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Monitoring human respiratory patterns is of great importance as it gives
essential information for various medical conditions, e.g. sleep apnoea syn-
drome and chronic obstructive pulmonary disease and asthma, etc. Herein,
we have developed a polymeric airflow sensor based on nanocomposites of
vertically grown graphene nanosheets (VGNs) with polydimethylsiloxane
(PDMS) and explored their applications in monitoring human respiration.
The sensing performance of the VGNs/PDMS nanocomposite was character-
ized by exposing to a range of airflow rates (20–130 l min−1), and a linear
performance with high sensitivity and low response time (mostly below 1 s)
was observed. To evaluate the experimental results, finite-element simulation
models were developed in the COMSOL Multiphysics package. The piezore-
sistive properties of VGNs/PDMS thin film and fluid–solid interaction were
thoroughly studied. Laser Doppler vibrometry measures of sensor tip displa-
cement closely approximated simulated deflection results and validated the
dynamic response of the sensor. By comparing the proposed sensor and
some other airflow sensors in the literature, it is concluded that the VGNs/
PDMS airflow sensor has excellent features in terms of sensor height, detection
range and sensitivity. The potential application of the VGNs/PDMS airflow
sensor in detecting the respiration pattern of human exercises like walking,
jogging and running has been demonstrated.
1. Introduction
Monitoring respiratory rate is vital to distinguish physical conditions of those suf-
fering from respiratory disorders, such as bronchitis, heart disease, sleep apnoea
syndrome and hyperpyrexia [1]. The early recognition of respiratory dysfunctions
enables doctors to diagnose such diseases. Studies have demonstratedmeasuring
respiratory rate, in some cases, is more vital than heart pulse and blood pressure
to distinguish high-risk patient groups [2–5]. Therefore, monitoring respiratory
rate has received considerable attention among scientists to develop contactless-
based techniques [6] or contact-based methods [7] with consideration of some
important characteristics including size, cost, sensitivity to bodymotion artefacts,
influence of environmental factors, presence of wire, measurement intrusiveness
and real-time monitoring [7]. Contact-based methods for measuring respiratory
rate are classified according to measuring methods into airflow [8], air tempera-
ture [9], breathing sound [10,11], air humidity [12–14], respiratory-induced
torso movements [15–17] and air component [18]. Contactless-based techniques
include environmental respiratory sounds (e.g. using microphones) [19], air
temperature (e.g. thermal cameras) [20], chest wall movements (e.g. laser vibro-
metry or radar sensors) [21] and camera-based body movement detection
[22–24]. Contact-based techniques cover a wide range of solutions, while
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contactless methods are used in measurement circumstances
where unobtrusive approaches are a prerequisite.

During the last decade,many researchersmade great efforts
to develop respiratory sensors for measuring respiratory rates.
Respiratory sensors can be categorized, according to the sensing
mechanisms, into piezoresistive [15,25], triboelectric [26,27],
piezoelectric [28–31] and capacitive [32,33]. Among these differ-
ent categories, piezoresistive sensors have gained significant
interest due to the relatively simple read-out systems, high sen-
sitivity and low-frequency capability [34,35]. The piezoresistive
effect, as an undesired parasitic effect, has always been corre-
lated with silicon microstructures due to mechanical stress
induced by thermal treatment or packaging. Nevertheless, in
very large-scale-integrated circuits, this effect is used to inte-
grate smart micromechanical sensors. Piezoresistive effect is
also used in flexible sensors with wide application in wearable
electronics, the Internet of Things and robotics [36]. Flexible
sensors generally include a polymer as base material and a
conductive filling material such as nanowires, nanoparticles,
nanoribbons, carbon black, carbon nanotubes (CNTs) and gra-
phene [37]. Among different filling materials, graphene is a
promising candidate due to its great performance in detecting
pressure, strain, humidity and temperature [38,39]. Moreover,
the two-dimensional (2D) structure of graphene sheets provides
high mechanical strength, high electrical and thermal conduc-
tivity. However, strong van der Waals and pi–pi interactions
cause graphene sheets to restack, thereby leading to challenges
in fabricating conductive polymer nanocomposites [40]. To
overcome this issue, porous graphene materials such as gra-
phene nanomesh [41] and graphene foam/aerogel [42] have
been proposed. Recently, vertically grown graphene nanosheets
(VGNs) with a unique maze-like structure have shown
great promise in developing highly stretchable and sensitive
piezoresistive sensors [43,44]. Recently, flexible flow sensors
based on polydimethylsiloxane (PDMS) and a maze-like
network of VGNs as the conductive-sensing material was
developed [43,45,46]. The VGNs/PDMS flow sensor demon-
strated ultrahigh sensitivity and a very low detection limit.
The application of such flow sensors in mimicking vestibular
hair cells located inside the lateral semicircular canal has been
demonstrated. It could detect a very low frequency of 0.5 Hz
with high sensitivity.

