with DDR2-siRNA and added to a mineralized 
solution + 1  µg/mL ON. The medium was substituted 
every 2 days in each group. On day 5, the DDR2, p38, 
OPN, BSP, and OCN gene and protein expressions were 
determined using RT-qPCR and western blot. The exper-
iments were conducted in triplicates. The mineralized 
nodules were stained using ARS, and the cell ultrastruc-
ture was observed using transmission electron micros-
copy (TEM) (HITACHI HT7700).

RT‑qPCR
Cells were collected from each group, and the total rib-
onucleic acid (RNA) was extracted using a Trizol rea-
gent (no. 15596026; Ambion Company) in accordance 
with the manufacturer’s protocols. Next, 2  µg of total 
RNA was used for reverse transcription, and an RT‐
PCR was performed using an RT‐PCR kit (no. RR037A; 
Takara Company) in accordance with the manufacturer’s 
instructions. The Col1 a1, Col1 a 2, Ddr2, P38, Opn, Bsp, 
and Ocn gene expression levels were analyzed using the 
Light Cycler® 96 real‐time PCR system (Roche), with 
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 
as an internal control gene. The primer sequences are 
listed in Table  1. All real‐time PCRs were performed in 
triplicate, and the results after calibration with GAPDH 
expression were calculated using the ΔΔCT method; they 
are presented in fold increase and relative to the control.

Western blot analysis
The proteins extracted from osteoblasts were quantified 
using a bicinchoninic acid assay protein assay kit (Beyo-
time) in accordance with the manufacturer’s instruc-
tions. The cells cultured in the six-well plate were washed 
with PBS three times, and an appropriate amount of 
RIPA lysate (Beyotime) was added to phenylmethylsul-
fonyl fluoride (PMSF) (Amersco-0754-100G) within a 
few minutes before use (the sinal PMSF concentration 
was 1  mM). Then, 200  µL of pyrolysate was added to 
each hole and mixed well; after full decomposition and 
10,000 × g centrifuging for 5  min, the supernatant was 
taken. A suitable amount of BCA working fluid (P0011, 
Beyotime) was prepared by adding 50 volumes of BCA 
reagent A and 1 volume of BCA reagent B (50:1), the 
appropriate volume of the sample was added to a 1.5 mL 
centrifuge tube and supplemented with a 0.9% NaCL 
solution to 100 µL. Next, 1 mL of BCA working fluid was 
added to each hole and left at 37 °C for 30 min; the A562 
absorption value was then determined and the protein 
concentration calculated according to the standard curve. 
The protein of each group was loaded on sodium dode-
cyl sulfate‐polyacrylamide gel electrophoresis and trans-
ferred onto nitrocellulose membranes. The membranes 
were blocked with 5% skim milk in Tris‐buffered saline 
with Tween 20 at room temperature for 1 h. They were 
then supplemented with the primary antibody (1:1000) 
and incubated at 4 ℃ for 12 h. The membranes were then 
incubated with a secondary antibody (1:2000) at room 

Table 1  Primer sequences for RT‐qPCR

COL1 Collagen 1; DDR2 Disc protein domain receptor 2; P38 P38 mitogen‐
activated protein kinase; BSP bone sialoprotein; OCN osteocalcin; F forward; R 
reverse; RT‐qPCR reverse transcription-quantitative polymerase chain reaction

Target gene Primer sequence (5′–3′)

