Skip to main content
. 2021 Nov 23;9:649221. doi: 10.3389/fbioe.2021.649221

TABLE 2.

Accuracy of visual acuity predictions.

Algorithm learner 1 month 3 months 6 months
Validation set MAE RMSE MAE RMSE MAE RMSE
Full model 0.057 ± 0.008 0.080 ± 0.011 0.070 ± 0.013 0.099 ± 0.021 0.072 ± 0.011 0.098 ± 0.019
Simplified model Ⅰ 0.057 ± 0.007 0.080 ± 0.010 0.071 ± 0.014 0.099 ± 0.023 0.073 ± 0.011 0.099 ± 0.018
Simplified model Ⅱ 0.058 ± 0.008 0.080 ± 0.010 0.072 ± 0.012 0.099 ± 0.019 0.075 ± 0.010 0.102 ± 0.016
Simplified model Ⅲ 0.077 ± 0.007 0.100 ± 0.010 0.079 ± 0.012 0.110 ± 0.022 0.080 ± 0.010 0.107 ± 0.014
XEC set MAE RMSE MAE RMSE MAE RMSE
Simplified model Ⅰ 0.074 (0.060–0.089) 0.096 (0.075–0.114) 0.074 (0.051–0.100) 0.103 (0.066–0.137) 0.092 (0.058–0.127) 0.121 (0.075–0.157)
Simplified model Ⅱ 0.074 (0.060–0.114) 0.096 (0.078–0.114) 0.073 (0.051–0.098) 0.101 (0.066–0.134) 0.094 (0.062–0.133) 0.123 (0.081–0.160)
Simplified model Ⅲ 0.083 (0.066–0.101) 0.110 (0.085–0.137) 0.089 (0.065–0.118) 0.119 (0.083–0.155) 0.098 (0.064–0.138) 0.127 (0.084–0.165)

MAE, mean absolute error; RMSE, root mean square error; XEC, Xiamen Eye Center. Accuracy (VA in logMAR) of VA prediction at 1, 3, and 6 months after laser treatment compared with the ground truth. The results were stratified according to the follow-up period and the points inputted into the algorithms; this table shows only the predictive effect of the baseline data. All VA predictions in the validation set are shown with the standard deviation (in logMAR); all VA predictions in the XEC set are shown with the 95% confidence interval.