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BACKGROUND: The absence of the putative DNA/RNA helicase Schlafen11 (SLFN11) is thought to cause resistance to DNA-
damaging agents (DDAs) and PARP inhibitors.
METHODS: We developed and validated a clinically applicable SLFN11 immunohistochemistry assay and retrospectively correlated
SLFN11 tumour levels to patient outcome to the standard of care therapies and olaparib maintenance.
RESULTS: High SLFN11 associated with improved prognosis to the first-line treatment with DDAs platinum-plus-etoposide in SCLC
patients, but was not strongly linked to paclitaxel–platinum response in ovarian cancer patients. Multivariate analysis of patients
with relapsed platinum-sensitive ovarian cancer from the randomised, placebo-controlled Phase II olaparib maintenance
Study19 showed SLFN11 tumour levels associated with sensitivity to olaparib. Study19 patients with high SLFN11 had a lower
progression-free survival (PFS) hazard ratio compared to patients with low SLFN11, although both groups had the benefit of
olaparib over placebo. Whilst caveated by small sample size, this trend was maintained for PFS, but not overall survival, when
adjusting for BRCA status across the olaparib and placebo treatment groups, a key driver of PARP inhibitor sensitivity.
CONCLUSION: We provide clinical evidence supporting the role of SLFN11 as a DDA therapy selection biomarker in SCLC and
highlight the need for further clinical investigation into SLFN11 as a PARP inhibitor predictive biomarker.

British Journal of Cancer (2021) 125:1666–1676; https://doi.org/10.1038/s41416-021-01560-1

BACKGROUND
The absence of Schlafen11 (SLFN11) has been linked to resistance
to a wide range of DNA-damaging agents (DDA) such as
fluoroindenoisoquinolines, nanoliposomal irinotecan, trabectidin,
platinum drugs as well as PARP inhibitors (PARPi) [1–8]. The
resistance of SLFN11 deficient cells to DDAs has been linked to the
role of SLFN11 in the intra-S-phase checkpoint, in response to
replication stress induced by DDAs and independent of Ataxia-
telangiectasia-mutated and Rad3-related (ATR) [9]. SLFN11 causes
early S-phase arrest and cell death in response to DNA damage,
whereas cells deficient in SLFN11 were observed to slowly
progress through to G2-phase and have a survival advantage.
Specifically, SLFN11 is thought to block replication by changing
replication fork chromatin structure subsequent to the ATR-
mediated replication stress response. This interaction is thought to
stabilise stalled replication forks during the intra-S and G2/M DNA
damage checkpoints and suppress additional replication origin
firing [10].

There is strong pre-clinical evidence that the presence of
SLFN11 protein is associated with higher sensitivity to DDA
treatment, but not non-DDA, but direct clinical investigation of
SLFN11 as a DDA patient stratification biomarker is limited [11].
Recent reports have linked high levels of SLFN11 expression to
sensitivity to platinum-based chemotherapy in gastric cancers [8]
and to sensitivity to nedaplatin chemoradiotherapy in oesopha-
geal squamous cell carcinoma patients [12]. Others have shown
the absence of SLFN11 expression due to CpG promoter island
hypermethylation in ovarian cancers linked to reduced OS in
patients treated with cisplatin and carboplatin [4]. Also, high
SLFN11 mRNA levels were associated with longer metastasis-free
survival and overall survival (OS) in TNBC patients receiving
anthracycline-based chemotherapy [13].
Several reports support a link between SLFN11 low/negative

expression and resistance to PARP inhibitors [9, 14–16]. However,
this has not been consistently observed for olaparib (Lynparza),
the first-in-class PARP inhibitor. Recent research from our group
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as found knock-out of SLFN11 in a prostate cell line did not cause
resistance to olaparib nor did low SLFN11 levels in triple-negative
breast cancer (TNBC)-rich cohort of PDX models [11]. Whilst in
SCLC cells high levels of SLFN11 were associated with PARPi
sensitivity, this association was seen to a greater extent with the
very potent PARP trapper talazoparib [14]. In addition, a Phase II
trial identified patients with SLFN11-negative SCLC as those with
worse progression-free survival (PFS) and OS to temozolomide in
combination with the PARPi veliparib, compared with temozolo-
mide with placebo [17]. Further investigation is needed, particu-
larly in ovarian and breast cancers, to determine whether SLFN11
levels play a role in the response to olaparib in the clinic, and
whether this is independent of BRCA mutations [18].