Mouse COL1 a1 F: GAC​GCC​ATC​AAG​GTC​TAC​TG

R: ACG​GGA​ATC​CAT​CGG​TCA​

Mouse COL1 a2 F: GGA​GGG​AAC​GGT​CCA​CGA​T

R: GAG​TCC​GCG​TAT​CCA​CAA​

Mouse DDR2 F: CTC​CCA​GAA​TTT​GCT​CCA​G

R: GCC​ACA​TCT​TTT​CCT​GAG​A

Mouse P38 F: GGA​TAT​TTG​GTC​CGT​GGG​CT

R: CCG​TCA​GAC​GCA​TTA​TCT​GC

Mouse OPN F: CCA​GCC​AAG​GAC​CAA​CTA​CA

R: AGT​GTT​TGC​TGT​AAT​GCG​CC

Mouse BSP F: AGA​AAG​AGC​AGC​ACG​GTT​GA

R: AAT​CCT​GAC​CCT​CGT​AGC​CT

Mouse OCN F: ATT​GTG​ACG​AGC​TAG​CGG​AC

R: TCG​AGT​CCT​GGA​GAG​TAG​CC

Mouse GAPDH F: CCT​GCA​CCA​CCA​ACT​GCT​TA

R: CAT​CAC​GCC​ACA​GCT​TTC​CA
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temperature for 2 h. Protein bands were developed using 
enhanced chemiluminescence reagents (Millipore), the 
gel grayscales were captured using the ImageJ (V1.8.0) 
software, and the relative expression quantity was calcu-
lated using the grayscale-to-GAPDH ratio.

Alkaline phosphatase staining
The original culture medium was removed, and the cells 
were washed twice using PBS and fixed in 2.5% glutar-
aldehyde for 24  h. They were then washed three to five 
times with PBS and stained with an ALP solution (BCIP-
NBT, C3206, Beyotime) in the dark for 30 min. Following 
ALP removal, the cells were washed in distilled water two 
to three times and observed under a microscope.

ARS
A volume of 1% alizarin red aqueous solution was 
obtained by dissolving 1 g of alizarin red powder (A5533, 
Sigma) in 100 mL of distilled water. Impurities were fil-
tered, the PH adjusted to 4.2 with 10% ammonia, and 
the solution stored at 4 °C for later use. After a two-week 
mineralized solution induction, the osteoblasts were 
washed with PBS and fixed with 95% ethanol for 30 min. 
After drying, the prepared ARS solution was added for 
15 min; the osteoblasts were then rinsed three times with 
distilled water, dewatered, sealed, and observed and pho-
tographed under a light microscope (Olympus) for cal-
cification detection. Adobe Photoshop CS5 was used for 
image analysis to calculate the image-field percentage of 
positive calcium nodule staining. The procedure was as 
follows: (1) the image was opened in Adobe Photoshop 
CS5 and the layer background copied; (2) a new solid 
color fill or adjustment layer was created and a bright 
green background chosen; (3) “blending options” in the 
first layer were selected and the filter range of each color 
in the blending ribbon adjusted. R, 120–255, G, 0–112 
and B, 0–112 were selected for this analysis; (4) layer 1 
was converted to a smart object, the histogram palette 
opened, and “expanded view” selected; and (5) the posi-
tive stain percentage of the calcium nodule was calcu-
lated by the number of pixels in the full image and the 
number of pixels in the layer.

Cell ultrastructure observation
The osteoblasts were washed with PBS two times, fixed 
with 2.5% glutaraldehyde, phosphoric acid buffer, and 
1% osmium acid solution, respectively, rinsed with 0.1 M 
phosphoric acid rinsing solution, and dehydrated at 4 °C 
with ethanol and acetone in a refrigerator. After embed-
ding with pure acetone and an embedding solution, 
the samples were cured in an oven, sliced to 50–60  nm 
by ultrathin sectioning machine, and stained with 3% 

uranyl acetate and lead citrate. The cell ultrastructure 
was observed using a TEM (HITACHI HT7700).

Statistical analysis
All data were tested for normality and homogeneity of 
variance; the measurement data were presented with the 
mean ± standard deviation (SD). A one‐way analysis of 
variance was conducted for the comparison among mul-
tiple groups, and tests on the least significant difference 
(Student–Newman–Keuls test or q test) were conducted 
for the comparison between two groups with homogene-
ity of variance; comparisons between two groups without 
homogeneity of variance were highlighted using Tam-
hane’s T2 test. A P value of < 0.05 was considered statis-
tically significant. All statistical analyses were performed 
using the SPSS (17.0) software.

