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We present the U-statistic permutation (USP) test of
independence in the context of discrete data displayed
in a contingency table. Either Pearson’s χ2-test of
independence, or the G-test, are typically used for
this task, but we argue that these tests have serious
deficiencies, both in terms of their inability to control
the size of the test, and their power properties. By
contrast, the USP test is guaranteed to control the size
of the test at the nominal level for all sample sizes,
has no issues with small (or zero) cell counts, and is
able to detect distributions that violate independence
in only a minimal way. The test statistic is derived
from a U-statistic estimator of a natural population
measure of dependence, and we prove that this is the
unique minimum variance unbiased estimator of this
population quantity. The practical utility of the USP
test is demonstrated on both simulated data, where
its power can be dramatically greater than those of
Pearson’s test, the G-test and Fisher’s exact test, and
on real data. The USP test is implemented in the R

package USP.

1. Introduction
Pearson’s χ2-test of independence [1] is one of the most
commonly used of all statistical procedures. It is typically
employed in situations where we have discrete data
consisting of independent copies of a pair (X, Y), with
X taking the value xi with probability qi, for i = 1, . . . , I,
and Y taking the value yj with probability rj, for j =
1, . . . , J. For example, X might represent marital status,
taking values ‘Never married’, ‘Married’, ‘Divorced’,
‘Widowed’ and Y might represent level of education,
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Table 1. Contingency table summarizing the marital status and education level of 300 survey respondents. Source: https://
www.spss-tutorials.com/chi-square-independence-test/.

Middle school or Lower High school Bachelor’s Master’s PhD or Higher

Never married 18 36 21 9 6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Married 12 36 45 36 21
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Divorced 6 9 9 3 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Widowed 3 9 9 6 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

with values ‘Middle school or lower’, ‘High school’, ‘Bachelor’s’, ‘Master’s’, ‘PhD or higher’,
so that I = 4 and J = 5. From a random sample of size n, we can summarize the resulting data
(X1, Y1), . . . , (Xn, Yn) in a contingency table with I rows and J columns, where the (i, j)th entry oij of
the table denotes the observed number of data pairs equal to (xi, yj); see table 1 for an illustration.

Writing pij = P(X = xi, Y = yj) for the probability that an observation falls in the (i, j)th cell, a test
of the null hypothesis H0 that X and Y are independent is equivalent to testing whether pij = qirj
for all i, j. Letting oi+ denote the number of observations falling in the ith row and o+j denote the
number in the jth column, Pearson’s famous formula can be expressed as

χ2 =
I∑

i=1

J∑
j=1

(oij − eij)2

eij
, (1.1)

where eij = oi+o+j/n is the ‘expected’ number of observations in the (i, j)th cell under the null
hypothesis. Usually, for a test of size approximately α, the χ2 statistic is compared with the (1 −
α)-level quantile of the χ2 distribution with (I − 1)(J − 1) degrees of freedom1. For instance, for
the data in table 1, we find that χ2 = 23.6, corresponding to a p-value of 0.0235. This analysis
would therefore lead us to reject the null hypothesis at the 5% significance level, but not at the 1%
level.

Pearson’s χ2-test is so well established that we suspect many researchers would rarely pause
to question whether or not it is a good test. The formula (1.1) arises as a second-order Taylor
approximation to the generalized likelihood ratio test, or G-test as it is now becoming known
(e.g. [4]):

G = 2
I∑

i=1

J∑
j=1

oij log
oij

eij
.

The G-test statistic is compared with the same χ2 quantile as Pearson’s statistic, and its use
is advocated in certain application areas, such as computational linguistics [5]. There is also a
second motivation for the statistic (1.1), which relies on the idea of the χ2 divergence between two
probability distributions P = (pij) and P′ = (p′

ij) for our pair (X, Y):

χ2(P, P′) =
I∑

i=1

J∑
j=1

(pij − p′
ij)

2

p′
ij

. (1.2)