METHODS
SLFN11 immunohistochemistry (IHC)
Three anti-SLFN11 antibodies (Supplementary Table 1) were screened at a
range of concentrations and pH 6 and pH 9 retrievals. Final SLFN11 IHC
protocol was performed on Leica BondRX; dewax, ER1(pH 6) retrieval
100 °C 25min, SignalStain® diluent (CST) block 10min, F standard protocol
(Leica, Bond polymer-refine-detection), without post-primary, DAB enhan-
cer. SLFN11 antibody ab121731 (Abcam), diluted in Dako antibody diluent
with background reducing components was applied for 15min at 2.5 µg/
ml in human tissues or 0.5 µg/ml in xenografts. Negative diluent only or
matched concentration rabbit IgG (Abcam) controls were used.

IHC pathology scoring
IHC slides were scanned at x20 on Aperio AT2 scanner (Leica).
SLFN11 stained human tissues were evaluated by a pathologist for H-
score, percentage positive SLFN11 and sub-clonality. H-score is calculated
by estimating the proportion of stained tumour cells and the intensity of
cell staining (grouped as 0, 1+ , 2+ or 3+ for negative, weak, intermediate
and strong staining respectively) and applying the calculation H-score= (%
1+ x 1)+(%2+ x 2)+(%3+ x 3) to produce a value between 0 and 300,
where 300 is equal to 100% of cells with 3+ staining. Samples were
excluded if internal control staining of stromal/endothelial cells was below
IHC intensity 2+ . The pathologist was blinded to clinical outcomes during
the scoring process.

Ki67 immunohistochemistry (IHC)
Ki67 IHC was performed on the Labvision autostainer (ThermoFisher),
deparaffinization in xylene and alcohol, pH 6 antigen retrieval 110 °C 5min,
3% hydrogen peroxide and serum-free protein block (Dako). Primary
antibody anti-Ki67 (Dako M7240) was diluted 1:100 in Dako antibody
diluent. Detection used Dako envision+ /HRP and DAB+ (Dako). Carazzi’s
haematoxylin counterstain. Percentage positive cells were quantified in the
tumour regions by a pathologist.

Animal studies
Xenografts were generated by the growth of DU145 or HT29 cell lines in
nude mouse models. All studies were run in the UK and in accordance with
AstraZeneca Global Bioethics Policy, UK Home Office legislation and
Animal Scientific Procedures Act 1986.

Human tissues
SLFN11 expression was evaluated using multi-normal (Supplementary
Table 2), multi-tumour and colorectal tumour-specific (Supplementary
Table 3) tissue microarrays (TMAs) obtained from Tristar. A set of breast
cancer (n= 7) and platinum-resistant high-grade serous ovarian carcinoma
(n= 7) resection specimens were obtained from Asterand.
A cohort of SCLC patients, selected on the availability of surgically

resected FFPE material and clinical follow-up data were obtained, with
appropriate patient consent and ethical approval, from Tristar, Avaden
Biosciences, Nottingham hospital, Asterand, Cureline, TransHit, Proteo-
genix. Supplementary Tables 4–8 list the vendor-provided demographic
details of 124 SCLC patients and 110 high-grade serous ovarian cancer
(HGSOC) patients from Study19 (NCT00753545) randomised Phase II
olaparib trial. All Study19 samples were presented in a tissue microarray
(TMA) format [19]. Samples from 34 HGSOC patients with extremely good

(n= 17) or poor (n= 17) responses to first-line carboplatin-plus-paclitaxel
were provided by Dr. Johanne Weberpals [20]. All human tissue samples
were obtained under AstraZeneca’s global bioethics policy (https://www.
astrazeneca.com/content/dam/az/our-company/Documents/Bioethics-
Policy.pdf).

Cell culture
DU145 cells (DSMZ) and DU145 CRISPR-Cas-9 SLFN11 knock-out cell line
generated by AstraZeneca (Oncology Bioscience UK) cultured in EMEM
media with 10% foetal bovine serum (ATCC). Identities were verified by
short tandem repeat analysis and mycoplasma screened. Cells were
processed into formalin-fixed paraffin-embedded (FFPE) blocks as
described in [21].