Predictive numerical analysis of the performance of
piezoresistive elements is of high importance due to the sig-
nificant reduction in time and cost of laboratory-based
experiments. Lee & Loh [47] proposed a computational fra-
mework for the design of nanocomposite strain sensors
made by depositing CNTs in polymer thin film matrices.
The model was derived considering the kinked shape CNTs
and their statistical length distributions. The model’s nominal
electrical properties, as well as at different applied strain
states, were computed by constructing a conductance
matrix of the CNT network and then applying Kirchhoff’s
current law and the conductance version of Ohm’s law.
Chong et al. [48] used the finite-element method (FEM)
to model von Mises stress and total displacement of a
piezoresistive strain sensor made of multi-walled carbon
nanotubes (MWCNTs) and PDMS composite array,
through the COMSOL Multiphysics package. Gbaguidi
et al. [49] developed a 2D Monte Carlo percolation network
model for hybrid nanocomposite with CNT and graphene
nanoplatelet as conductive fillers. The electron tunnelling
between filler specimens as the mechanism for electrical
percolation was considered. Network modification after
elastic deformation was used to model the nanocomposite
piezoresistive behaviour. Lu et al. [50] proposed a multi-
scale strategy to study the role of interfacial decohesion on
the piezoresistive properties of a graphene/polymer
composite. A cohesive zone model was identified by
atomistic simulations to model graphene sheets at mesoscale.
This nonlinear mechanical model was used to generate a
deformed representative volume element to study the
influence of strain and interfacial decohesion on the con-
ductivity of graphene/polymer composites. The effective
conductivity was studied with an electric continuum model
at mesoscale incorporating a tunnelling effect. A finite-
element-based numerical method for predicting the piezore-
sistive behaviour of graphene conductive polymer
composites considering the quantum tunnelling effect was
proposed by Yang et al. [51]. The model accurately predicted
the conductivity, the percolation value and the mechanical
properties of the graphene rubber composites. Lebedev
et al. [52] proposed a numerical multi-scale approach based
on the FEM to predict changes in the conductive structure
in response to uniaxial deformation of polymer composites
(MWCNT/ ultrahigh-molecular-weight polyethylene) with
a highly segregated structure.

This paper suggests the design and development of a
piezoresistive all-polymer airflow sensor for biomedical appli-
cations. The sensor was designed to have low modulus PDMS
(monomer and curing agent weight ratio of 25 : 1). The use of
low modulus PDMS increases flexibility and thereby increases
the bending deformation and sensitivity for airflow monitor-
ing. The proposed airflow sensor has been characterized by
exposing various airflow rates applied by an airflow generator
with adjustable flow rates. As a potential application, we
examined the sensor to detect the respiratory rate in different
human activities such as walking, swimming and running.
A complete finite-element-based computer model is created
using the COMSOL Multiphysics software package using a
two-way fluid–structure interaction (FSI) approach to capture
flow dynamics around the sensor body and simulate piezore-
sistive behaviour of the sensor. Simulation results are verified
by the experiments conducted using a laser Doppler vibrom-
eter (LDV) system. The experimental and finite-element
results demonstrated excellent agreement. Our experimental
results revealed a very low response time and high sensitivity
for the proposed sensors during various activities, including
walking and running with different intensities. This work
will pave the way for developing all-polymer-based sensors
with high sensitivity for healthcare monitoring.
2. Experimental section
2.1. Airflow sensor design and fabrication
The fabrication process of the VGNs synthesis using
the PECVD technique and thorough characterization has
been clearly delineated elsewhere [43,44,53]. Figure 1a
shows the fabrication process of the airflow sensor based
on VGNs/PDMS nanocomposite. Since VGNs are fragile,
to peel them off from the substrate (copper foil), liquid
PDMS precursor was poured onto the VGNs to enable the
infiltration of PDMS into the pores of VGNs. After curing,
the VGNs could be successfully peeled off with PDMS from
the copper foil. This method can conserve the properties
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Figure 1. (a) Schematic diagram of the fabrication process; SEM images of VGNs and VGNs/PDMS nanocomposite, (b) top view of VGNs, (c) cross-sectional view of
VGNs, (d ) carbon buffer layer and (e) cross-sectional view of VGNs/PDMS nanocomposite.
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and morphology of the VGNs. To improve the flexibility (i.e.
reduce the modulus of the nanocomposite thin film), the
weight ratio between the monomer and the curing agent of
PDMS (usually 10 : 1) was increased and varied, ranging
from 15 : 1, 20 : 1, 25 : 1 to 30 : 1.

