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Abstract

Rationale: Evidence linking outdoor air pollution with
coronavirus disease (COVID-19) incidence and mortality is largely
based on ecological comparisons between regions that may differ in
factors such as access to testing and control measures that may not
be independent of air pollution concentrations. Moreover, studies
have yet to focus on key mechanisms of air pollution toxicity such
as oxidative stress.

Objectives: To conduct a within-city analysis of spatial variations
in COVID-19 incidence and the estimated generation of reactive
oxygen species (ROS) in lung lining fluid attributable to fine
particulate matter (particulate matter with an aerodynamic
diameter <2.5 lm [PM2.5]).

Methods: Sporadic and outbreak-related COVID-19 case counts,
testing data, population data, and sociodemographic data for 140
neighborhoods were obtained from the City of Toronto. ROS
estimates were based on a mathematical model of ROS generation

in lung lining fluid in response to iron and copper in PM2.5.
Spatial variations in long-term average ROS were predicted
using a land-use regression model derived from measurements
of iron and copper in PM2.5. Data were analyzed using negative
binomial regression models adjusting for covariates identified
using a directed acyclic graph and accounting for spatial
autocorrelation.

Measurements and Main Results: A significant positive
association was observed between neighborhood-level ROS and
COVID-19 incidence (incidence rate ratio = 1.07; 95% confidence
interval, 1.01–1.15 per interquartile range ROS). Effect
modification by neighborhood-level measures of racialized group
membership and socioeconomic status was also identified.

Conclusions: Examination of neighborhood characteristics
associated with COVID-19 incidence can identify inequalities and
generate hypotheses for future studies.
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Evidence frommultiple lines of research,
including toxicology, human clinical studies,
and epidemiology, suggests that outdoor air
pollution exposure increases the risk of

respiratory infection (1). Both short-term and
long-term exposures are associated with
morbidity and mortality from respiratory
infections (2–6), and there is evidence that air

pollution exposure adversely affects
respiratory and systemic immune defenses (3,
7), including increased epithelial expressionof
receptors for respiratory viruses (8).Oxidative
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stress has been identified as a key
pathophysiological mechanism linking air
pollution exposure and adverse health effects
(9) and, more specifically, viral respiratory
infection (10). However, few epidemiological
studies have employed exposure metrics
specifically reflecting this mechanism (9).

Evidence related to air pollution and
novel coronaviruses is limited. Evidence from

the severe acute respiratory syndrome
coronavirus 1 outbreak suggests that exposure
to air pollution increased transmission (11)
and worsened prognosis (12, 13). Emerging
evidence suggests that novel coronavirus
disease (COVID-19) incidence and mortality
may be increased in relation to both acute (14,
15) and chronic air pollution exposure
(16–22). Disproportionate impacts of
COVID-19 on racialized groups have been
identified (23–26), and it has been
hypothesized that greater exposure to air
pollution could partially mediate these
disproportionate impacts (25, 27).

Althoughthebodyof evidence isgrowing
rapidly, several methodological shortcomings
of existing studies have been identified,
including reliance on ecological comparisons
between regions that may differ in important
ways (e.g., access to testing and
implementationofcontrolmeasures) thatmay
not be independent of outdoor air pollution
concentrations; application of inappropriate
statisticalmodels for count data; and failure to
account for spatial clusteringor examineeffect
modification (28). To address these
shortcomings, we conducted a within-city
analysis of associations between air pollution
exposure and COVID-19 incidence among
140 neighborhoods in Toronto, Canada. We
employed a novel indicator of reactive oxygen
species (ROS) generation in human lung
epithelial lining fluid (ELF) attributable to
transition metals in fine particulate matter
(particulate matter with an aerodynamic
diameter<2.5 lm [PM2.5]) (29, 30) as the
primary exposure variable, to address the lack
of evidence pertaining to exposure metrics
specifically reflecting oxidative stress. Other
exposures considered were PM2.5 mass,
nitrogen dioxide (NO2), and greenness. In
contrast to earlier studies, in the present
analysis,wedifferentiatebetweensporadicand
outbreak-related cases, apply a statistical
model (negative binomial) appropriate for
count data, account for spatial clustering,
examine effectmodification by neighborhood
characteristics, and incorporate
neighborhood-level testing as a covariate.Our
within-city analysis is also not confounded by
between-city variability in the nature and
timing of public health measures.