The word ‘divergence’ here is used by statisticians to indicate that χ2(P, P′) is a quantity that
behaves in some ways like a (squared) distance, e.g. χ2(P, P′) is non-negative, and is zero if and
only if P = P′, but does not satisfy all of the properties that we would like a genuine notion of
distance to have. For instance, it is not symmetric in P and P′—we can have χ2(P, P′) �= χ2(P′, P).
Pearson’s statistic can be regarded as the natural empirical estimate of the χ2 divergence between
the joint distribution P = (pij) and the product P′ of the marginal distributions (qi) and (rj). This

1As an interesting historical footnote, Pearson’s original calculation of the number of degrees of freedom contained an error,
which was corrected by Fisher [2]; e.g. Lehmann & Romano [3, p. 741].

https://www.spss-tutorials.com/chi-square-independence-test/
https://www.spss-tutorials.com/chi-square-independence-test/
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Table 2. Expected frequencies for the data in table 1, with the (i, j)th entry computed as eij = oi+o+j/n.

Middle school or Lower High school Bachelor’s Master’s PhD or Higher

Never married 11.7 27 25.2 16.2 9.9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Married 19.5 45 42 27 16.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Divorced 3.9 9 8.4 5.4 3.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Widowed 3.9 9 8.4 5.4 3.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

makes some sense when we recall that the null hypothesis of independence holds if and only if
the joint distribution is equal to the product of the marginal distributions (e.g. [6, theorem 3B]).

Nevertheless, both Pearson’s χ2-test and the G-test suffer from three major drawbacks:

1. The tests do not in general control the probability of Type I error at the claimed level.
In fact, we show in appendix Aa that even in the simplest setting of a 2 × 2 table, and
no matter how large the sample size n, it is possible to construct a joint distribution that
satisfies the null hypothesis of independence, but for which the probability of Type I error
is far from the desired level! Practitioners are aware of this deficiency of Pearson’s test and
the G-test (e.g. [7, p. 40]), but our example provides an explicit demonstration.

2. If there are no observations in any row or column of the table, then both test statistics are
undefined.

3. Perhaps most importantly, the power properties of both Pearson’s χ2-test and the
G-test are poorly understood. The well-known optimality of likelihood ratio tests in
many settings where the null hypothesis consists of a single distribution, which follows
from the famous Neyman–Pearson lemma [8], does not translate over to independence
tests, where the null hypothesis is composite—i.e. there is more than one distribution that
satisfies its constraints.

The first two concerns mentioned above are related to small cell counts, which are known
to cause issues for both Pearson’s χ2-test and the G-test. Indeed, elementary Statistics textbooks
typically make sensible but ad hoc recommendations, such as:

[Pearson’s χ2-test statistic] approximately follows the χ2 distribution . . . provided that
(1) all expected frequencies are greater than or equal to 1 and (2) no more than 20% of the
expected frequencies are less than 5 (Sullivan III [9, p. 623]).
The X2 statistic has approximately a χ2 distribution, for large n . . . The χ2 approximation
improves as {μij} increase, and {μij ≥ 5}2 is usually sufficient for a decent approximation
(Agresti [7, p. 35]).

Unfortunately, these recommendations (and others in different sources) may be contradictory,
leaving the practitioner unsure of whether or not they can apply the tests. For instance, for the
data in table 1, we obtain the expected frequencies given in table 2. From this table, we see that
all of the expected frequencies are greater than 1 but four of the 20 cells, i.e. exactly 20%, have
expected frequencies less than 5, meaning that this table just satisfies Sullivan, III’s criteria, but it
does not satisfy Agresti’s.

Fortunately, there is a well-known, though surprisingly rarely applied, fix for the first
numbered problem above, for both Pearson’s test and the G-test: we can obtain the critical value
via a permutation test. We will discuss permutation tests in detail in §2, but for now it suffices
to note that this approach guarantees that the tests control the size of the tests at the nominal
level α, in the sense that for every sample size n, the tests have Type I error probability no greater
than α.
2{eij ≥ 5} in our notation.
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Our second concern above would typically be handled by removing rows or columns with
no observations. If such a row or column had positive probability, however, then this amounts
to changing the test being conducted. For instance, if we suppose for simplicity that the Ith row
has no observations, but qI > 0, then we are only testing the null hypothesis that pij = qirj for
i = 1, . . . , I − 1 and j = 1, . . . , J. This is not sufficient to verify that X and Y are independent.