Ultimately, a PDMS weight ratio of 25 : 1 was selected due
to great flexibility and high sensitivity to tiny stimuli [43].
VGNs/PDMS film was cut into a rectangular parallelepiped
shape with two legs for connecting wires by a laser cutter
device to form the flow sensor. Thin copper wires were con-
nected to the two legs on the VGNs surface using conductive
silver paste. To make the VGNs/PDMS thin film vertically
positioned, the sensor was fixed into a PDMS base (10 : 1
weight ratio).
2.2. Structure of airflow sensor
The analysis of the VGNs network and nanocomposite struc-
ture of VGNs and PDMs was conducted by scanning electron
microscopy (SEM-JEOL JSM-7100f) characterization. Prior to
scanning, the specimens were coated with a thin platinum
layer. Then, coated specimens were floated in liquid nitrogen
and cross-sectionally cut to study the microstructure.
2.3. Experimental set-up
2.3.1. Piezoresistivity measurements
To observe the piezoresistivity behaviour of the airflow sensor,
the rectangular-shaped sample (7.5 mm (height) × 5 mm
(width) × 2 mm (thickness)) was prepared and equipped
with the electrodes at their two ends. The electrical resistance
of the VGNs/PDMS strip under mechanical stretch was
measured by a digital multimeter (Keysight LCR meter -
E4980). Using a custom-made stretching device, the sample
was subjected to mechanical stretch. The relative resistance
changes were calculated as follows

DR
Ri

¼ R� Ri

Ri
: ð2:1Þ

Where R and Ri are the sensor resistance under mechani-
cal load and the initial resistance under no-load condition
(Ri = 7380 Ω), respectively. At the same time, monotonic
stretching up to breaking strain was applied to the sample at
a constant velocity of 0.1 mm s−1 to measure the sensor
strain. The gauge factor of the sensor is calculated by dividing
the relative resistance change ΔR/Ri over strain ΔL/Li
as follows:

GF ¼ DR=Ri

DL=Li
: ð2:2Þ

Where L and Li signify the length of the sensor and its
initial length, respectively.
2.3.2. Airflow sensor characterization
Sensor performance was evaluated using the characterization
analysis of VGNs/PDMS nanocomposite at room tempera-
ture. Therefore, an experimental set-up has been provided
for conducting a set of characterization experiments, as
shown in figure 2. The sensor is positioned close to the end
of the pliable tube (1 mm far from the tube) connected to a
continuous positive airway pressure (CPAP) air generator
used to mimic respiratory activities. The accuracy of the
CPAP air generator for measures of time and flow is
±10 ms and ±1.5 l min−1 or ±2.7% of the reading. The air gen-
erator can be controlled by three main parameters set-point
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low (SPL), set-point high (SPH) and period (ms). These criti-
cal set-up controllers generate airflow to mimic the human
respiratory cycle. The internal diameter of the tube was
19.60 mm, while the height of the sensor exposed to the air-
flow was 5.75 mm. The sensor was directly connected to a
Wheatstone bridge circuit and the output voltage of the cir-
cuit was filtered with a 1 Hz low-pass filter using a SRS560
low-noise preamplifier with unity gain. The filtered data
were collected by a National Instruments (NI) NI-9239 Data
Acquisition (DAQ) device. Finally, NI LabVIEW SignalEx-
press software was used to virtualize data and record it
over time. To ensure the reliability of the sensor output,
each test was repeated at least three times using three differ-
ent sensors (nine times in total) to calculate a standard error
and show error bars for each test.
2.3.3. Laser Doppler vibrometry recordings
LDV is acknowledged as the gold-standard for single-point,
non-contact dynamic response measurements and can
analyse samples of various sizes from large aerospace parts to
micron-sized MEMS or biomedical specimen components.
Here, a commercial LDV (Ometron – Type 8338, Denmark)
was used to measure the dynamic response of the flow sensor
across a range of intensities between 10 and 130 l min−1. The
LDV system contained less than 1 mV output power with
a He-Ne visible 632.8 nm laser. The system has an RMS
threshold below 0.02 µm s

