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Abstract

Motivation: Genomic region sets summarize functional genomics data and define locations of interest in the gen-
ome such as regulatory regions or transcription factor binding sites. The number of publicly available region sets
has increased dramatically, leading to challenges in data analysis.

Results: We propose a new method to represent genomic region sets as vectors, or embeddings, using an adapted
word2vec approach. We compared our approach to two simpler methods based on interval unions or term
frequency-inverse document frequency and evaluated the methods in three ways: First, by classifying the cell line,
antibody or tissue type of the region set; second, by assessing whether similarity among embeddings can reflect
simulated random perturbations of genomic regions; and third, by testing robustness of the proposed representa-
tions to different signal thresholds for calling peaks. Our word2vec-based region set embeddings reduce dimension-
ality from more than a hundred thousand to 100 without significant loss in classification performance. The vector
representation could identify cell line, antibody and tissue type with over 90% accuracy. We also found that the vec-
tors could quantitatively summarize simulated random perturbations to region sets and are more robust to subsam-
pling the data derived from different peak calling thresholds. Our evaluations demonstrate that the vectors retain
useful biological information in relatively lower-dimensional spaces. We propose that vector representation of re-
gion sets is a promising approach for efficient analysis of genomic region data.

Availability and implementation: https://github.com/databio/regionset-embedding.

Contact: nsheffield@virginia.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

An epigenomics experiment is often represented as a region set, which
is a collection of genomic intervals that identify the locations of inter-
est produced by a biological experiment. Region sets are produced
from various experiments, such as ChIP-Seq (Furey, 2012) or ATAC-
Seq (Buenrostro et al., 2013; Smith and Sheffield, 2020), and contain
the locations of functional elements along the genome such as
enhancers, promoters and transcription factor binding sites (Dunham
et al., 2012). Region sets are frequently stored as Browser Extensible
Data (BED) files, which may contain up to millions of individual
regions. As the amount of publicly available epigenome data has
increased, the volume of data has led to challenges analyzing it.

In the past few years, many methods have been developed for
processing, analyzing, and comparing genomic region sets. One key
task has been finding connections between region sets, but like
many other tasks, this is complicated by the volume and complexity
of region set data (Dozmorov, 2017; Jalili et al., 2019; Kanduri
et al., 2019; Layer et al., 2018; Sheffield and Bock, 2016). Here, we
address this problem by embedding region sets in a lower dimen-
sional space that retains important biological information. Robust
embeddings have potential to highlight important biological rela-
tionships among region sets and can lead to new ways to query and
analyze data repositories. Importantly, robust embeddings can cap-
ture biological information that would be difficult to extract from
raw data, and therefore the performance of downstream tasks, such
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as classification and clustering, can be improved (Woloszynek et al.,
2019).

One simple example of data representation is the bag-of-words
method for textual data, which uses the existence of words to create
a binary vector representation. More recently, new methods have
invoked the distributional hypothesis, which states that words in
similar context have similar meanings (Bengio et al., 2013; Mikolov
et al., 2013; Pennington et al., 2014). In this framework, embed-
dings learned from context have led to improved performance in a
wide range of natural language processing (NLP) tasks (Young
et al., 2018), and distributed representations of data are now com-
monly used across many disciplines to reduce data dimensionality
and learn relationships. In bioinformatics, embeddings have been
used to represent DNA nucleotide sequences (Blackshields et al.,
2010; Dai et al., 2017; Manavalan et al., 2019; Wei et al., 2012),
protein sequences (Yang et al., 2018), genes (Du et al., 2019) and
single-cell Hi-C data (Liu et al., 2018), among others. Factorized
tensor decomposition has also been used to achieve biologically
meaningful representation for RNA-Seq data (Trofimov et al.,
2020). Most similar to our use case is the recently published
Avocado method, which learns a dense representation for a region
using a deep neural network trained on epigenome signal informa-
tion (Schreiber et al., 2020). Avocado uses metadata annotations
during the training to develop the embeddings, which are then eval-
uated on other downstream tasks. Our approach differs in several
ways: first, it is more general in that it trains on intervals only and
does not require signal data, which makes it amenable to a larger
class of data that may or may not have accompanying signal annota-
tion (e.g. CpG island annotation, HMM chromatin states, k-mer
locations, motif matches, etc.); second, training is based solely on
co-occurrence of intervals without requiring metadata annotations;
third, the underlying model uses the shallow word2vec neural net-
work; and fourth, our primary goal is to create embeddings for sets
of regions, whereas Avocado is geared toward representations of in-
dividual regions. Therefore, while there is clear value in methods
that incorporate signal value and annotation information, there is
also utility in the more general approach we present here.