Methods

Neighborhood-Level COVID-19 Data
COVID-19 case counts through October 12,
2020, were obtained from the City of Toronto

(31). Outbreak-related cases refer to those
occurring in healthcare institutions, including
both acute care and long-term care facilities,
andothercommunalsettingssuchashomeless
shelters,whereas all other cases are considered
sporadic (31). We also obtained data on days
elapsed since the first case, days since peak
daily incidence of cases, case outcomes, and
weekly rates ofCOVID-19 testing (the latter is
from August 30, 2020, onward only) (31).

ROS Exposure Data
Concentrations of ROS generated in human
lung ELF were estimated using a kinetic
model of mass transport and chemical
reactions of iron and copper in PM2.5 with
antioxidants and surfactants in ELF (29, 30).
Spatial variations in annual mean ROS were
based on a land-use regression model
derived from 2-week average concentrations
of iron and copper in PM2.5 at 81 unique
sites in Toronto in the summer of 2016 and
the winter of 2017 (29). Further details on
ROS and other exposures are described in
Text E1 in the online supplement. Exposure
data were mapped to census dissemination
area (n=3,691) and population weighted to
the neighborhood level in R (32) using
GISTools (33), rgdal (34), and raster (35)
packages.

Sociodemographic Data
Neighborhood-level population counts and
sociodemographic data from the 2016 census
for factors potentially affecting COVID-19
incidence (23, 26, 31, 36) were obtained from
the City of Toronto (37). These variables
included measures of age distribution
(percentage of population 65 years of age or
older and 85 years of age or older),
socioeconomic status (SES) (percentage
unemployed, with less than high school
education, or with income less than the low-
income cutoff or low-incomemeasure),
racialized groupmembership (percentage
Black, South Asian, visible minority, or non-
EnglishorFrench speakers), andpotential risk
factors for COVD-19 transmission
(percentage of users of public transit for
commuting, percentage living in unsuitable
[crowded]housing, andpercentage in ahealth
occupation or health and social service
industry).

Statistical Analysis
Negative binomial regression was used to
model the relationship between air pollution
concentrations and COVID-19 cases by
neighborhood, with the logarithm of

At a Glance Commentary

Scientific Knowledge on the
Subject: It is well established that air
pollution is associated with morbidity
and mortality from respiratory
infections, and adversely affects
respiratory and systemic immune
defenses. Oxidative stress appears to
be a key pathophysiological
mechanism. Although the body of
evidence linking air pollution
exposure and coronavirus disease
(COVID-19) incidence and mortality
is growing rapidly, several
methodological shortcomings of
existing studies have been identified.
In particular, many studies have relied
on ecological comparisons between
regions that may differ in factors such
as access to testing and control
measures that may not be
independent of air pollution
concentrations. Studies have yet to
focus on key mechanisms of air
pollution toxicity, such as
oxidative stress.

What This Study Adds to the Field:
This study contributes to public
health evidence on COVID-19 by
conducting a within-city analysis in
order to identify neighborhood
characteristics associated with
COVID-19 incidence and potential
inequalities in the effects of air
pollution. By employing a novel
exposure metric reflecting reactive
oxygen species generation in human
lung epithelial lining fluid attributable
to transition metals in fine particle air
pollution, the study highlights a key
mechanistic pathway. Additional
research employing individual-level
data is needed to elaborate
causal pathways.
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neighborhood population as an offset. Model
covariates were selected using the directed
acyclic graph (DAG) (38) shown in Figure E1
in the online supplement. Specifically, all
models were adjusted for neighborhood-
level measures of racialized group
membership, SES, risk factors for COVID-
19 transmission, and community

transmission (number of days since peak
daily case count and since first case). The
presence of residual spatial autocorrelation
was examined by mapping model residuals
and computing Moran’s I (39). If significant
spatial autocorrelation was detected, spatial
regression was conducted, adding the
average of nearest neighbor incidence as a

covariate (40). Analysis was conducted in R
(32) using the lme4 (41), MASS (42), mgcv
(43), and spatialreg (40) packages.