Western blot
Cells were lysed in RIPA lysis buffer (ThermoFisher) with phosphatase and
protease inhibitors (Sigma). Protein quantification by BCA assay (Thermo-
Fisher). Protein electrophoresis on 4–12% Bis-Tris MidiGel (LifeTech),
transferred to a nitrocellulose membrane (iBLOT), blocked in 5% milk in
TBS-T (0.05%) and probed for anti-SLFN11 (ab121731, Abcam, 1:1000
dilution) and GAPDH loading control (14C10, CST, 1:3000 dilution).
Detection by HRP-linked goat anti-rabbit secondary antibodies, Super-
Signal WestDura ECL detection reagents (ThermoFisher) and standard film.

RNA in situ hybridisation
In situ detection of SLFN11 mRNA transcripts was performed using the
RNAScope LS Red Kit (Advanced Cell Diagnostics) according to the
manufacturer’s protocol [22]. Signal visualised using Bond Polymer Refine
Red Kit (Leica). Positive (PPIB) and negative (DapB) control probes
were used.

Mass spectrometry
Mass spectrometry carried out at Oncoplex using 10-µm FFPE sections.
Tumour extracted using laser capture microdissection, trypsin digested
and unique control isotopically labelled tryptic peptides for SLFN11 were
added. Samples were run on a triple quadrupole LC/MS/MS, and the ratio
of patient endogenous peptide to control isotopically labelled peptide
provided quantitative protein concentration. An SLFN11-positive sample
was defined as any sample with a value above the limit of quantification.

NanoString gene expression
5–10-µm FFPE sections were used for NanoString gene expression (GE)
analysis. Tumour macro-dissected and RNA extracted with RNeasy FFPE
extraction kit (Qiagen). NanoString carried out following the manufac-
turer’s instructions (fixed 21-h hybridisation time, 100 ng input RNA) and
the AZ-designed DDRmax code set, bespoke 800 gene code set covering
DNA Damage Response gene pathways. SLFN11 probe design is given in
Supplementary Fig. 1. Cartridges read on the nCounter GEN2 Digital
Analyzer station with high-resolution selected (3 h enhanced, 555 fields of
view captured). Log2 normalised data exported for analysis after internal
positive control, and housekeeping gene normalisation using nSolver
Analysis Software version 4.0.

Statistical analysis
Statistical significance achieved if P ≤ 0.05. Where two groups were
analysed, the Mann–Whitney test was used and where more than two
group analysed, the Kruskal–Wallis with Dunn’s multiple-comparisons was
used. A paired t test was used to assess intra-tumour differences between
subclones. Linear regression was used for correlation analysis and a log-
rank (Mantel–Cox) test was used for survival analysis.
To select H-score cut-offs, P values were generated for OS difference

between high and low SLFN11 using different SLFN11 H-score cut-offs.
This was carried out using a linear regression-based model with a
dichotomous grouping variable, where dichotomy has been conducted at
different SLFN11 H-score cut-off points and H-score was replaced by the
binary categorical variable. The H-score where the P value was lowest was
selected as the cut-off.
An adjusted Cox proportional hazards model used to assess PFS and OS

differences in Study19, using methods and caveats previously described
[23]. Multivariate analysis adjusted for patient BRCA status carried out
using same Cox proportional hazards model, adjusted for BRCA status.
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RESULTS
Validation of a clinically applicable SLFN11 IHC assay
We developed a spatially resolved immunohistochemistry (IHC)
assay to detect SLFN11 protein in clinical tissues. We followed
stringent assay validation guidelines [24] and used appropriate
controls to screen commercially available SLFN11 antibodies by
IHC (Supplementary Table 1). Polyclonal ab121731 (Abcam)
SLFN11 antibody was selected based on optimal specific signal
to background staining. The selected antibody showed good
nuclear specificity, demonstrated by complete loss of SLFN11 in
DU145 CRISPR Cas-9 SLFN11 knock-out cells by IHC (Supplemen-
tary Fig. 2A) and western blot (Supplementary Fig. 2B).
SLFN11 staining in DU145 and HT29 xenograft tissues were
positive and negative respectively, consistent with gene and
protein expression data [7] (Supplementary Fig. 2C).
In human tissues, ciliated bronchial cells, but not basal

bronchial epithelium, and pancreatic acinar cells consistently
expressed SLFN11, while most normal ductal or glandular
epithelial cells in the breast, pancreas, prostate and colon were
SLFN11 negative (Fig. 1a and Supplementary Table 2). SLFN11
positivity was consistently observed in stromal, endothelial and
immune cells, independent of tumoural SLFN11 expression
(Fig. 1a and Supplementary Fig. 2D), providing a valuable internal
quality control against pre-analytical factors like inadequate
tissue fixation. Standard isotype run controls ensured no
unspecific staining from detection methods (Supplementary
Fig. 2E).

