Skip to main content
. 2021 Dec 5;20:187–192. doi: 10.1016/j.csbj.2021.11.040

Table 1.

Summary of machine learning models developed for disease prediction.

Readout Parameters Algorithm Sensitivity (Recall) Specificity Precision (PPV) F1-score Accuracy AUROC Test Cohort Ref.
Mortality 33 clinical parameters Random forest 85.71 % 92.45% 89.47% 0.921 No [54]
Mortality 45 proteins Bayesian network 92.68% 86% 89.01% 0.953 No [54]
Mortality CRP, BUN, serum calcium, serum albumin, lactic acid SVM 91% 91% 62.5% 0.93 No [55]
In-hospital mortality Age, lymphocyte, D-dimer, CRP, creatinine (ALDCC) Logistic regression 0.91 ± 0.03 0.78 ± 0.04 0.92 ± 0.03 0.92 ± 0.03 0.91 ± 0.03 0.992 Yes [56]
In-hospital mortality Age, hs-CRP, lymphocyte, d-dimer Logistic regression 0.839 0.794 0.881 Yes [57]
In-hospital mortality LDH, neutrophils, lymphocyte, hs-CRP, age (LNLCA) Logistic regression 92 ± 2.6% 92 ± 3% 0.991 Yes [58]
In-hospital mortality PTA, urea, WBC, IL-2r, indirect bilirubin, myoglobin, FgDP LASSO logistic regression 98% 91% 0.997 No [59]
In-hospital mortality Disease severity, age, hs-CRP, LDH, ferritin, IL-10 Simple-tree XGBoost >85% >90% >0.90 >0.90 1.000 Yes [60]
Disease severity 28 blood and urine parameters SVM 0.8148 Yes [61]
Disease severity Different biomarker combinations Penalized logistic regression >82% >71% >87% >85% Yes [62]

BUN, blood urea nitrogen; CRP, c-reactive protein; FgDP, fibrinogen degradation products; hs-CRP, high-sensitivity C-reactive protein; IL-2r, interleukin-2 receptor; IL-10, interleukin-10; LASSO, least absolute shrinkage and selection operator; LDH, lactate dehydrogenase; MCHC, mean corpuscular hemoglobin concentration; PPV, positive predictive value; PTA, prothrombin; SVM, support vector machine; WBC, white blood cell activity; XGBoost, eXtreme Gradient Boosting.