We translate NLP techniques to genomic region set data by con-
sidering each region set as a text document, with each region as a
word inside that document. We applied two NLP approaches in our
work: a method based on term frequency-inverse document fre-
quency (Salton and Buckley, 1988) for feature selection, and word2-
vec embeddings (introduced in Supplementary Materials) (Mikolov
et al., 2013). The proposed condensed representation for a region
set is learned using only genomic coordinates. For comparison, we
also tested a non-condensed representation based on a simple binary
vector approach. We evaluate with three evaluation tasks: first, a
classification task to predict and visualize biological characteristics
of a region set, such as cell line, antibody and tissue type; second, a
similarity detection task to assess if the models capture differences
between a reference file and simulated perturbed ones; and third, a
subsampling task to test robustness to data mimicking varying
thresholds for calling peaks. Using these evaluations, we show that
the proposed embeddings maintain high classification performance,
quantitative reflection of simulated perturbation, and robustness to
subsampling by different peak calling thresholds, despite multi-fold
reduction in dimensionality.

2 Materials and methods

2.1 Overview of the approach
We used a dataset from the ChIP-Atlas database, which contains
uniformly processed ChIP-seq data from the Sequence Read Archive
(Fig. 1a) (Oki et al., 2018). We applied three different approaches to
represent these region sets: union representation, tf_idf-based repre-
sentation, and region-set2vec embedding (Fig. 1b). To evaluate the
embeddings, we employed three machine learning tasks: classifica-
tion, similarity detection, and peak threshold robustness (Fig. 1c).

2.2 Dataset
Chromatin immunoprecipitation followed by sequencing (ChIP-seq)
identifies the binding sites of DNA-associated proteins. We down-
loaded 12 731 BED files representing ChIP-Seq data from ChIP-
Atlas and constructed 3 different test datasets: one annotated with
antibody, one with cell line, and one with tissue type.

The antibodies are h3k27ac, h3k27me3, h3k4me1, h3k4me2,
h3k4me3, h3k36me3, and h3k9me3. The cell lines are MCF-7,
HeLa, HEK293, A549, Hep G2, HCT116, LoVo, GM12878,
LNCap, and K562. The tissue types are liver, peripheral blood, pri-
mary prostate cancer, blood, breast, bone marrow, and kidney. For
each of these three datasets, we divided the data into a training
(80%) and test (20%) set (Table 1).

2.3 Representation methods
For each of our three test datasets, we represented the data in three
different ways:

2.3.1 Union representation

The union representation represents a region set as a binary vector,
with each position in the vector indicating whether a particular re-
gion is present in that set (Fig. 2a). The first step is to create a con-
sensus set of regions across all region sets in a dataset, which we
refer to as a universe of possible regions. We created a universe by
first concatenating regions in 100 random training files from each
dataset into one file, then merging any regions that were closer than
1000 base pairs into a larger region using the start position of the
first region and the end position of the second region
(Supplementary Table S1). To confirm that the random selection of
100 files did not have an impact on the universe, we created multiple
union representations with different universes, which resulted in
similar performance (Supplementary Table S2). The resulting n
regions in the universe correspond to the vector of length n, with
each region specifying a position, or feature, in the vector. The bin-
ary vector representation reflects, for a particular set, which of these
universe regions is present in the set, which we evaluate with a sim-
ple interval overlap calculation.