It is, however, the third drawback listed above that is arguably the most significant. When
the null hypothesis is false, we would like to reject it with as large a probability as possible. It
is too much to hope here that a single test of a given size will have the greatest power to reject
every departure from the null hypothesis. If we have two reasonable tests, A and B, then typically
Test A will be better at detecting departures from the null hypothesis of a particular form, while
Test B will have greater power for other alternatives. Even so, it remains important to provide
guarantees on the power of a proposed test to justify its use in practice, as we discuss in §2, yet
the seminal monograph on statistical tests of Lehmann & Romano [3] is silent on the power of
both Pearson’s test and the G-test.

The aim of this work, then, is to describe an alternative test of independence, called the USP
test (short for U-Statistic Permutation test), which simultaneously remedies all of the drawbacks
mentioned above. Since it is a permutation test, it controls the Type I error probability at the
desired level3 for every sample size n. It has no problems in handling small (or zero) cell counts.
Finally, we present its strong theoretical guarantees, which come in two forms: first, the USP test is
able to detect departures that are minimally separated, in terms of the sample size-dependent rate,
from the null hypothesis. Second, we show that the USP test statistic is derived from the unique
minimum variance unbiased estimator of a natural measure of dependence in a contingency table.
To complement these theoretical results, we present several numerical comparisons between
the USP test and both Pearson’s test and the G-test, as well as another alternative, namely
Fisher’s exact test (e.g. [7, §2.6]), which provide further insight into the departures from the null
hypothesis for which the USP test will represent an especially large improvement.

The USP test was originally proposed by Berrett et al. [10], who worked in a much more abstract
framework that allows categorical, continuous and even functional data to be treated in a unified
manner. Here, we focus on the most important case for applied science, namely categorical data,
and seek to make the presentation as accessible as possible, in the hope that it will convince
practitioners of the merits of the approach.

2. The USP test of independence
One starting point to motivate the USP test is to note that many of the difficulties of Pearson’s χ2-
test and the G-test stem from the presence of the eij terms in the denominators of the summands.
When eij is small, this can make the test statistics rather unstable to small perturbations of
the observed table. This suggests that a more natural (squared) distance measure than the
χ2-divergence (1.2) is

D(P, P′) =
I∑

i=1

J∑
j=1

(pij − p′
ij)

2.

Unlike the χ2-divergence, this definition is symmetric in P and P′. In independence testing, we
are interested in the case where P′ is the product of the marginal distributions of X and Y, i.e.
p′

ij = qirj. We can therefore define a measure of dependence in our contingency table by

D =
I∑

i=1

J∑
j=1

(pij − qirj)
2.

3In fact, this represents an important advantage of permutation tests over the bootstrap (another natural choice to obtain
p-values) in independence-testing problems.
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Under the null hypothesis of independence, we have pij = qirj for all i, j, so D = 0. In fact, the only
way we can have D = 0 is if X and Y are independent. More generally, the non-negative quantity
D represents the extent of the departure of P from the null hypothesis of independence.

Note that pij, qi and rj are population-level quantities, so we cannot compute D directly from
our observed contingency table. We can, however, seek to estimate it, and indeed this is the
approach taken by Berrett et al. [10]. To understand the main idea, suppose for simplicity that
X can take values from 1 to I, and Y and take values from 1 to J. Consider the function

h
(
(x1, y1), (x2, y2), (x3, y3), (x4, y4)

)
=

I∑
i=1

J∑
j=1

(
1{x1=i,y1=j}1{x2=i,y2=j} − 2.1{x1=i,y1=j}1{x2=i}1{y3=j}

+ 1{x1=i}1{y2=j}1{x3=i}1{y4=j}
)
,

where, for instance, the indicator function 1{x1=i,y1=j} is 1 if x1 = i and y1 = j, and is zero otherwise.
We claim that h((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4)) is an unbiased estimator of D; this follows
because

Eh
(
(X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4)

)
=

I∑
i=1

J∑
j=1

{
P(X1 = i, Y1 = j)P(X2 = i, Y2 = j) − 2P(X1 = i, Y1 = j)P(X2 = i)P(Y3 = j)

+ P(X1 = i)P(Y2 = j)P(X3 = i)P(Y4 = j)
}

=
I∑

i=1

J∑
j=1

(
p2

ij − 2pijqirj + q2
i r2

j
)=

I∑
i=1

J∑
j=1

(pij − qirj)
2 = D.