Additional methodological details are
provided in Text E1 in the online
supplement. Research ethics board
approval was not required, as all data are
publicly available.

Table 1. Characteristics of COVID-19 Cases

Sporadic Outbreak Related

n Percentage n Percentage

Cases 16,415 100.0 6,646 100.0
Cases missing neighborhood 481 2.9 273 4.1
Cases with neighborhood* 15,934 97.1 6,373 95.9
Fatal 256 1.6 1,032 16.2
Hospitalized 1,293 8.1 826 13.0
Admitted to intensive care 359 2.3 79 1.2
Intubated 243 1.5 47 0.7
Sex, F 7,704 48.6 3,973 63.9
Sex, M 8,149 51.4 2,240 36.0
Sex missing 73 0.4 158 2.4
Age ,50 yr 10,829 68.0 1,955 30.7
Age >50 yr 5,084 32.0 4,414 69.3
Age >60 yr 2,626 16.5 3,632 57.0

Definition of abbreviation: COVID-19=coronavirus disease.
*Used as denominator for calculation of percentages in subsequent rows.

Table 2. Distribution of Cases, Environmental Exposures, and Sociodemographic Characteristics among Toronto Neighborhoods

Characteristic Minimum

Percentile

Maximum25th 50th 75th

Sporadic cases to October 12 13 45.5 78.0 138.0 585.0
Days since peak incidence 1 5 12 32 210
Days since first case 186 202 209 214 263
Tests/1,000 population (August 30 to October 10) 40.7 69.2 84.2 107.1 142.8
2016 population 6,577 12,020 16,750 23,855 65,913
Population density per km2 1,040 3,595 5,072 7,621 44,321
Land area, km2 0.0 2.0 3.0 5.0 37.0
PM2.5, lg/m

3 6.5 7.0 7.3 7.4 7.8
NO2, ppb 8.8 14.0 15.0 16.0 20.9
ROS, nmol/L 44.7 55.9 59.4 66.3 93.5
NDVI .0 0.3 0.5 0.6 0.6 0.7
Age >65 yr, % 4.8 13.4 15.4 18.2 28.0
Age >85 yr, % 0.3 1.6 2.2 3.1 8.7
Black, % 0.9 3.5 5.7 11.4 35.4
South Asian, % 1.3 3.7 6.2 14.1 47.2
People of color, % 12.0 27.7 42.9 67.0 96.6
Non-English or French speakers, % 0.2 2.2 3.6 5.9 26.9
Below low-income cutoff, % 4.1 12.8 16.3 20.2 36.4
Below low-income measure, % 4.5 14.1 18.6 24.0 45.5
Less than high school education, % 2.9 10.7 16.4 21.3 39.1
Commute by public transit, % 18.0 31.6 37.6 43.0 63.7
Crowded housing, % 1.5 6.9 10.9 15.9 42.2
Unemployed, % 4.5 6.9 8.2 9.6 14.6
Not moved in the last 5 yr, % 26.3 57.2 62.9 67.6 77.9
Health occupation, % 2.6 4.7 5.4 6.2 12.0
Health and social assistance industry, % 6.6 8.5 9.5 10.7 16.2

Definition of abbreviations: NDVI= normalized difference vegetation index (greenness); NO2 = nitrogen dioxide; PM2.5 =particulate matter with an
aerodynamic diameter <2.5 lm; ROS= reactive oxygen species.
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Results