ffiffiffiffiffiffiffiffiffiffiffi

Hz�1
p

with a maximal sensitivity
of up to 500 mm s−1 velocity and a frequency range of
0.2 Hz–22 kHz and a dynamic range greater than 90 dB over
the full bandwidth. Importantly, the LDV is capable of measur-
ing displacements in the nanometre range, as recently shown
from biological recordings of the inner ear in vivo [54]. To
measure sensor tip deflections, the LDV was mounted on an
isolation stage, and the beam (632 nm; red) was focused onto
the front face of the sensor, which contained a cluster of reflec-
tive glass microbeads (30 µm diameter; microbeads were
adhered via thin layer liquid PDMS prepolymer as glue). The
output from the LDV was fed into a preamplifier (×1000) and
then into a NI NI-9239 Data Acquisition (DAQ) device, fol-
lowed by the PC for recording of data via customized
LabVIEW programs.
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3. Results and discussion
In the present work, the VGNs/PDMS nanocomposite has
been used as an airflow sensor for respiration monitoring.
For this purpose, the sensor was subjected to a set of exper-
iments to analyse its performance. The main purpose of the
characterization analysis is to study flow ranges, response
times during loading and unloading, accuracy and sensitivity.
Thus, the sensor was exposed to an airflow generator to inves-
tigate the sensor response to various airflow rates with SPL = 0,
different SPHs and constant period.

3.1. Morphology of vertically grown graphene
nanosheets and vertically grown graphene
nanosheets/polydimethylsiloxane nanocomposites

Figure 1b–e shows SEM images of VGNs and VGNs/PDMS
nanocomposite. Figure 1b indicates the top view of the VGNs,
in which the maze-like network of VGNs is distinguished.
VGN walls are composed of several layers of graphene
nanosheets, so that their thickness was estimated to be around
1–5 nm. According to the cross-section view of the VGNs
shown in figure 1c, the VGNs height is about 7 µm. A carbon
buffer layer has been identified beneath VGNs (figure 1c,d).
Therefore, the reason behind the high conductivity of
VGNs is the existence of the maze-like structure of the
VGNs and the carbon buffer layer at the bottom of the VGNs.
According to figure 1b, there are pores of 100 nm to 1 µm
surrounded by theVGNswalls . This allows PDMS to penetrate,
creating a flexible and stretchable VGNs/PDMS nanocomposite
thin film. Figure 1e shows the cross-section of the VGNs/
PDMS nanocomposite in which two distinct layers, including
the pure PDMS layer (bottom layer) and the VGNs/PDMS
layer (top layer), are distinguishable. Moreover, a very
thin carbon buffer layer is formed at the top of the VGNs/
PDMS layer.

3.2. Piezoresistive effect of the vertically grown
graphene nanosheets/polydimethylsiloxane
nanocomposite

The sensor output in terms of the relative resistance change is
shown in figure 3. The changes in the sensor resistance under
stretching conditions were recorded simultaneously with the
changes in strain. As per figure 3, the sensor demonstrates
great linearity upon stretching. The slope of the changes in rela-
tive resistance and strain, indicating the gauge factor of the
sensor, is about 10. The sensor deformation during stretching
causes the conductive pathways in the VGNs/PDMS thin film
to change; consequently, the resistance increases. In addition
to observing the sensor behaviour upon stretching, the gauge
factor is a necessary parameter for the simulation part.