2.3.2 Tf_idf-based representation

One problem with the union representation is that merging close
regions creates larger regions that can obscure real biological differ-
ences in regions. To mitigate this, our second approach employs a
feature selection and representation method from NLP to retain the
regions that play an important role in distinction of the data (see
Supplementary Material). Briefly, we consider each base pair loca-
tion as a term and a region set as a document, and calculated the
tf_idf score for each base pair across regions sets (Fig. 2b). Base pairs
with higher scores are more informative for identifying relationships
among region sets, as this approach will weight elements present in
an intermediate number of region sets, while down-weighting ele-
ments that are either very common or very rare across region sets.

We selected the top 100k, 500k and 1000k scoring base pairs
(kb) for each chromosome to use in our experiment, producing three
tf_idf-based representations. This was also to show the effect of the
number of selected base pairs on classification accuracy. After select-
ing the important base pairs, we merge any adjacent base pairs to
build a region and remove regions with fewer than 100 base pairs.
Like the union representation approach, these regions can then be
features of a binary vector. The key difference between this ap-
proach and the union representation approach is that here we are
creating vector features from merged base pairs that are considered
as informative.

2.3.3 Region-set2vec representation

So far, these two approaches have represented the data as high di-
mensional vectors. These approaches consider each region as a separ-
ate feature and do not take into account relationships among the regions.
Furthermore, high dimensionality increases time and space complexity for
processing and analyzing data. To address these challenges, we adapted
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the word2vec algorithm to train a distributed representation for each re-
gion in our training region sets (Fig. 2c). Similar to the pre-processing step
of vocabulary building in NLP, we first map the regions from each file
into a standard universe. We chose the union representation to be the uni-
verse because it did not use any feature selection, and is thus a fair com-
parison between the region-set2vec embedding and the tf_idf
representation. During the training phase of word2vec, the task is to pre-
dict co-occurring regions given an input region in the same region set.
After training, the trained weights in the neural network consist of 100-di-
mensional vector representations for each region, which we take as region
embeddings.

Word2vec considers consecutive words in a context window
(set to 100 words in our experiment) to train the embeddings. We
want to capture the co-occurrence information for all the regions
in a BED file. Ideally, the context window should have a length
that could cover all the regions in a BED file. However, since a
BED file could have thousands of regions or more, a very large
context window would require very large memory and make it
very hard to optimize the region embeddings. To circumvent these,
we use a small constant window size at the cost of shuffling the
regions multiple times. Since the order of the regions is not import-
ant, we can shuffle the regions in each region set before sampling
the context window and passing them as the input of word2vec al-
gorithm. With shuffling, all the regions that co-occur in a region
set can appear in the same context window by random chance.
With a smaller window size, we need less memory but a larger
number of shuffling operations. Too small context window will
limit the learning capability of region-set2vec, as very few regions
are used at a time. In practice, we found that setting the context
window size to 100 and shuffling each region set 20 times is a
good choice for the current study.

Fig. 1. Overview of methods. (a) Datasets were divided into three different experiment types from the ChIP-Atlas dataset. (b) Each file was converted into three vector represen-

tations. (c) We evaluated the representations with three evaluation tasks. First, classification of the region set representations into tissue type, cell line, and antibody. Second,

evaluating sensitivity to known changes in the data using a simulated dataset. Third, testing the robustness of the embeddings to different subsets of the original region list

Fig. 2. Details of embedding methods. (a) The union representation simply merges the region sets to create a universe, then casts each region set as a binary vector reflecting

presence or absence of the merged universe region. (b) The tf-idf approach builds a restricted universe based on nucleotides determined to be highly informative. (c) The word2-

vec approach extracts embeddings as weights from a shallow neural network trained using co-occurrence frequencies

Table 1. Dataset statistics

Classes Training samples Test samples

Antibody 7 2777 695

Cell line 10 5527 1368

Tissue 7 1788 440
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After obtaining the vectors for each region, we used them to calcu-
late a vector representing the region set by averaging all the vectors of
the regions contained in the region setR, shown in Equation 1.