SLFN11-negative tumours found across tumour types
SLFN11 protein expression varied across 13 different tumour types
assessed by multi-tumour TMAs; 37% of all tumours tested
showed no SLFN11. The lowest median SLFN11 expressors were
colon and prostate cancers, the highest were kidney and head and
neck cancers (Fig. 1b, c), and these findings corroborated with
prevalence studies in patient-derived-xenograft models [11] and
clinical samples [12, 25].
SLFN11 was absent in tumour cells in 71% of patients with

breast cancer (n= 17), the two highest SLFN11 expressors were
TNBC (Fig. 1d). SLFN11 was higher in the rarer more aggressive
follicular thyroid cancer (n= 5) compared to papillary subtype
(n= 5) (P= 0.032) (Fig. 1e). No significant differences were found
between different grades of lymphoma (n= 8 low grade; n= 10
high grade), histological subtypes of lung cancer (n= 9 adeno-
carcinoma, n= 7 squamous cell carcinoma, n= 3 SCLC) or
histological subtypes of ovarian cancer (n= 6 serous, n= 2
mucinous, n= 2 endometroid). These data should be caveated
by small numbers of samples for each tumour type and larger
cohorts should be evaluated using this IHC assay to assess the
association between SLFN11 levels and clinical outcomes in
multiple cancer types.
Median SLFN11 levels in colorectal cancers (CRC) (n= 144)

(Supplementary Table 3) were modestly higher in patients with
metastatic cancer compared to locally advanced disease (P=
0.030, Fig. 1f), and in patients with higher tumoural grade 3
compared to grade 2 (P= 0.022, Fig. 1g), but did not differ by CRC
stage (Fig. 1h). Whilst limitations include the use of a largely
SLFN11-negative CRC population (80%) and no Stage I patients,
these findings show SLFN11 positivity associates with poor
prognosis clinical features in certain tumour types.

SLFN11 sub-clonal expression
In contrast to homogeneous cell/xenograft models, patient
tumours consist of multiple sub-clonal cell populations that can
differ in molecular profiles and evolve/expand in response to
selective therapy or environmental pressures [26]. Detecting sub-
clonal expression of patient stratification biomarkers could
elucidate mechanisms of resistance and better inform therapy
selections. IHC analysis identified a subset of tumours with sub-

clonal SLFN11 expression, where spatially distinct high and low
SLFN11 expressing subclones were identified within the same
patient sample (Fig. 2a–c). Sub-clonality was rarely observed in
TMAs (only n= 1 CRC TMA core) due to the small core size. In
whole resections, sub-clonality was found in 6/34 HGSOC tumours
(Fig. 2b) and 4/7 breast cancer tumours (Fig. 2c).
Subsequent in situ hybridisation spatial profiling of these

subclones showed SLFN11 RNA transcript levels paralleled SLFN11
protein expression patterns (Fig. 2d). In one case, histological
features were also distinct between subclones with the high
SLFN11 sub-clone presenting hyperchromatic-nuclei (Supplemen-
tary Fig. 3A), high SLFN11 subclones also had higher proliferative
states, demonstrated by increased Ki67 (P= 0.035, Fig. 2e). Other
methods of SLFN11 protein and RNA detection (mass spectro-
metry and NanoString gene expression), were not suitable for sub-
clonality assessment and confounded by the inclusion of SLFN11-
positive stromal and immune cells, resulting in discrepancies in
concordance with SLFN11 IHC H-score (R2= 0.82 and R2= 0.70
respectively, Supplementary Fig. 3B, C).