There were 23,061 confirmed cases of
COVID-19 in Toronto through October 12,
2020. Of these, 16,415 (71%) were considered
sporadic and 6,646 (29%) were considered

outbreak related. Characteristics of cases are
summarized in Table 1. The fatality rate was
considerably higher for outbreak-related cases
than for sporadic cases, whereas the
hospitalization rate was only slightly higher.
Rates of intensive care admission and

intubation were slightly higher for sporadic
cases. Men and women were equally
represented among sporadic cases, whereas
there was a preponderance of women among
outbreak-related cases. The majority of
sporadic cases were less than 50 years of age,
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Figure 1. Spatial distributions of (A) coronavirus disease (COVID-19) incidence and (B) ROS by neighborhood in Toronto, Canada. ROS= reactive
oxygen species.
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percentage of people living in crowded housing by neighborhood in Toronto, Canada.
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whereas themajorityof outbreak-related cases
were 50 years of age or older.

The distribution of cases, environmental
exposures, and sociodemographic
characteristics by neighborhood is shown in
Table 2 and Figures 1 and 2. High COVID-19
incidence was concentrated in northwest
Toronto, together with higher proportions of
Black residents and prevalence of crowded
housing and less than high school education.
ROSconcentrations tended tobehigher in the
southern downtown core as well as northwest
Toronto. Spatial variability of exposures at the
more highly resolved census dissemination
area level is shown for comparison in Figure
E2. The highest concentrations of both ROS
and NO2 correspond with locations of major
north–south and east–west expressways.They
were moderately correlated (r=0.51).

Spearman correlations among
independent variables are summarized in
Figure E3. Strong positive correlations were
observed among variables reflecting the
prevalence of racialized group membership,
nonspeakers of English or French, lower SES,
and crowded housing. NO2 was positively
correlatedwiththeprevalenceofboth less than

high school education and crowded housing,
whereas ROS was positively correlated only
with the prevalence of crowded housing. The
COVID-19testingratewasstronglynegatively
correlated with measures of racialized group
membership and lower SES, and it wasweakly
negatively correlated with ROS.

In bivariate analyses of single-exposure
variables and COVID-19 incidence, ROS and
NO2exhibited significantpositiveassociations
with COVID-19 incidence, whereas
greenness, which was measured by the
normalized difference vegetation index
(NDVI), exhibited a significant negative
association, and PM2.5 mass exhibited a
nonsignificant positive association (see Table
E1). However, in joint models simultaneously
including ROS and either NO2 orNDVI, only
ROS remained significantly associated with
COVID-19 incidence (see Table E2). Several
variables representing neighborhood-level
racialized group membership and SES
exhibited positive associations with COVID-
19 incidence. The number of days since first
case was significantly negatively associated
withCOVID-19 incidence,whereasdays since
peak incidence exhibited a significant positive

association. The 6-week total number of
COVID-19 tests was not associated with
COVID-19 incidence. In the DAG-based
multivariatemodel(Table3),ROS,proportion
of Black residents, and prevalence of crowded
housing and less than high school education
remained positively and significantly
associatedwithCOVID-19incidence,whereas
days since peak incidence and days since first
case exhibited null associations. However,
Moran’s I indicated that there was significant
spatial autocorrelation of the model residuals
(P, 0.0001), and mapping of residuals
indicated that themodel tended tooverpredict
incidence in neighborhoods clustered in
northwest Toronto (see Figure E4). A model
incorporatingneighboring incidence values as
a covariate reduced the degree of spatial
autocorrelation such that Moran’s I was no
longer significant (P=0.10) and clustering of
residualswasnolongerevident(seeFigureE4).
In this model (Table 3), ROS, proportion of
Black residents, and prevalence of crowded
housing remained positively and significantly
associated with COVID-19 incidence. In
subgroup analyses based on the samemodel
(Figure 3), the association of ROS with
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Figure 3. Associations of reactive oxygen species (ROS) with coronavirus disease (COVID-19) incidence by population subgroup based on spatial
multivariate models. Incidence rate ratios and their 95% confidence intervals per IQR for ROS are shown. IQR= interquartile range; Nbhood =
neighborhood.
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outbreak-related cases was less precise than
that with sporadic cases (P for
difference=0.89). ROS was positively and
significantly associated with sporadic cases in
those less than 50 years of age, whereas
associations in other age groupswere closer to
null (P=0.25 for difference between,50 yr
and>50 yr). A significant positive association
was also observed in men (P for difference vs.
women=0.70). The incidence rate ratio was
positive but not significant in neighborhoods
with a proportion of Black residents and
percentage with less than high school
educationgreater than themedian, versus null
when at the median or below (P for
difference=0.11 and 0.51, respectively). The
incidence rate ratio was positive and
significant for neighborhoods below the
median percentage crowded housing and was
closer to null for neighborhoods above the
median (P for difference= 0.18).