RegionSet Embedding ¼

PjRj

j¼1

r j

jRj (1)

Here,R is the region set and r j is the region embedding of the jth
region inR.

To get a document embedding from word embeddings, a com-
monly used method is doc2vec (Le and Mikolov, 2014), which
extends word2vec by introducing an additional document embedding
vector in the word2vec architecture such that it can be trained jointly
with word embeddings. In the context of region embedding, since the
order of regions in each region set is not important and we shuffle
during training, the learned document embedding cannot catch mean-
ingful information throughout the training. In fact, when we trained
the doc2vec model with the same amount of data that was used for
word2vec training, the performance was much lower than averaging
the region embeddings (Supplementary Table S3). Therefore, we find
that averaging over all the region embeddings obtained from a BED
file is a simple and effective document embedding method.

2.4 Evaluation
Having created different vectors to represent region sets, we next
sought to evaluate how well each proposed representation retains
biological information. We designed three evaluation tasks: a classi-
fication task, a similarity detection task, and a peak threshold ro-
bustness task. The classification task asks how well the region set
embeddings can reflect known biological relationships among region
sets. The similarity detection task uses simulated random perturba-
tions to assess how well the embeddings reflect known levels of
mathematical difference among region sets. Finally, the peak thresh-
old robustness task tests how much the embeddings change when
the input data is a truncated subset of the regions, such as would
happen if a different peak calling threshold were used.

2.4.1 Classification task

The classification task is as follows: given the region set vector rep-
resentations as input, we trained classifiers to classify region sets ei-
ther by tissue type, antibody, or cell line. Recall that this annotation
information is not used to construct the original embeddings, which
is unsupervised and relies on the regions themselves; we incorporate
the annotation information in this classification task to evaluate
whether the embeddings can capture the annotation information de
novo. We employed a support vector machine (SVM) (Vapnik et al.,
1997) classifier for each of these tasks. An SVM is a supervised ma-
chine learning algorithm that creates a hyperplane that separates the
data into sets. To classify multi-class data, we used one-versus-rest
to split the data to a binary dataset for each class.

Evaluating classifier performance. To evaluate the performance
of the classification algorithms, we used the micro-averaging of the
F1 score (Yang and Liu, 1999) to account for the class imbalance.
This F1 score is composed of micro-precision and micro-recall,
which are defined as follows:

micro precision ¼ tp

tpþ fp
; (2)

micro recall ¼ tp

tpþ fn
; (3)

F1score ¼
2 �micro precision �micro recall

micro precisionþmicro recall
; (4)

where the true positive tp ¼
PM

i¼1

tpi is the summation of all true positive

numbers in each class, and fp, and fn are similarly defined as the sum-
mation of all false positive and all false negative numbers, respectively.

Visualising embeddings with UMAP. To further evaluate the represen-
tation approaches, we visualized the embeddings in 2 dimensions using
uniform manifold approximation and projection (UMAP) (McInnes
et al., 2018). UMAP is a non-linear dimensionality reduction method
designed to analyze high dimensional data. It has been proven as an effect-
ive tool to reveal meaningful structure in biological data (Becht et al.,
2019; Eng et al., 2019).

2.4.2 Similarity detection task

Querying and retrieving similar region sets from huge datasets relies
on detecting the similarity among region sets. As mentioned, repre-
senting data in lower dimensions facilitates this process. We employ
the similarity detection task to further evaluate the enrichment of
our representation approaches.