Low SLFN11 associated with poor prognosis in DDA-treated
SCLC
In total, 15% of SCLC tumours presented with SLFN11 sub-
clonality (n= 19/124) (Fig. 3a), and median positivity was
generally high at 80% (Fig. 3b, c). An optimised H-score cut-off
to divide SCLC patients into SLFN11 high- and low subgroups was
identified as 122 using linear regression-based modelling of
SLFN11 to OS in a randomly selected training subset of 38 SCLC
samples. We confirmed there was no link between SLFN11 and
disease stage, and sub-clonality was found across all stages
(Fig. 3d and Supplementary Table 4).
SCLC standard of care DDAs includes carboplatin or cisplatin

that induce bulky intrastrand DNA adducts, as well as the
topoisomerase II poison etoposide [27]. We show SLFN11 high
patients (>122 H-score) treated with first-line platinum (cisplatin
or carboplatin) plus etoposide (n= 24) had significantly improved
PFS (median 48.7 months) compared to SLFN11 low patients
(median 7.8 months; P= 0.0002) (Fig. 3e). Similar results for this
treatment group were found for OS, SLFN11 high patients living
significantly longer (59.7 months) than low patients (13.9 months;
P= 0.001) (Fig. 3f and Supplementary Table 5). High SLFN11 was
also predictive of improved PFS and OS in 45 and 57 SCLC
patients, respectively, with clinical follow-up, who had been
treated with any chemotherapy; SLFN11 high median PFS
48.7 months and OS 40.2 months, SLFN11 low median PFS
10.3 months and OS 13.9 months (PFS P= 0.017 and OS P=
0.020) (Fig. 3g, h and Supplementary Tables 6 and 7). Sub-
clonality did not associate with clinical outcome, Supplementary
Fig. 4A, B.

Uncertain role for SLFN11 in HGSOC paclitaxel–platinum
sensitivity
SLFN11 expression was generally low in serous ovarian cancer
samples, median H-score 20, 16% positivity (n= 151) (Fig. 4a, b
and Supplementary Fig. 5A). The 122 H-score cut-off developed in
SCLC was not appropriate for this low-expressing indication so
instead, a 30 H-score cut-off was selected based on expression
distribution (Fig. 4a).
DDAs such as carboplatin are standard of care in HGSOC,

along with microtubule stabilising non-DDA paclitaxel that
causes mitotic arrest [28]. We found no significant link between
SLFN11 levels and sensitivity to first-line carboplatin-plus-
paclitaxel chemotherapy in 34 HGSOC patients subgrouped by
extreme good or poor responses (progression-free interval; PFI
> 12 months or <6 months, respectively; P= 0.487 Fig. 4c) [20].
This was also true when SLFN11 was measured by gene
expression (P= 0.432, Supplementary Fig. 5B), despite discor-
dance between protein and gene expression techniques in this
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subset (R2= 0.26; Fig. 4d), most likely confounded by the
inclusion of stomal and immune cells. However, full survival data
analysis identified longer median PFI in SLFN11 high patients of
14 months compared to 6 months in SLFN11 low patients, but
differences did not reach statistical significance (P= 0.0705,
Fig. 4e). The same trend was observed for OS with a median

survival of 103 months in the SLFN11 high group compared to
just 42 months in the low group (P= 0.2475, Fig. 4f). Sub-
clonality did not associate with clinical outcome, but patient
numbers were limited (Supplementary Fig. 5C, D). Further
investigation is required to determine the role SLFN11 plays in
paclitaxel–platinum sensitivity.
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High levels of SLFN11 associated with improved clinical
outcome to olaparib in HGSOC
PARP inhibitors such as olaparib (Lynparza) are approved for use in
the first-line maintenance setting in platinum-sensitive relapsed
ovarian cancers by the FDA and EMA. We carried out retrospective
exploratory analysis of 110 HGSOC patients from the Phase II

randomised and placebo-controlled olaparib maintenance clinical
trial (D0810C00019; NCT00753545), where samples were evaluable
for SLFN11. We showed the PFS hazard ratio (HR) was numerically
lower in the SLFN11 high group (>30 H-score), 0.28 HR [0.09, 0.74
95% CI], compared to the SLFN11 low group, HR 0.49 [0.26, 0.91 95%
CI] (Fig. 5a), although both groups showed the benefit of olaparib
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over placebo. These findings are caveated by relatively wide
confidence intervals due to sub-group size and a limited number
of events, but clearly highlight a trend of high SLFN11 expression
and better clinical outcome to olaparib. In support of this trend,
SLFN11 high patients had a longer median PFS of 12.4 months in
the olaparib arm compared to 3.1 months with placebo, whilst there
was less difference in median PFS in the SLFN11 low group
(6.3 months post olaparib and 5.1 months with placebo). A similar
trend was observed with OS; SLFN11 high patients olaparib group
had longer survival compared to placebo (median OS 49.3 months

olaparib, 33.9 months placebo; HR 0.67 [0.30, 1.48 95% CI]), and
compared to the SLFN11 low patients (median OS 25.8 months
olaparib, 25.8 months placebo; HR 0.93 [0.56, 1.54 95% CI]) (Fig. 5b).
BRCA mutations are key drivers of PARP inhibitor sensitivity