Results
ON enhancement of osteoblast Col1 and Ddr2 gene 
expressions
In the first stage of the experiment, the osteoblasts were 
divided into two groups: the ON group and the control 
group. On day 5, RT‐qPCR was conducted to measure 
the mRNA expressions of Col1 a1, Col1 a2, and Ddr2.

The results showed that the Col1 a1, Col1 a2, and Ddr2 
expressions were significantly increased in the ON group 
compared with the control group (Col1 a1, P < 0.001; 
Col1 a2, P < 0.01; and Ddr2, P < 0.01) (Fig. 1).

Fig. 1  Osteonectin enhanced the gene expressions of COL1 
and DDR2. The mRNA expressions of COL1a1, COL1a2 and 
DDR2 were quantified by RT-qPCR; **P < .01, ***P < .001 versus 
the CON group; the experiments were conducted in triplicates; 
data were expressed by means ± standard deviation (SD). COL1: 
collagen 1; DDR2: discoidin domain receptor 2; RT-qPCR: reverse 
transcription-quantitative polymerase chain reaction; CON group: 
control group, the osteoblasts were added with mineralized solution; 
ON group: osteonectin group, the osteoblasts were added with 
mineralized solution + 1 µg/mL osteonectin
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DDR2‑blocker decrease in Opn, Bsp, Ocn, and P38 gene 
expressions
In the second stage of the experiment, the inhibitor group 
was set up and the gene expressions of non-collagen pro-
teins (OPN, BSP, OCN), DDR2, and P38 were detected 
using RT-qPCR.

The Opn, Bsp, Ocn, and P38 gene expressions were 
significantly decreased in the inhibitor group compared 
with the ON group (Opn, P < 0.05; Bsp, P < 0.01; Ocn, 
P < 0.05; and p38, P < 0.05); there was no statistical differ-
ence in DDR2 gene expression between the two groups 
(P > 0.05). The Opn, Bsp, Ocn, and P38 gene expressions 
were still increased in the inhibitor group compared with 
the control group; the differences were all statistically sig-
nificant (Opn, P < 0.01; Bsp, P < 0.05; Ocn, P < 0.01; and 
P38, P < 0.05) (Fig. 2).

DDR2‑siRNA/DDR2‑blocker down‑regulation of positive 
ON regulatory effect on osteoblasts
In the third stage of the experiment, Ddr2-siRNA was 
constructed to suppress DDR2 expression in osteoblasts. 
The DDR2, p38, OPN, BSP, and OCN gene and protein 
expressions were determined using RT-qPCR and west-
ern blot. The mineralized nodules were stained using 
ARS, and the cell ultrastructure was observed via TEM.

The DDR2 and phosphorylated DDR2 (P-DDR2) gene 
and protein expressions in the DDR2-siRNA group were 

observably decreased compared with the ON group 
(mRNA: Ddr2, P < 0.001; protein: DDR2, P < 0.01; and 
P-DDR2, P < 0.001). The P-DDR2 protein expression 
in the inhibitor group was also significantly decreased 
(P < 0.001); however, no obvious differences were 
observed in DDR2 gene and protein expressions between 
the ON group and the inhibitor group (P > 0.05). Cor-
respondingly, the OPN, BSP, OCN, and p38 gene and 
protein expressions in the inhibitor group and the DDR2-
siRNA group were both observably decreased compared 
with the ON group (P < 0.05 in all); however, the expres-
sions were still significantly increased compared with the 
control group (P < 0.05 in all) (Fig. 3).

The DDR2-siRNA/DDR2-blocker reduced the forma-
tion of mineralized nodules. Mineralized nodule areas in 
the DDR2-siRNA group and the inhibitor group were sig-
nificantly smaller compared with the ON group but still 
larger than in the control group (P < 0.05 in all) (Fig. 4).

The Ddr2-siRNA/DDR2-blocker suppressed osteo-
genic activity in the osteoblasts. The osteoblasts in the 
Ddr2-siRNA group and the inhibitor group both exhib-
ited low activity, and fewer organelles and vesicles were 
observed (Fig. 5).