Creating a simulated dataset. We created a simulated dataset
using bedshift, a tool that randomly perturbs BED files by adding,
dropping or shifting regions to a parameterizable degree (Gu et al.,
2021). These perturbations create new files with a defined similarity
that can be used as a benchmark for similarity scoring. For example,
the similarity between the perturbed file and the original file should
be greater if 10% of regions are dropped than if 20% of regions are
dropped. The simulated dataset used all of the three perturbations,
add, drop and shift, at percentage rates from 10% to 90% in incre-
ments of 10%. For each level of perturbation, we created 100 repli-
cates, resulting in 900 total files. We then converted the files in all
datasets to the numerical representation using three methods and
visualized each representation on the perturbed datasets.

Visualizing perturbed embeddings with UMAP. We used UMAP
to plot the simulated datasets to depict the effectiveness of each rep-
resentation at detecting similarities. We also did a sensitivity ana-
lysis to test the effect of three major UMAP hyperparameters: the
distance metric; the number of neighbors to consider; and the min-
imum distance allowed for points to be in the low dimensional
representation.

2.4.3 Peak thresholds subsampling task

For our final evaluation task, we asked how much the embeddings
would change if trained on only a subset of the data. Genomic
regions are often generated by calling peaks from the ChIP-seq sig-
nals based on a threshold. We investigate the robustness of different
representations to the threshold of peak calling from signals using
the classification task. Using the cell line dataset, we binned the
regions based on signal values into four quartiles. Four datasets
from the cell line annotated dataset were generated by this ap-
proach. The first is the original data that contains all of the regions.
We refer to this dataset as All. Three other datasets were generated
by selecting the top 75%, top 50%, and top 25% of the regions in
each BED file based on the signal values. We tested the resulting
embeddings using both our classification approach, and our similar-
ity detection approach. We calculated the cosine similarity between
the representations of the original dataset, All, versus three other
datasets and plotted the distribution of cosine similarities.

3 Results

3.1 Classification task
Our goal is to compare the three representation approaches. The
number of features in each approach, which corresponds to the
dimensionality of the representations, ranges from one hundred to
over one hundred thousand (Table 2).

3.1.1 Classification performance

We evaluate the representations by the performance of the classifier
trained to identify biological information for each region set.
Therefore, for each representation method, we trained an SVM clas-
sifier on cell line, antibody, and tissue training sets and report the
results on the test sets (Table 3; See Supplementary Material).

The classifier using the union representation performed well be-
cause all of the features in the universe were retained. On a similar

4302 E.Gharavi et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab439#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab439#supplementary-data


note, the representation using tf_idf with 1000-kb also performed
well on the antibody classification task, due to the high number of
base pairs selected. The region-set2vec embedding performed better
than the tf_idf representation with 100-kb on the antibody and cell
line classification, but performed the worst on the tissue classifica-
tion. It seems that the tissue classification worked well even with
100-kb selected in the tf_idf, possibly indicating that the feature se-
lection method found few significant regions signaling the tissue
type. The region-set2vec embedding with 100 dimensions performed
as well as the other high-dimensional representations on antibody
and cell line datasets. In addition, it produces low-dimensional rep-
resentations that cause the downstream run-time for classification to
be much faster (Table 4). On average, training and testing the classi-
fiers on region set embeddings are 2500 times faster than the union
representation. We also compared the run-time of building the rep-
resentation model and the required time to transform a new test
dataset to the numerical representations. Despite higher run-time in
training the region2vec model (Supplementary Table S4), transform-
ing the test dataset occurred faster in region-set2vec representation
methods (Supplementary Table S5). For union and tf_idf representa-
tions, a region-set needs to be mapped to the high dimensional space
and then uses the saved dimension reduction model to reduce the di-
mension to 100 while region-set embedding is calculated in low di-
mension (see Supplementary Material).