[19, 29], therefore to address potential confounding effects by BRCA
mutation imbalances across subgroups (Supplementary Table 8 and
Supplementary Fig. 6), multivariate analysis was subsequently
carried out with adjustment for BRCA status. Results showed a
similar trend as before, with improved PFS in the SLFN11 high
group; HR 0.24 [0.07, 0.69 95% CI] compared to SLFN11 low; HR 0.38
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[0.20, 0.72 95% CI], although again caveated by wide confidence
intervals. In line with our previous observations, median PFS was
longest in the SLFN11 high groups treated with olaparib
(12.4 months BRCAm and 10 months BRCAwt), compared to the
SLFN11 low groups (8.3 months BRCAm and 5.5 months BRCAwt),
whilst median PFS in the placebo groups ranged from 3.1 to
5.5 months (Fig. 6a, b). However, there was no association between
OS and SLFN11 positivity observed in multivariate analysis including
BRCA status, with SLFN11 high HR 0.73 [0.31, 1.64 95% CI] vs. SLFN11
low HR 0.79 [0.47, 1.32 95% CI]. The OS Kaplan–Meier plots show OS
benefit of olaparib over placebo in the BRCAm patients regardless of
SLFN11 status and no clear difference in treatment effect on OS by
SLFN11 status in the BRCAwt groups (Fig. 6c, d). These findings show
that whilst SLFN11 is associated with sensitivity to olaparib in
HGSOC, BRCA mutations are a stronger driver of PARP inhibitor
sensitivity in this setting.

DISCUSSION
We developed a clinically applicable IHC assay to spatially assess
SLFN11 expression patterns and prevalence across multiple

tumour types and elucidated the role of SLFN11 as a potential
biomarker of PARP inhibitor drug sensitivity. Our findings suggest
high levels of SLFN11 may confer sensitivity to olaparib in
platinum-sensitive ovarian cancer patients, but will not replace
BRCAm as a key driver of sensitivity. Whilst in SCLC patients, high
SLFN11 protein levels correlated to DDA sensitivity.
Our clinical data in SCLC confirms what others have consistently

shown in pre-clinical models and a small number of clinical
studies, that there is an association between low SLFN11 tumour
expression and resistance to directly DNA-damaging therapies,
particularly in this indication [3–7, 11, 17, 30, 31]. SLFN11 levels,
whilst predictive of outcome to chemotherapy, did not signifi-
cantly differ by disease stage in our SCLC or CRC cohorts, further
highlighting SLFN11, not as a prognostic biomarker, but a
predictive biomarker for DDA sensitivity. Although larger clinical
studies are needed to confirm these preliminary observations that
may be biased towards the resection sample type used.
High levels of SLFN11 in SCLC compared to other tumour types

might be related to the high levels of intratumoural heterogeneity
and transcriptional plasticity observed in this tumour type. Recent
work suggests cisplatin resistance is related to the emergence of a
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sub-clone of cells that have switched transcriptional subtypes [32].
Further investigation into whether cisplatin-resistant subclones
have lower levels of SLFN11 could be conducted using the
spatially resolved IHC methods described here.
Evidence of SLFN11 as a patient stratification biomarker for DDA

in clinical indications beyond SCLC is limited, although supportive
clinical data were reported in oesophageal, gastric and TNBC
[8, 12, 13]. In HGSOC, an indication known to have high BRCA
mutation frequency (35%) [33], results from cohorts we analysed
were less clear. Whilst others found high SLFN11 gene expression
associates with better prognosis in cisplatin-treated ovarian cancer
patients [5], we could not confidently determine if SLFN11
associated with improved prognosis to the standard of care
carboplatin–paclitaxel doublet, but trends indicated longer PFI in
SLFN11 high patients. The contribution of paclitaxel in this
combination, which is not directly DNA damaging, may play a
role in reducing the dependency of SLFN11 status on response.