Discussion
Various cytokines and signaling pathways are involved in 
osteoblast mineralization. The previous studies showed 
that ON had a significant positive role in the regulation 
of osteoblast mineralization through the p38 signaling 
pathway [12]; however, the exact mechanism of ON acti-
vation of p38 is still unknown. ON has a functional and 
structural basis for regulating a variety of cytokines and 
binding to various cell surface receptors. As a type of cell 
surface tyrosine kinase receptor, DDR2 is also actively 
associated with osteoblast differentiation, maturation, 
and mineralization. ON has the potential to affect DDR2 
expression by regulating collagen synthesis and confor-
mational changes (or in a variety of other ways). In this 
study, the Ddr2 expression was detected by adding ON 
to the osteoblasts; the P38 and mineralization indicator 
expressions were then investigated by blocking osteo-
blast DDR2 signaling pathways. The results indicated that 
DDR2 was an important pathway for ON activation of 
P38 in the regulation of osteoblast mineralization.

Based on the previous research, 1  µg/mL of ON was 
initially added to the osteoblasts [12]; the results showed 
that ON observably elevated Col1 and Ddr2 gene expres-
sions. As the collagen chaperone, ON interacted with 
endoplasmic reticulum molecules to effectively transport 
non-mutated procollagen molecules out of the endoplas-
mic reticulum, thus further enhancing collagen synthesis 
[27]. Osteonectin can also affect collagen diameter and 
quantity by regulating transglutaminase activity [28]. The 

Fig. 2  DDR2-blocker decreased the gene expressions of OPN, 
BSP, OCN and P38. the mRNA expressions of OPN, BSP, OCN, DDR2 
and P38 were quantified by RT-qPCR; *P < .05, **P < .01, ***P < .001 
versus the CON group; NS P > .05, #P < .05, ##P < .01 versus the ON 
group; the experiments were conducted in triplicates; data were 
expressed by means ± standard deviation (SD). OPN, osteopontin; 
BSP, bone sialoprotein; OCN, osteocalcin; P38: p38 mitogen‐activated 
protein kinase; DDR2: discoidin domain receptor 2; RT-qPCR: 
reverse transcription-quantitative polymerase chain reaction; CON 
group: control group, the osteoblasts were added with mineralized 
solution; ON group: osteonectin group, the osteoblasts were added 
with mineralized solution + 1 µg/mL osteonectin; inhibitor group: 
the osteoblasts were added with mineralized solution + 1 µg/mL 
osteonectin + 230 nM WRG-28
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binding of ON to collagen and calcium ions is a critical 
step for the assembly of collagen fibers into bundles. It 
is suggested that the highly negatively charged molecu-
lar structure of ON can further promote collagen fiber 
assembly by binding to the highly positively charged 
collagen and calcium ion regions through electrostatic 
interaction [29]. Moreover, ON affects the processing, 
deposition, and degradation of procollagen by regulating 

integrins in order to improve the matrix assembly pro-
cess [30]. Correspondingly, DDR2 is a collagen-binding 
receptor tyrosine kinase, and the GVMGFO collagen 
motif is believed to be the primary site for specific DDR2 
recognition and binding; this combination causes a DDR 
structural change and subsequent phosphorylation and 
activation, which are extensively involved in cell develop-
ment, extracellular matrix turnover, growth regulation, 