Given the vast difference in number of features, we next sought
to conduct a fairer performance comparison by restricting the
dimensions of all methods to 100. Therefore, we selected the top
100 components using Principal Component Analysis (PCA) (Abdi
and Williams, 2010). In addition to the linear PCA, we also tried
two non-linear kernel PCA appraoches: rbf and polynomial. We
selected the best PCA-kernel using cross-validation score in the same
way as for the SVM kernel. The best results on each dataset were
achieved by the linear kernel for PCA among three different kernels
(Supplementary Tables S6–S8). Using these 100-dimensional

features as inputs to the SVM classifier with linear kernel, the
region-set2vec embedding performs the best for all three classifica-
tion tasks (Table 5). The other methods, now with the same dimen-
sions as the region-set2vec embedding, have reduced performance,
showing that the region-set2vec embedding retained the most infor-
mation in 100 dimensions.

To evaluate the performance, we used 10-fold cross-validated
paired t-tests. We first split the training data into 10 folds of equal
size. In each cross-validation iteration, we compute the difference in
performance between classifying the data represented by the union
method and the same data represented by the regionset2vec ap-
proach. The test shows that the higher performance of region-
set2vec is statistically significant for all datasets (P-values < 0.003
for antibody; 0.000036 for cell line; and 0.041 for tissue dataset).

We used the area under the Precision-Recall curve (AUPR), to
visualize the performance classification of antibody, cell line, and
tissue on different representations (Fig. 3a). Higher values indicate
the trained classifier can better distinguish between classes. With
region-set2vec embeddings, the trained classifiers achieve the highest
area under the curve scores in all three datasets.

3.1.2 UMAP visualization

For each of our three datasets, we used UMAP to visualize the repre-
sentation space. We selected 100 as the number of neighbors and
Euclidean distance as the similarity metric. Since the three tf_idf repre-
sentations had similar results, we only plot the 500-kb tf_idf represen-
tation. Union representation resulted in mapping most of the samples
in the antibody dataset into a similar space on the UMAP plot (Fig.
3b). Using tf_idf representation, the samples are more distinctive due
to the selection of discriminant features (Fig. 3c). The region-set2vec
embeddings show more distinctive, tight clusters (Fig. 3d), and clearly
distinguish antibodies associated with repression, activation, and tran-
scription. Similarly, cell lines and tissue types are clustered effectively
by the region-set2vec representation (Fig. 3e and f).

To represent each type of antibody with a numerical vector and
as a single point in 2-d space, we merged all representations of the
samples in the dataset using averaging as the combination function.
The classes of antibody associated with active gene expression
(h3k4me1, h3k4me2, h3k4me3 and h3k27ac) are mapped closer to
each other and further away from repressive marks (h3k27me3 and
h3k9me3), and transcription-associated (h3k36me3) antibody
classes (Fig. 3g). This plot indicates that our learned representations
retain biological information like antibody type without using this
information in the training phase.

3.2 Similarity detection task
As a second independent evaluation of our region embeddings, we
employed a similarity detection task. In this task, we simulated per-
turbations to a given BED file at a range of pre-specified rates, and
then examined how the differences in embedding reflect the known
perturbation rates.

3.2.1 UMAP plots

To visualize how the embeddings reflect the perturbation, we used
UMAP plot with 100 neighbors, Cosine as the distance metric. The
union and tf_idf representations are randomly distributed in the
UMAP 2-dimensional space, despite the perturbation rate ranging

Table 2. Number of features for each representation

Number of features

Representation method Antibody Cell line Tissue

Union representation 136 284 180 424 150 681

tf_idf—1000-kb 50 100 40 596 43 912

tf_idf—500-kb 28 527 22 783 25 238

tf_idf—100-kb 8262 7225 7791

region-set2vec embedding 100 100 100

Table 3. SVM classifier performance

F1 score_SVM

Representation method Antibody Cell line Tissue

Union representation 0.9424 0.9898 0.9591

tf_idf—1000-kb 0.9468 0.9788 0.9523

tf_idf—500-kb 0.9439 0.9613 0.9500

tf_idf—100-kb 0.9022 0.8977 0.9568

region-set2vec embedding 0.9381 0.9605 0.9091

Table 4. SVM training run-time (seconds)