Experiments in pre-clinical models show SLFN11 silencing does
not influence response to paclitaxel [7, 28], whilst SLFN11 plays a
significant role in carboplatin sensitivity [7, 11]. It would be
interesting to assess in a larger cohort, which would also allow the
contribution of BRCA mutations to response to be assessed.
Clinical data consistently highlights the predominant role of

BRCA mutations on PARP inhibitor sensitivity [19, 29, 34]. Recent
studies suggesting a link between SLFN11 absence and PARP
inhibitor resistance have attracted interest, but have typically
been carried out in settings where BRCA mutations are rare,
such as SCLC, and are complicated by the use of the PARP
inhibitors in combination with DNA-damaging agents such as
temozolomide [14, 15, 17, 35]. This study examined for the first
time a randomised placebo-controlled Phase II maintenance
trial of patients with HGSOC, to determine if SLFN11 is
associated with clinical outcome to olaparib. Our findings
demonstrate an interesting trend linking high SLFN11
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expression with longer progression-free survival following
olaparib that was independent of BRCA mutation, although
sample sizes were limited and this finding did not extend to
longer overall survival when BRCA status was accounted for.
There are further biomarkers for PARPi response beyond BRCA
mutation, including mutations in other homologous recombi-
nation repair (HRR) genes and gene signatures of homologous
recombination deficiency, but the assessment of the relation-
ship between SLFN11 levels and HRR mutations was not
possible for this trial due to low frequency of non-BRCA HRR
mutations. Other caveats include the use of archival samples
from heavily pre-treated patients and tumours in a TMA format,
preventing assessment of SLFN11 sub-clonality. We propose
that high expression of SLFN11 may confer some benefit to
olaparib in HGSOC, however, not to the same extent as BRCA
mutations and loss of function HRR mutations that were
previously analysed for this trial (NCT00753545) [19, 34].
There are ongoing studies investigating SLFN11 as a patient

stratification biomarker for PARP inhibitors in SCLC [36, 37], but
SLFN11 could also be used to inform on patients resistant to DDA
that may benefit from combinations of DDA with DNA damage
response inhibitors such as WEE1, CHK1 and ATR inhibitors
[11, 38]. In support of this, recent work from our group in HGSOC
patients demonstrated efficacy of the Wee1 inhibitor adavosertib
in combination with gemcitabine, independent of tumour
SLFN11 status (NCT02151292). However, data were underpowered
to determine whether SLFN11 levels could predict response in the
gemcitabine-placebo arm [39].
Finally, we highlight the importance of finding normal non-

tumourigenic epithelial cells are mostly SLFN11-negative. This
suggests SLFN11 expression may be increased during tumorigen-
esis, rather than ‘lost’, as it often referenced in publications. The
notable exception observed was the lung, where SLFN11 levels
were high in normal ciliated bronchial epithelia. however, this is
unlikely to be reflected in bronchogenic squamous cell carcinoma
which arises from metaplastic bronchial epithelial cells following
carcinogen exposure [40–42]. Further investigation into SLFN11
changes during tumorigenesis and following therapeutic inter-
ventions would be of interest.
We strongly recommend future studies use a spatially resolving

IHC method, which can also capture sub-clonal expression
patterns of SLFN11, a potential method for early detection of
negative sub-clonal populations that may cause therapeutic
resistance [26]. We have shown differences in the prevalence of
sub-clonality across different tumour types, but our findings have
not demonstrated that the presence of sub-clonality is determi-
nate of response and instead that overall SLFN11 levels are more
predictive of response to DDAs. Larger studies are required to
further investigate this, which do not use TMAs or small core-
needle biopsies.
These findings highlight the complexities and need for context-

dependent consideration of using SLFN11 to predict patient
outcome to DDAs and DDR inhibitors in the clinical setting. We
find elevated tumour SLFN11 not only linked to improved clinical
outcome to chemotherapy in SCLC but to an extent is also
associated with olaparib sensitivity in platinum-sensitive HGSOC
patients. We have yet to fully understand the interplay between
this novel cell cycle checkpoint and BRCA/HRR mutations, future
work should build upon these initial findings to deepen our
mechanistic understanding and inform of future use of SLFN11 as
a patient selection biomarker.
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