Fig. 3  DDR2-siRNA/DDR2-blocker downregulated the gene and protein expressions of OPN, BSP, OCN and P38. A the mRNA expressions of OPN, 
BSP, OCN, DDR2 and P38 quantified by RT-qPCR in response to the treatment of CON, ON, Inhibitor, and DDR2-siRNA group; B the gray value of 
protein bands and protein levels of OPN, BSP, OCN, DDR2, P-DDR2, P38 and P-P38 quantified by western blot analysis in response to the treatment 
of CON, ON, Inhibitor, and DDR2-siRNA group; NS P > .05, *P < .05, **P < .01, ***P < .001 versus the Con group; #P < .05, ##P < .01, ###P < .001 versus 
the ON group; the experiments were conducted in triplicates; data were expressed by means ±  standard deviation (SD). OPN, osteopontin; BSP, 
bone sialoprotein; OCN, osteocalcin; P38: p38 mitogen‐activated protein kinase; P-P38: phosphorylated p38; DDR2: discoidin domain receptor 2; 
P-DDR2: phosphorylated DDR2; RT‐qPCR: reverse transcription-quantitative polymerase chain reaction; CON group: control group, the osteoblasts 
were added with mineralized solution; ON group: osteonectin group, the osteoblasts were added with mineralized solution + 1 µg/mL osteonectin; 
Inhibitor group: the osteoblasts were added with mineralized solution + 1 µg/mL osteonectin + 230 nM WRG-28; DDR2-siRNA group: the 
osteoblasts were transfected with DDR2-siRNA and added with mineralized solution + 1 µg/mL osteonectin
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Fig. 4  DDR2-siRNA/DDR2-blocker reduced the formation of mineralized nodules. A Calcium nodules (blue circle) observation stained with alizarin 
red under a microscope (× 100) after induced mineralization for 14 days in response to the treatment of CON, ON, Inhibitor and DDR2-siRNA group; 
B the Adobe Photoshop CS5 system was used to calculate the positive staining of calcium nodules; C quantitative analysis of calcium nodules in 
each group. Bars, (a) 200 µm, *P < .05, **P < .01, ***P < .001 versus the Con group; #P < .05 versus the ON group; three samples in each group were 
observed; data were expressed by means ± standard deviation (SD); CON group: control group, the osteoblasts were added with mineralized 
solution; ON group: osteonectin group, the osteoblasts were added with mineralized solution + 1 µg/mL osteonectin; Inhibitor group: the 
osteoblasts were added with mineralized solution + 1 µg/mL osteonectin + 230 nM WRG-28; DDR2-siRNA group: the osteoblasts were transfected 
with DDR2-siRNA and added with mineralized solution + 1 µg/mL osteonectin
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and cancer-related functions [31, 32]. Therefore, ON can 
influence the expression of DDR2 activation by regulat-
ing the growth and recombination of collagen; this is in 
line with the results of the present experiment.

To explore whether activated DDR2 can further acti-
vate the P38 signaling pathway, WRG-28 (a specific 
DDR2 inhibitor) was used to block the DDR2 signal-
ing pathway in the second stage of the experiment. The 
results showed that the expressions of P38 and non-col-
lagen genes were significantly decreased in the inhibitor 
group, indicating that DDR2 was an important recep-
tor for p38-activated osteoblast mineralization. We also 
found that the WRG-28 did not significantly change the 
gene expressions of Ddr2, this finding accords with its 
specific inhibition of receptor-ligand interaction through 
the receptor allosteric regulation [26]. An association 
between DDR2 and P38 during bone development has 
also been fully proven. DDR2 is a vital mediator of inter-
actions between cells and fibrillar collagens [33]; it also 
stimulates osteoblast differentiation and bone forma-
tion signals through both ERK1/2 and p38 MAP kinase. 
These actions are highly related to changes in MAPK-
dependent RUNX2 and PPARγ phosphorylation [24, 
34]. Additionally, the positive role of P38 activation in 
the regulation of non-collagenous protein expression 
and osteoblast mineralization has also been confirmed 
in the previous studies [12]. In the third stage of the 
experiment, Ddr2-siRNA was constructed to transfect 
osteoblasts, and the mineralization indexes, including the 
protein determination of the mineralization index, ARS 
of mineralized nodules, and the ultrastructural observa-
tion of cells using TEM, were further determined. The 
results showed that the gene and protein expressions 
of DDR2 were decreased in siRNA group and the pro-
tein expression of P-DDR2 was decreased in inhibitor 
group; Ddr2-siRNA or DDR2 blockers also accordingly 
downregulated the expressions of non-collagen and P38 
and decreased mineralization nodules; there were also 
fewer organelles and vesicles observed when compared 
with the ON group. The increase in osteoblast vesicles 
and organelles is an important sign of the enhancement 
of osteoblastic activity and mineralization ability. The 
disordered calcium phosphate in the vesicles is consid-
ered the precursor of carbonated hydroxyapatite, and 