3.3. Sensor characterization
The sensorwas subjected to awide range of flow rates tomodel
respiration airflow volume from normal activities like walking
to exercising. The sensor output in response to various airflow
rates is shown in two separate figures (figure 4a,b) to better
recognize the effect of low and high airflow rates on sensor per-
formance. Applying flow via the airflow generator causes the
sensor to bend, thereby leading to the deformation of the
conductive VGNs network. The VGNs network might be
stretched, causing the resistance of conducting paths to
increase. Therefore, by exposure to airflow, the electrical resist-
ance of the sensor increases. Based on the literature [42], the
piezoresistive properties of VGNs/PDMS nanocomposite are
controlled by three main mechanisms. Generally, the sensor
experiences two stages, including SPH and SPL stages during
one period. As mentioned before, since SPL is zero, the
sensor is unloaded in this stage, while during SPH stage, the
sensor tolerates the highest loading. As shown in figure 4a,b,
once the airflow generator is working, the sensor response
shoots up from its base value to the maximum after the airflow
attains steady-state conditions and after that the sensor wit-
nesses almost constant output. Afterwards, the SPL stage
occurs in which the flow rate suddenly reaches zero and the
sensor experiences a dramatic plunge in its output. However,
the sensor resistance ultimately reaches the point that is some-
what different from its primary resistance and needs time to
return its initial resistance owing to the intrinsic viscoelasticity
of the PDMS matrix [35,42,44]. This phenomenon is more
observable in high flow rates in such a way that a sudden
drop in the sensor output is far higher than its surge after
applying the flow rate. At low flow rates, the VGNs thin film
experiences a slight deformation in the nanostructure of
polymer layers and thereby quick recovery.

The response time of the sensor determines howmuch time
the sensor requires to respond to loading or unloading of
applied flow rates. When airflow is applied, the sensor shows
a sharp response and reaches a steady-state output, while
through the unloading stage (SPL level), the sensor output
plummets and comes to the lowest state of output within a
short time. The response time to loading and unloading of
the VGNs/PDMS airflow sensor is graphically shown in the
insets of figure 4a,b. Overall, the sensor’s response time is
slightly different as the flow rate varies. The time for reaching
a steady-state condition for low flow rates is lower than 1.8 s,
while the time for returning to its initial state is around 1.4 s.
These response time values are lower as the flow rates increase
(0.7 s and 0.4 s, respectively). In the case of higher flow rates,
the VGNs/PDMS nanocomposite tip can rapidly return to its
initial position when the airflow generator is turned off. It
causes the sensor to experience a plunge in the sensor output
and then return to its initial resistance. This characterization
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Table 1. Mechanical properties and dimensions of VGNs/PDMS nanocomposite and pure PDMS layer.

materials
Young’s modulus
(kPa)

flexural modulus
(kPa)

thickness
(mm)

width
(mm)

height
(mm)

PDMS layer + VGNs/PDMS thin film 173 4800 0.5 1.58 7.91

PDMS layer 173 173 0.5 1.58 7.91
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is ideal for monitoring activities such as running, where the
sensor is exposed to higher flow rates.

The sensor’s ability to monitor breathing within a range
of high breathing frequencies (low breathing period) was
experimentally studied. For these experiments, SPH was kept
constant at 70 l min−1, while the breathing period was varied
from 100 ms to 600 ms, as shown in figure 4c–f. According to
these results, the sensor can detect breathing patterns with
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very low breathing periods, like 100 ms. Moreover, during five
consecutive cycles, the sensor has a roughly constant ampli-
tude and a repeatable waveshape. By increasing the period,
the sensor is subjected to a specific flow rate for a longer
time; therefore, the sensor output increases to approach its
maximum response to 70 l min−1 airflow rate.

3.3.1. Finite-element analysis
Numerical simulation of the sensor provides insights into
the physics and operation of the sensor by giving informa-
tion about the deflection profile, sensitivity and linearity
of the sensor. In this work, finite-element simulations are
implemented in COMSOL Multiphysics software. Most of
the simulation works existing in the literature focus on the
displacement of mechanical structures in response to fluid
injection. In this work, the piezoresistive effect, as well as FSI,
is numerically simulated. To this end, three different physics
are coupled together: fluid dynamics that solves Navier–
Stokes equation for simulating the airflow, structural mechanics
that calculates the deformation of the structure due to fluid
forces, and the electrical part, which calculates the current
through VGNs.