In other sensitivity analyses (see Table
E2), resultswerenotsensitive toemployingthe
2000–2016 average rather than the 2016
average for PM2.5, NO2, and NDVI.
Associations were also insensitive to the
restriction of the analysis to cases before
children returned to school, addition of the
number of neighborhood COVID-19 tests
from August 30 to October 10 as a covariate,
specification of days since first case and days
since peak incidence as nonlinear terms, and
additional or alternative covariates, with the
exception that substitution of alternative
measures of neighborhood SES resulted in
larger magnitude ROS associations and larger
model Akaike information criterion values.

Discussion

To our knowledge, this is the first study to
report significant intraurban associations of
COVID-19 incidence with estimated
generation of ROS in human lung ELF

attributable tometals in PM2.5. In contrast, we
observed a nonsignificant positive association
of COVID-19 incidence with PM2.5 mass,
which exhibited little spatial variability in the
study area. Spatial patterns of ROS inToronto
suggest that it reflects metal-containing PM
from sources such as brake wear and railyards
(29). In subgroupanalyses,ROSwaspositively
and significantly associated with COVID-19
incidence in those less than 50 years of age,
whereas associations were closer to null in
older age groups. Matz and colleagues (44)
reported that adults aged 60 years or more
spendsignificantlymore timeindoorsathome
than younger adults aswell as significantly less
time in vehicles inmoderate or heavy traffic or
engaged in active transportation in moderate
or heavy traffic (45). Differences in
associationsbyagecouldalsobeattributable to
greater statistical power of the analysis of cases
among those younger than 50 years of age,
owing to the larger number of cases in this age
group. Our finding of a significant association
ofROSwithCOVID-19incidenceformalebut
not female cases could reflect sexdifferences in
time–activitypatterns, in that there is evidence
that men spend significantly more time away
from home and outdoors than women (44).
Differences in time–activity patterns by age
and sex are relevant to the likelihood of
exposure to both COVID-19 and outdoor air
pollution, although time–activity patterns
duringpandemic restrictions likelydiffer from
those under normal circumstances. Not
surprisingly, the association of ROS with
outbreak-related cases was considerably less
precise than that for sporadic cases, given that
outbreak-related cases were older, more likely
to be female, andmore likely to be resident in
institutional settings.

Wealso foundevidenceofmodificationof
the association with air pollution by
neighborhood proportion of Black residents; a
nonsignificant positive association with
COVID-19 incidence was observed in

neighborhoods in which the proportion of
Black residents was greater than the median,
versusnullwhenat themedianorbelow.There
have been numerous reports of increased
morbidity andmortality fromCOVID-19 in
Black populations (23–26). In an analysis of
COVID-19mortality among 77 Chicago
neighborhoods,Kimandcolleagues (24) found
that COVID-19 deaths, proportion of Black
residents, andmeasures of socioeconomic
disadvantage and social vulnerability were
clusteredinthesouthandwestsidesofChicago,
similar to our findings of clustering of cases,
racializedgroupmembership, and lowerSES in
northwest Toronto.Millett and colleagues (25)
reported a disproportionate burden of
incidence andmortality in counties with a
largerproportionofBlackresidentsand,similar
to Brandt and colleagues (27), hypothesized
that this could be partly mediated by air
pollution exposure. Independent of the
neighborhood proportion of Black residents,
measures of lower SES were also positively
associated with COVID-19 incidence in our
analysis. This is not surprising, as those with
lower income likely have more barriers to self-
isolating and social distancing.Wealso found a
nonsignificant positive associationofROSwith
COVID-19 incidence in neighborhoods in
which thepercentageof residentswith less than
a high school education was greater than the
median, versus null when at the median or
below. Our finding of a significant positive
association between ROS and COVID-19
incidenceinneighborhoodsatorbelow,butnot
above, themedianpercentage livingincrowded
housing is unexpected. Given the strong
association of COVID-19 incidence and
neighborhood percentage living in crowded
housing, and the clear biological plausibility of
this association related to increased
opportunity for virus transmission, thisfinding
warrants further evaluation.