However, h((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4)) on its own is not a good estimator of D, because it
only uses the first four data pairs, so it would have high variance. Instead, what we can do is to
construct an estimator D̂ of D as the average value of h as the indices of its arguments range over
all possible sets of four distinct data pairs within our dataset. In other words,

D̂ = 1
4!
(n

4
) ∑

(i1,i2,i3,i4)

h
(
(Xi1 , Yi1 ), (Xi2 , Yi2 ), (Xi3 , Yi3 ), (Xi4 , Yi4 )

)
,

where the sum is over all distinct indices i1, i2, i3, i4 between 1 and n. Thus, we have n choices
for the first data pair, n − 1 choices for the second data pair, n − 2 for the third and n − 3 for the
fourth, meaning that D̂ is an average of n(n − 1)(n − 2)(n − 3) = 4!

(n
4
)

terms, each of which has the
same distribution, and therefore in particular, the same expectation, namely D. It follows that D̂
is an unbiased estimator of D, but since it is an average, it will have much smaller variance than
the naive estimator h((X1, Y1), (X2, Y2), (X3, Y3), (X4, Y4)).

Estimators constructed as averages of so-called kernels h over all possible sets of distinct data
points are called U-statistics, and the fact that there are four data pairs to choose means that
D̂ is a fourth-order U-statistic. For more information about U-statistics, see, for example, Serfling
[11, ch. 5].

The final formula for D̂ does simplify somewhat, but remains rather unwieldy; it is given
for the interested reader in appendix Ab. Fortunately, and as we explain in detail below, for
the purposes of constructing a permutation test of independence, only part of the estimator is
relevant. This leads to the definition of the USP test statistic, for n ≥ 4, as

Û = 1
n(n − 3)

I∑
i=1

J∑
j=1

(oij − eij)
2 − 4

n(n − 2)(n − 3)

I∑
i=1

J∑
j=1

oijeij. (2.1)
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This formula appears a little complicated at first glance, so let us try to understand how the terms
arise. Notice that oij/n is an unbiased estimator of pij, and, under the null hypothesis, eij/n is an
unbiased estimator of qirj. Thus the first term in (2.1) can be regarded as the leading order term
in the estimate of D. The second term (2.1) can be seen as a higher-order bias correction term that
accounts for the fact that the same data are used to estimate pij and qirj; in other words, oij/n and
eij/n are dependent.

To carry out the USP test, we first compute the statistic Û = Û(T) on the original data T =
{(X1, Y1), . . . , (Xn, Yn)}. We then choose B to be a large integer (B = 999 is a common choice),
and, for each b = 1, . . . , B, generate an independent permutation σ (b) of {1, . . . , n} uniformly at
random among all n! possible choices. This allows us to construct permuted datasets4 T(b) =
{(X1, Yσ (b)(1)), . . . , (Xn, Yσ (b)(n))}, and to compute the test statistics Û(b) = Û(T(b)) that we would
have obtained if our data were T(b) instead of T. The key point here is that, since the original
data consisted of n independent pairs, we certainly know for instance that X1 and Yσ (b)(1) are
independent under the null hypothesis. Thus the pseudo-test statistics Û(1), . . . , Û(B) can be
regarded as being drawn from the null distribution of Û. This means that, in order to assess
whether or not our real test statistic Û is extreme by comparison with what we would expect
under the null hypothesis, we can compute its rank among all B + 1 test statistics Û, Û(1), . . . , Û(B),
where we break ties at random. If we seek a test of Type I error probability α, then we should
reject the null hypothesis of independence if Û is at least the α(B + 1)th largest of these B + 1 test
statistics.