Representation method Antibody Cell line Tissue

Union representation 402.60 2480.97 348.38

tf_idf—1000-kb 129.12 540.65 101.28

tf_idf—500-kb 71.90 315.59 58.76

tf_idf—100-kb 21.52 92.99 17.64

region-set2vec embedding 0.21 0.78 0.17

Table 5. SVM-PCA classifier performance

F1 score_SVM

Representation method Antibody Cell line Tissue

Union representation 0.9281 0.9539 0.8932

tf_idf—1000-kb 0.9223 0.9327 0.8932

tf_idf—500-kb 0.9108 0.9145 0.8727

tf_idf—100-kb 0.8993 0.8662 0.8886

region-set2vec embedding 0.9381 0.9605 0.9091
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in increments of 10% (Fig. 4a and b). In contrast, the UMAP visu-
alization of the region-set2vec embeddings showed a gradual devi-
ation as the percentage of the perturbation increased (Fig. 4c). This
result indicates that, at least for the purpose of UMAP visualiza-
tion, the region-set2vec embeddings are able to reflect quantitative
similarity among region sets, whereas the other methods are not.
We also tested other UMAP parameters (Supplementary Table S9)
with a sensitivity analysis and found that using 100 neighbors,
0.01 as the minimum distance and Cosine as the distance metric
(Supplementary Fig. S1a–d) produced sensible and robust visualiza-
tions (see Supplementary Material). We also found that these
results are consistent when perturbing files with add, drop and shift
independently (Supplementary Fig. S2).

3.3 Peak thresholds subsampling task
To investigate the robustness of different representations, we ran the
classification task on the original cell line dataset and three truncated

datasets generated by selecting the top 75%, 50%, and 25% of the
regions in each BED file based on the signal values. As expected, the
performance of the classification task decreased as the files were more
truncated; however, the region-set embedding representation method
was least sensitive to the truncation (Fig. 5a). The region-set embed-
ding representation performance is still >94% even when considering
only the top 25% of peaks, compared to <84% for the Tf_idf ap-
proach. This indicates that this approach preserves the information of
the missing regions by learning the embeddings based on the context.

We also evaluated the robustness of the representation by calcu-
lating the Cosine similarity between the representations of the ori-
ginal dataset and each truncated dataset. The distributions of Cosine
similarities show the region-set2vec vector based on abbreviated
data are most similar to the vectors based on the full data for all lev-
els of truncation (Fig. 5b–d). This result again confirms that the
region-set2vec approach retains the most information in the face of
data subsets.

Fig. 3. Classification performance and UMAP visualizations of representations. (a) Area under the micro-average PR curve for each dataset. (b) Antibody dataset represented

by union method. (c) Tf_idf representation using 500-kb of antibody dataset. Each point represents a region set. (d) Region-set2vec embedding of antibody dataset using com-

bined region embeddings trained by word2vec algorithm. (e) Region-set2vec representation of cell line dataset. (f) Region-set2vec representation of tissue type datasets. Panels

show the UMAP visualization of the original data, not the PCA-reduced data. (g) A UMAP projection of antibody embeddings annotated by class label. Each point is the com-

bination of all the samples in each class

Fig. 4. UMAP visualization of the simulated dataset with different rates of perturbation using 3 representation methods. (a) Union representation (b) Tf_idf representation