In previous studies, Wu and colleagues
(22) reported a positive association of long-

Table 3. Summary of Regression Models

Variable IQR

Multivariate Spatial Multivariate

IRR 95% CI IRR 95% CI

ROS, nmol/L 10.4 1.14 1.06–1.23 1.07 1.01–1.15
Black, % 7.9 1.24 1.14–1.35 1.10 1.01–1.20
Less than high school education, % 10.6 1.19 1.07–1.33 1.05 0.95–1.16
Crowded housing, % 9.0 1.23 1.11–1.35 1.24 1.14–1.35
Days since peak incidence 27.3 1.02 0.99–1.05 1.01 0.98–1.03
Days since first case 12.0 1.00 0.93–1.09 1.02 0.95–1.09

Definition of abbreviations: CI = confidence interval; IQR= interquartile range; IRR= incidence rate ratio; ROS= reactive oxygen species.
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term PM2.5 exposure with COVID-19
mortality in an ecological study based on
approximately 3,000 U.S. counties. Another
study employing similar county-level data
reported a significant positive association of
NO2 with COVID-19 mortality and
case–fatality rates and amarginally significant
positive association between PM2.5 and
mortality (19).ACanadianstudyalsoreported
a positive association of long-term PM2.5

exposureandCOVID-19 incidencebasedona
national analysis of 110 health regions (16). In
an analysis conducted in the Netherlands, a
significant positive association was observed
between PM2.5 and COVID-19 incidence and
hospital admissions (17). Colocation of high
NO2 concentrations estimated from remote
sensing and highCOVID-19mortality counts
in northern Italy andMadrid was reported by
Ogen and colleagues (20), but the analysis did
not account for important potential
confounders, including the underlying
population at risk, population density, timing
of onset of cases or introduction of control
measures, or sociodemographic or health
characteristics. Similarly, Frontera and
colleagues (18) found that PM2.5 was
correlated with COVID-19 incidence, ICU
admission,andmortality inItalianregions,but
their analysis did not adjust for potential
confounders. In the only other study of
intraurban associations, Vasquez-Apestegui
and colleagues (21) reported that long-term
PM2.5 exposure was associated with COVID-
19 incidence and mortality in 24 districts in
Lima. They accounted for age of onset, sex
ratio of cases and deaths, and locations of food
marketsbutnot forrace/ethnicityorSES.They
also employed a relatively coarse spatial
resolution (24 districts) and used linear
regression,whichisnotoptimal forcountdata.
In time-series analyses based on short-term
exposure, significant positive associations
wereobservedbetweenPM2.5,NO2,andozone
averaged over 2 weeks and COVID-19
incidence in a study in 120Chinese cities (15),
and Adhikari and Yin (14) found that ozone
and PM2.5 averaged over 21 days were
associated with COVID-19 incidence but not
mortality in Queens, New York.

Our study addresses several identified
shortcomings of early ecological studies of
COVID-19 and air pollution exposure (28) by
examining spatial variation in incidence and
risk factors at the neighborhood level in a
single city where there is likely to be less
variability in the nature and timing of public
health measures; differentiating between
sporadic and outbreak-related cases, the latter

being less plausibly related to outdoor
environmental exposures; applying a
statistical model (negative binomial)
appropriate for count data; accounting for
spatial clustering; examining effect
modification; and incorporating
neighborhood-level testing as a covariate.

