Skip to main content
. 2021 Dec 8;7(1):83. doi: 10.1186/s40854-021-00300-x

Table 6.

COVID-19 risk and the likelihood of loan default: the role of FinTech adoption

Variables DV = DEFAULT
(1) (2) (3)
Panel A: high FinTech adoption
PANDEMIC_DUMMY

0.267***

(0.007)

DAILY_CASES

0.003***

(0.000)

DAILY_DEATHS

0.025***

(0.001)

Loan originator individual effects Yes Yes Yes
Controls Yes Yes Yes
LR chi2 75,221.734 58,608.936 58,155.240
Prob > chi2 0.000 0.000 0.000
Pseudo-R-squared 0.171 0.191 0.189
N 588,385 415,370 415,370
Panel B: low FinTech adoption
PANDEMIC_DUMMY

0.392***

(0.023)

DAILY_CASES

0.009***

(0.001)

DAILY_DEATHS

0.216***

(0.057)

Loan originator individual effects Yes Yes Yes
Controls Yes Yes Yes
LR chi2 10,252.819 5555.505 5532.129
Prob > chi2 0.000 0.000 0.000
Pseudo-R-squared 0.164 0.219 0.218
N 226,487 87,783 87,783

Table reports the results for two panels. Panel A reports the findings of logit regression analysis for countries with high levels of FinTech adoption. Panel B reports the same findings for countries with low levels of FinTech adoption. The panels are based on countries’ FinTech Development Index (Findexable 2019) being higher/lower than the global median. All model specifications employ robust standard errors in parentheses (*p < 0.10, **p < 0.05, ***p < 0.01)