In the simulation, air is injected from a tube with a diam-
eter of 2 mm. The sensor dimensions are the same as the real
sensor. The sensor is located at 1 mm distance from the
injection tube and 5.75 mm of the sensor height is subjected
to the airflow. Since the thickness of the VGN part of the
sensor is smaller than that of the PDMS, it is considered to



Table 2. Sensor performance comparison in terms of threshold velocity, sensitivity and sensor height.

sensing element material configuration height (mm)
detection
range (m s−1)

sensitivity
(mV (m/s)−1) references

LCP-sensing membrane piezoresistive 2 0.1–10 3.695 [55]

P type Si piezoresistor piezoresistive 1 20–40 0.204 [56]

PVDF microfibres piezoelectric 50 3.9–15.6 83.3 [57]

PVDF cantilever piezoelectric 30 4.3–10.6 20 [58]

VGNs/PDMS piezoresistive 5.75 1–7 17.38 this work

Table 3. Breathing parameters in response to different human activities.

activity

parameter

ventilation (1 min−1) [59] tidal volume (L) [59] set-point high (l min−1) period (ms)

walking (4 km h−1) 20.12 0.98 20 2980

jogging (7 km h−1) 30.44 1.54 47 1970

running (10 km h−1) 34.50 2.01 70 1740
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be a 2D film with negligible thickness on the surface of the
PDMS.

The mechanical properties and dimensions of the flow
sensor are presented in table 1. Two essential parameters
for simulation include Young’s modulus and flexural
modulus. According to table 1, flexural modulus and
Young’s modulus of the pure PDMS layer are precisely the
same, 173 kPa [43] owing to its homogeneous structure,
while adding VGNs thin film to the PDMS layer causes the
flexural modulus (4800 kPa) to differ from Young’s modulus
(173 kPa) due to maze-like network of VGNs and its non-
homogeneous structure. Surprisingly, applying tension to
the PDMS layer and VGNs/PDMS nanocomposite shows
equal values for Young’s modulus and flexural modulus.

For the simulation of the piezoresistive effect, two par-
ameters should be defined: the conductivity of the sensor at
the rest condition, and the gauge factor, which relates the
electrical conductivity to mechanical strain. These parameters
are also evaluated from the experimental measurement. The
electrical conductivity of VGNs thin film and the gauge
factor of the sensor are 29 S m−1 and 10, respectively.

Air is assumed to be injected from the left boundary to
the simulation domain. Since, in practice, the injection tube
is long, the boundary condition for the inlet air is fully devel-
oped. A zero-pressure boundary condition is applied to the
outlet boundary. Two electric contacts separated by 0.5 mm
are in the bottom of the sensor. A constant potential differ-
ence is applied between electric contacts and the electrical
resistance is calculated by evaluating the current. Figure 5a
shows the cross-section of the air velocity profile and the
simulation domain for the injection rate of 130 l min−1. As
seen, the sensor deflects in response to the incident air.

The maximum deflection of the sensor versus injection rate
is depicted in figure 5b. At lower airflow rates, the sensor’s
maximum deflection varies quadratically with injected flow
rate. By increasing the air injection rate, the effective cross-
section of the sensor subjected to the airflow is reduced,
which in turn slows down the sensor response to the injection
rate. Consequently, the deflection versus injection rate
curve deviates from quadratic characteristic at higher flow
rates. The sensor deflection is schematically illustrated at 30,
60, 90 and 120 l min−1 flow rates.

Direct measures of sensor tip displacement using LDV
(figure 5b–d) demonstrate very good agreement with the simu-
lation data for sensor deflection (figure 5d), with slight
divergence at flow rates above 100 l min−1. This divergence
at higher CPAP flow intensities may suggest a saturating nonli-
nearity of the sensor’s mechanical response, which may be due
to the material properties of the sensor, such as its stiffness and
elasticity. However, this did not result in a saturation of sensor
voltage output. It is also likely that at high intensities (e.g.
120–130 l min−1), considerable front–back displacements of the
sensor shifted the locus of the laser point, which may have
slightly reduced the signal strength, leading to a deviation
from simulated values. Additionally, there was also higher har-
monic component noise in the rawLDV signal (figure 5c), which
was filtered via the preamplifier, and offline via customized Lab-
VIEW programs using digital second-order Butterworth filters.
This may have had the result of altering the LDV displacement
values at high flow rates compared to numerical values.

Ultimately, the sensor output as a function of flow rate
obtained from experiment and simulation is depicted in
figure 6. The obtained results indicate that simulation results
(black curve) perfectly agree with experimental data (red
curve). The slope of the linear fit (blue dashed line) to exper-
imental data represents the sensor’s sensitivity being equal to
0.96 mV (l/min)−1.