with 500k important base pairs (c) Region-set2vec representation
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3.4 Application of region-set2vec to single-cell data
Satisfied that region-set2vec could capture important relationships,
we next sought to apply this approach as a proof-of-concept to dis-
criminate cell types within single-cell ATAC-seq (scATAC) data. We
used a simulated scATAC bone marrow dataset composed of six
known tissues derived from an original set of bulk FACS-sorted data
(Chen et al., 2019). We processed this feature matrix and shuffled
25 times and evaluated with the following hyperparameters: 100
dimensions, a minimum count of 2, 12 neighbors and a window size
of 250. Our adapted word2vec approach successfully separated
each cell type into distinct clusters, similar to the previous best-
performing candidates (Chen et al., 2019) (Fig. 6a). We also applied
the region-set2vec method on a single-cell ATAC-seq of LMPPs,
monocytes, LSCs and leukemic blast cells (Corces et al., 2016). The
data is shuffled 50 times and 50-dimensional vectors are trained
using region-set2vec method. The dissimilarity among monocytes
and LMPPs (Xiong et al., 2019) is clear here as the cells are mapped
far from each other. LSCs are closer to LMPP cells and one class of
the blast cell mapped adjacent to the monocytes (Fig. 6b). Together,
these results indicate that region-set2vec is a promising approach for
single-cell ATAC-seq data.

4 Discussion and conclusion

In this article, we proposed three feature selection methods to repre-
sent genomic regions sets: union representation, tf_idf representation,
region-set2vec embedding, which we evaluated via classification,
similarity detection and peak threshold robustness tasks. In the classi-
fication task, the region-set2vec method underperformed against
other higher-dimensional vectors; however, after reducing the

dimensionality of all methods to the same dimensions, the region-
set2vec method outperformed all others significantly. Region-set2vec
vectors also resulted in better visual class separation, and further
showed distinction between, activating, repressive and transcription
marks. This distinction was previously noted with the Avocado ap-
proach (Schreiber et al., 2020), but Avocado considered the biological
annotation in the training phase of the antibody embeddings; in con-
trast, our embeddings are learned solely from co-occurrences of
regions within unannotated region sets.

In the similarity detection task, we showed that known interval-
based similarity is better projected using region-set2vec representa-
tions. One possible explanation for this result is that the embedding
vector for each region is trained in a way that preserves the informa-
tion of the context (i.e. BED file). Because the vector embedding
considers the co-occurrence of regions in the same file as a context,
when some of the regions are dropped or shifted in a perturbed file,
the information about these regions is conserved in the embedding
of the remaining regions and consequently in the final representa-
tion. In contrast, the other methods consider regions as independent
features, and the representation does not reflect the relationship
among features. As a result, dropping, adding, or shifting the regions
could cause abrupt transformation between the original file and the
perturbed files. Embeddings that retain information across regions,
therefore, appear to be less susceptible to such random perturba-
tions. Along similar lines, our peak threshold robustness test showed
that the region-set2vec vectors retained the most similarity to the
original vectors, achieving high similar scores even when only 25%
of the data is considered.

Overall, we demonstrated the feasibility of using NLP techniques
to represent genomic region set data in new ways that will drive

Fig. 5. Region set embeddings are more robust to peak calling threshold changes. (a) Sensitivity of different representation to selected peaks based on signal values. (b-d)

Distribution of similarity between the original region sets and (b) top 75% of the selected peaks, (c) top 50% of the selected peaks and (d) top 25% of the selected peaks

Fig. 6. UMAP visualization of region-set2vec representation on single cell datasets. (a) Simulated bone marrow dataset with a coverage of 2500 fragments per cell (Chen et al.,

2019). (b) Single-cell ATAC-seq of LMPPs, monocytes, LSCs, and leukemic blast cells dataset (Corces et al., 2016). Individual cells are colored indicating the cell type label

Genomic region set embeddings 4305



analysis methods in the future. In the future, it may be possible to
improve the quality of the region-set2vec embedding by optimizing
the hyper-parameters. For example, here we arbitrarily chose 100-
dimensional vectors, but it may be that a higher (or lower) number
is optimal. In addition, we have several ideas for addressing the
problem for building the universe of regions. We are now working
to address this upstream problem and hope to have a general solu-
tion in the future. Furthermore, we have used a relatively limited
collection of BED files, which can be extended with additional data
sources. Applying the method on other source of data and mutated
regions are the potential future directions. Altogether, our results in-
dicate that low-dimensional representations of region sets built
using nothing more than unsupervised collections of region set data
can be an effective approach to build biologically meaningful vector
representations.
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