It is a standard fact (e.g. [12, lemma 2]) about permutation tests such as this that, even when
the null hypothesis is composite (as is the case for independence tests in contingency tables), the
Type I error probability of the test is at most α, for all sample sizes for which the test is defined
(n ≥ 4 in our case). Comparing (2.1) with the long formula for D̂ in (A 2), we see that we have
ignored some additional terms that only depend on the observed row and column totals oi+ and
o+j. To understand why we can do this, imagine that instead of computing Û, Û(1), . . . , Û(B), we
instead computed the corresponding quantities D̂, D̂(1), . . . , D̂(B), on the original and permuted
datasets, respectively. Since the row and column totals oi+ and o+j are identical for the permuted
datasets as for the original data5, we see that the rank of Û among Û, Û(1), . . . , Û(B) is the same as
the rank of D̂ among D̂, D̂(1), . . . , D̂(B). Therefore, when working with the simplified test statistic
Û, we will reject the null hypothesis if and only if we would also reject the null hypothesis when
working with the full unbiased estimator D̂.

As mentioned in the introduction, Berrett et al. [10] showed that the USP test is able to detect
alternatives that are minimally separated from the null hypothesis, as measured by D. More
precisely, given an arbitrarily small ε > 0, we can find C > 0, depending only on ε, such that for
any joint distribution P with D ≥ Cn−1, the sum of the two error probabilities of the USP test is
smaller than ε. Moreover, no other test can do better than this in terms of the rate: again, given
any ε > 0 and any other test, there exists c > 0, depending only on ε, and a joint distribution P
with D ≥ cn−1, such that the sum of the two error probabilities of this other test is greater than
1 − ε. This result provides a sense in which the USP test is optimal for independence testing for
categorical data.

To complement the result above, we now derive a new and highly desirable property of the
U-statistic D̂ in (A 2).

Theorem 2.1. The statistic D̂ is the unique minimum variance unbiased estimator of D.

The proof of theorem 2.1 is given in appendix Ac. Once one accepts that D is a sensible measure
of dependence in our contingency table, theorem 2.1 is reassuring in that it provides a sense in
which D̂ is a very good estimator of D. Since Û is equally as good a test statistic as D̂, as explained
above, this provides further theoretical support for the USP test.

4In fact, as shown in Berrett et al. [10], we only require the original cell counts oij to compute the cell counts o(b)
ij for the

permuted data. This dramatically simplifies the computation of the contingency tables for permuted datasets.
5Interestingly, this is another advantage of using permutations as opposed to the bootstrap to generate p-values.
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3. Numerical results

(a) Software
The USP test is implemented in the R package USP [13]. Once the package has been installed and
loaded, it can be run on the data in table 1 as follows:

> Data = matrix(c(18,12,6,3,36,36,9,9,21,45,9,9,9,36,3,6,6,21,3,3),4,5)

> USP.test(Data)

As with all permutation tests, the p-values obtained using the USP test will typically not be
identical on different runs with the same data, due to the randomness of the permutations. The
default choice of B for the USP.test function is 999, which in our experience, yields quite stable
p-values over different runs. This stability could be increased by running

> USP.test(Data,B = 9999)

for example (although this will increase the computational time). Using B = 999 yielded a p-value
of 0.001, so with the USP test, we would reject the null hypothesis of independence even at the 1%
level. For comparison, the G-test p-value is 0.0205, while Fisher’s exact test has a p-value of 0.02,
so like Pearson’s test, they fail to reject the null hypothesis at the 1% level.

(b) Simulated data
In this subsection, we compare the performance of the USP test, Pearson’s test, the G-test and
Fisher’s exact test on various simulated examples. For each example, we need to choose the
sample size n, as well as the number of rows I and columns J of our contingency table. However,
the most important choice is that of the type of alternative that we seek to detect. Recall that the
null hypothesis holds if and only if pij = qirj for all i, j. There are many ways in which this family
of equalities might be violated, but it is natural to draw a distinction between situations where
only a small number of the equalities fail to hold (sparse alternatives), and those where many fail
to hold (dense alternatives). It turns out that the smallest possible non-zero number of violations
is four, and our initial example will consider such a setting.