mineral vesicles can initiate and directly participate in 
extracellular mineralization [35–37]. Mitochondria are 
involved in vesicle transport; amorphous calcium phos-
phate was found in mitochondria and new bone. There is 
also a strong point-to-point binding between mitochon-
dria, intracellular calcium phosphate accumulation, and 
mineralization [38–40]. Combined, these results further 
clarified that both Ddr2-siRNA and DDR2 blockers could 
inhibit P38 activation and downregulate positive ON reg-
ulation of osteoblast mineralization.

In addition, P38 and mineralized gene expressions 
were still higher in both the inhibitor group and the 
Ddr2-siRNA group than in control group; the posi-
tive staining of calcium nodules areas were also larger. 
The presence of more than one activation pathway for 
P38 or other pathways by ON for regulating minerali-
zation was considered. ON can activate P38 through 
several potential pathways, such as integrin [41, 42], 
matrix metalloproteinase [43–45], and transforming 
growth factor beta [46–48]. As ON is an extracellular 
matrix regulatory protein, its regulation of osteoblast 
mineralization is related to collagen synthesis regu-
lation and the interaction between the extracellular 
matrix and osteoblasts. It was also found that the activ-
ity of osteoblasts was lower in the inhibitor group and 
the Ddr2-siRNA group than in other groups, indicating 
that DDR2 may be involved not only in mineralization 
but also in the entire process of osteoblast development 
and maturation. DDR2 is considered an important mol-
ecule for maintaining osteoblast activity and inhibiting 
bone marrow adipocyte formation [34]. Genetic evi-
dence suggests that DDR2 plays a critical role in bone 
development. Furthermore, Ddr2 mutations can cause 
spondylo-meta-epiphyseal dysplasia with short limbs 
and abnormal calcifications (SMED-SL) [49, 50], and 
Ddr2 polymorphism is also strongly linked to a height-
ened fracture risk and lower bone mass measurements 
[51].

In summary, osteoblast mineralization is an extremely 
complex biological process, and several of its exact mech-
anisms still require clarification. Whether ON activates 
DDR2 via collagen alone or in other, more direct ways 
remains to be tested in future studies. Using the experi-
ment conducted herein, it can be concluded that DDR2 is 

(See figure on next page.)
Fig. 5  DDR2-siRNA/DDR2-blocker suppressed the osteogenic activity. The cell ultrastructure of osteoblasts was observed by TEM in response to 
the treatment of CON, ON, Inhibitor, and DDR2-siRNA group; DDR2-siRNA/inhibitor group both showed fewer organelles and intracellular vesicles. 
Bars: a, c, e and g, 20 µm; Bars: b, d, f and h, 10 µm; N, nucleus; m, mitochondria; ly, lysosomes; mb, multivesicular bodies; iv, intracellular vesicle; 
TEM, transmission electron microscopy; CON group: control group, the osteoblasts were added with mineralized solution; ON group: osteonectin 
group, the osteoblasts were added with mineralized solution + 1 µg/mL osteonectin; Inhibitor group: the osteoblasts were added with mineralized 
solution + 1 µg/mL osteonectin + 230 nM WRG-28; DDR2-siRNA group: the osteoblasts were transfected with DDR2-siRNA and added with 
mineralized solution + 1 µg/mL osteonectin



Page 9 of 11Zhu et al. Journal of Orthopaedic Surgery and Research          (2021) 16:711 	

Fig. 5  (See legend on previous page.)
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an important signaling pathway for ON activation of P38 
in the regulation of osteoblast mineralization.
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