Althoughour studyhas certain strengths,
it also has several limitations. Data on testing
were available at the neighborhood level but
were not available for the entire time period
corresponding with case data. Testing rates
were strongly negatively correlated with
neighborhood racialized group membership
and SES andonlyweakly negatively correlated
with spatial variations in ROS exposures. We
conducted analyses within strata of various
SESvariables and found that the associationof
ROS with incidence was not sensitive to
including weekly testing as a covariate. Data
pertaining to changes inmobility in relation to
COVID-19 restrictions were not available at
the neighborhood level. However, there is
evidence based on proprietary mobile phone
data from Toronto and elsewhere in Canada
and the United States that SES variables
included in our analysis are likely to partially
reflect differences in these changes by
neighborhood, as phone users in census tracts
characterized by lower SES reduced their time
away fromhome less than those in higher SES
census tracts, potentially owing to fewer
opportunities to work remotely in lower wage
jobs, considered essential services (46, 47).
Nonetheless, residual confounding by factors
for which data were not available remains
possible. We did have data on population age
distribution at the neighborhood level, which
would be expected to be strongly correlated
with the prevalence of chronic disease and
underlyingmortalityrisk.Althoughwedidnot
have data on smoking prevalence, this is
strongly correlated with SES (48), and in our
previous analysis smoking prevalence was not
associated with COVID-19 incidence at the
health region level (16). Nonetheless, like
ambient particulate matter, tobacco smoke
can also stimulate the production of ROS in
ELF (30). Owing to the relatively small sample
size,wewerenotabletoincludealargenumber
of covariates, opting instead to base themodel
on a DAG. Strong correlations among
covariates, particularly those reflecting
racialized group membership and SES, could
leadtounstableregressioncoefficients,butthis
was not observed in the final multivariate
model or sensitivity analyses. ROS exposure
estimates were based on observations over a
single year; however, there is evidence of

temporal stability in spatial patterns of other
pollutants with traffic sources (49, 50), and, in
mostneighborhoods, themajority of residents
had not moved in the previous 5 years. In
addition, the ROS exposure estimates likely
underestimate the overall impact of air
pollution on ROS generation and imprecisely
reflect spatial variation, as they donot account
for ROS generation from other redox-active
PMcomponentssuchasquinonesandorganic
hydroperoxides nor all biological responses
that may lead to release of ROS (29). Finally,
although our analysis is based on intraurban
rather than interregion variability, both air
pollution exposures and sociodemographic
characteristics likelyvaryatsmallerscales,and,
as this is an ecological study, it should not be
used to infer causality at the individual level.
However, pending future analyses based on
individual-level data,webelieve there is public
health value in identifying neighborhood
characteristics (and interactions among these
characteristics) that are associated with
increased incidence of COVID-19,
particularly where this highlights potential
inequality and when interventions can be
made on a neighborhood level.

Future ecological studies of intraurban
determinants of COVID-19 incidence and
mortality should endeavor to employ air
pollution measures reflective of specific
sources andmechanisms and include
intraurban data on mobility patterns during
COVID-19 restrictions andaccess to testing as
covariates to address concerns about residual
confounding by these factors. To facilitate
these analyses, holders ofCOVID-19 casedata
should be encouraged to make the data
available at the highest possible spatial
resolution permitted by privacy guidelines,
in a timely fashion, with wide geographic
coverage over multiple centers, employing
nationally consistent methodology. We
acknowledge, however, that some data,
such as proprietary mobility data, may be
costly, particularly at high spatial
resolution, and that COVID-19 data
holders, particularly in low-income
countries,may lack the resources toprovide
high-resolution data.

Conclusions
On the basis of an analysis of 140
neighborhoods in Toronto, Canada, we
found that estimated generation of ROS in
the human lung attributable to PM2.5 was
significantly associated with COVID-19
incidence, and there was evidence of
effect modification by racialized group
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membership and SES. Although these
findings are insufficient to conclude that
fine particulate–related oxidative stress is
causally related to COVID-19 incidence, the
examination of neighborhood
characteristics associated with COVID-19
incidence can serve to identify potential
inequalities and generate hypotheses for

future studies once individual-level data are
available.�
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