The starting point for this first example is a family of cell probabilities that satisfy the null
hypothesis

pij = 2−(i+j)

(1 − 2−I)(1 − 2−J)
, (3.1)

for i = 1, . . . , I and j = 1, . . . , J. A pictorial representation of these cell probabilities is given in
figure 1, which illustrates that the cell probability halves every time we move one cell to the
right, or one cell down in the table. The corresponding marginal probabilities for the ith row and
jth column are qi = 2−i/(1 − 2−I) and rj = 2−j/(1 − 2−J), respectively. Now, to construct a family of
cell probabilities that can violate the null hypothesis in a small number of cells, we will fix ε ≥ 0
and define modified cell probabilities

p(ε)
ij =

⎧⎪⎨⎪⎩
pij + ε if (i, j) = (1, 1) or (i, j) = (2, 2)
pij − ε if (i, j) = (1, 2) or (i, j) = (2, 1)
pij otherwise.

Note that p(0)
ij is just the original cell probability pij, and that, for ε > 0, we can consider the new

cell probabilities to be a sparse perturbation of the original ones, because we only change the
probabilities in the top-left block of four cells. The parameter ε, which needs to be chosen small
enough that all of the cell probabilities lie between 0 and 1, controls the extent of the dependence
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Figure 1. Pictorial representation of the cell probabilities in (3.1). (Online version in colour.)
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Figure 2. Violin plots of the values of D̂with I = 5, J = 8 and with n= 100 (a) and n= 400 (b) for different values of ε. The
function f (ε)= 4ε2 is shown as a red line. (Online version in colour.)

in the table; in fact, we can calculate that our dependence measure D is equal to 4ε2 in this
example.

We first study how well our estimator D̂ is able to estimate D. In figure 2, we present violin
plots giving a graphical representation of the values of D̂ obtained from 10 000 contingency tables
generated with I = 5 and J = 8, for 11 different values of ε and for n = 100 and n = 400; we also
plot the quadratic function f (ε) = 4ε2. This figure provides numerical support for the fact that D̂ is
an unbiased estimator of D, and illustrates the way that the variance of D̂ decreases as the sample
size increases from 100 to 400.

Next, we turn to the size and power of the USP test, and compare them with those of Pearson’s
test, the G-test and Fisher’s exact test. Figure 3 shows the way in which the power of these tests
increases with ε, for a test of nominal size 5%, with n = 100 (the corresponding plot with n =
400, which is qualitatively similar, is given in figure 8). For both Pearson’s test and the G-test,
we plot power curves for both the version of the test that takes the critical value from the χ2

distribution with (I − 1)(J − 1) degrees of freedom, and the version that obtains the critical value
using a permutation test, like the USP test. Here and below, for all permutation tests, we took
B = 999.

The most striking feature of figure 3 is the extent of the improvement of the USP test over its
competitors. When ε = 0.06, for instance, the USP test is able to reject the null hypothesis in 89%
of the experiments, whereas even the better (permutation) version of Pearson’s test only achieves
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Figure 3. Power curves of the USP test in the sparse example, comparedwith Pearson’s test (a) and both the G-test and Fisher’s
exact test (b). In each case, the power of theUSP test is given in black. The power functions of theχ 2 quantile versions of the first
two comparators are shown in blue (a) and purple (b), while those of the permutation versions of these tests are given in red (a)
and green (b). The power curve of Fisher’s exact test is shown in cyan on the right. In this plot, as in the other power curve plots,
vertical lines through each data point indicate three standard errors (though with 10 000 repetitions, these are barely visible).
(Online version in colour.)

a power of 29%. The permutation version of the G-test and Fisher’s exact test do slightly better in
this example, achieving powers of 59% and 66% respectively, but remain uncompetitive with the
USP test. The version of the G-test that uses the chi-squared quantile for the critical value performs
poorly in this example, because it is conservative (i.e. its true size is less than the nominal level 5%
level). This can be seen from the fact that the leftmost data point of the purple curve on the right-
hand plot in figure 3, which corresponds to the proportion of the experiments for which the null
hypothesis was rejected when it was true, is considerably less than 5%. It is also straightforward to
construct examples for which the versions of Pearson’s test and the G-test that use the χ2 quantile
are anti-conservative (i.e. do not control the size of the test at the nominal level) as in appendix
Aa or figure 8 in appendix Ae, and for this reason, we will henceforth compare the USP test with
the permutation versions of the competing tests.