The overall performance of an airflow sensor can be
investigated in terms of four important factors, including
the sensor dimension, detection range and sensitivity
(table 2). The response time of the proposed airflow sensor
is below 1 s, which is suitable for biomedical applications.
The flow velocity detected by the sensor can be calculated
by the internal diameter of the airflow generator’s tube.
Thus, the flow rate (l min−1) can be converted to flow velocity
(m s−1) for comparison.
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Figure 7. (a) The VGNs/PDMS airflow sensor in response to different human activities such as walking (4 km h−1), jogging (7 km h−1) and running (10 km h−1)
and (b) the sensor response to different airflow rates with a constant breathing period.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210753

9

3.4. Application of the airflow sensor
The primary purpose of using this nanocomposite as an air-
flow sensor is to monitor the respiration cycles during human
activities like walking, jogging and running. To simulate the
human respiratory patterns, two main parameters including
ventilation (number of breaths per minute) and tidal
volume (air volume moving in and out from lungs through
inhalation and exhalation) have been extracted from the lit-
erature [59], as presented in table 3. Tsega et al. [59] took
five healthy men (mean age: 29.6 years) to monitor the respir-
ation pattern of different levels of physical activities,
including walking (4 km h−1), jogging (7 km h−1) and run-
ning (10 km h−1) by traversing a fixed distance of 500 m.
According to these data, SPH is calculated by multiplying
tidal volume by ventilation, and the period of one respiration
cycle is the time of one breathing cycle (equal to 60 divided
by ventilation) to apply the information to the air generator
to simulate some cardio exercises and determine the sensor
performance at room temperature.

Figure 7 presents the sensor response to three cardio
exercises, walking, jogging and running, during five consecu-
tive cycles. As shown in figure 7a, the sensor response to
running is more extensive than walking and jogging due to
its high SPH compared to the two other exercises. In addition,
because of the low period, the sensor is likely not to reach its
maximum response. The obtained results demonstrate that
the sensor shows a stable reaction and roughly the same pat-
tern while doing exercises. During these tests, response time
and recovery time were very low and constant, and the sensor
could quickly recover its base resistance.

Another experiment is tomodel the state of dyspnoea (short-
ness of breath) due to heart or lung dysfunctions or heavy
breathing due to anxiety or panic through which the body
tries to enter a high volume of air into the lungs during a
short respiration period. Figure 7b shows the sensor perform-
ance on different breathing volumes, 50, 60, 70, 80, 90 l min−1,
within a period of 2 s. The results show a uniform performance
of the sensor during each respiration cycle.Moreover, the sensor
experiences a linear responseduringaconstantbreathingperiod
with increasing the breathing flow rate. It is worth noting that
the exhalation period for each cycle in which the sensor is sub-
jected to a fixed airflow rate is constant and roughly 1 s;
following that, the sensor recovers itself and reaches its base
during 1 s. It proves that this sensor has outstanding perform-
ance, stable response during various breathing volumes and
very low response time and recovery time.
4. Conclusion
In this work, we used a graphene/polymer-nanocomposite-
based flow sensor as an airflow sensor for monitoring
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human respiration. This airflow sensor is made of a highly
conductive maze-like network of vertically oriented graphene
nanosheets integrated with PDMS (25 : 1 weigh ratio of pre-
polymer and curing agent). The characterization process of
the sensor was conducted by a set of experiments to evaluate
sensor performance when the sensor is subjected to various
airflow rates. Response time of the sensor to applied flow
rates and its unloading behaviour was studied, and it turns
out that the maximum response time to loading and unload-
ing is 1.8 s and 1.4 s, respectively. It is shown that the sensor
can detect the airflow rates from 20 to 130 l min−1, which falls
within the range of human normal activities and exercises.
The sensitivity of the sensor was measured to be 0.96 mV
(l/min)−1 (or 17.38 mV (m/s)−1) when the sensor is subjected
to various flow rates. Compared to the literature, the pro-
posed airflow sensor in terms of sensor height, sensitivity
and detection range demonstrates great performance.

To evaluate the experimental results and better under-
stand the flow dynamics adjacent to the sensor and sensor
tip displacement, finite-element simulations were designed
through the COMSOL Multiphysics package. The piezoresis-
tive effect and FSI were numerically investigated. These
simulations verified the sensitivity and linearity of the
sensor performance measured by experiments, and direct
measurements of sensor tip displacement using LDV con-
firmed the excellent agreement with numerical approaches.
Eventually, the proposed sensor was used to monitor respir-
ation patterns during exercises such as walking, jogging and
running. The sensor shows a stable response, low response
time and recovery time during consecutive cycles for moni-
toring respiration when shortness of breathing happens.
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