To give an intuitive explanation of why Pearson’s test struggles so much in this example, recall
that the χ2 statistic (1.1) can be regarded as an estimator of the χ2 divergence (1.2). Since, when
ε > 0, the only departures from independence occur in the four top-left cells of our contingency
table, we should hope that the contributions to the test statistic from these cells would be large,
to allow us to reject the null hypothesis. But these are also the cells for which the cell probabilities
are highest, so it is likely that the denominators eij in the test statistic will be large for these
cells. In that case, the contributions to the overall test statistic from these cells will be reduced
relative to the corresponding contributions to the USP test statistic, for instance, which has no
such denominator (or equivalently, the denominator is 1). In fact, the denominators in Pearson’s
statistic mean that it is designed to have good power against alternatives that depart from
independence only in low probability cells. The irony of this is that such cells will typically have
low cell counts, meaning that the usual (χ2 quantile) version of the test cannot be trusted.

Our second example is designed to be at the other end of the sparse/dense alternative
spectrum: we will perturb all cell probabilities away from a uniform distribution. More precisely,
for ε ≥ 0, we set

p(ε)
ij = 1

IJ
+ (−1)i+jε, (3.2)

for i = 1, . . . , 6 and j = 1, . . . , 8. When ε = 0, this is just the uniform distribution across all cells
(which satisfies the null hypothesis of independence), while when ε > 0, cells (i, j) with i + j even
have slightly higher probability, and those with i + j odd have slightly lower probability; see
figure 4 for a pictorial representation. In this example, D = IJε2, so again the null hypothesis is only
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Figure 4. Pictorial representation of the cell probabilities in (3.2). (Online version in colour.)
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Figure 5. Power curves in the dense example, with the USP test in black, Pearson’s test in red, the G-test in green and Fisher’s
exact test in cyan. (Online version in colour.)

satisfied when ε = 0. Figure 5 plots the power curves, and reveals that all four tests have similar
power; in other words, the improved performance of the USP test in the first, sparse example
does not come at the expense of worse performance in this dense case. This is not too surprising,
because the denominators eij of Pearson’s statistic are nearly constant in this example, so Pearson’s
statistic is close to a scaled version of the dominant term in the USP test statistic.

Further simulated examples are presented in appendix Ae.

(c) Real data
Table 3 shows the eye colours of 167 individuals, 85 of whom were female and 82 of whom were
male. The p-values of the USP test, Pearson’s test, the G-test and Fisher’s exact test were 0.080,
0.169, 0.148 and 0.170, respectively (for the middle two tests, we used the permutation versions
of the tests).

To explore this example further, we repeatedly generated further tables of the same size using
the empirical cell probabilities from the real data, and computed the proportion of times that
the null hypothesis was rejected at the 5% level. Over 1000 repetitions, these proportions were
0.578, 0.491, 0.497 and 0.499 for the USP test, Pearson’s test, the G-test and Fisher’s exact test,
respectively, giving further evidence that the USP test is more powerful in this example.
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Table 3. Contingency table summarizing the eye colours of 85 females and 82 males. Source: www.mathandstatistics.com/
learn-stats/probability-and-percentage/using-contingency-tables-for-probability-and-dependence.

black brown blue green grey

female 20 30 10 15 10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

male 25 15 12 20 10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 4. Cell probabilities for our 2 × 2 contingency table example.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p2 p(1 − p)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

p(1 − p) (1 − p)2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5. Cell counts for our 2 × 2 contingency table example.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

o11 o12
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

o21 o22
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For a second example, we return to the marital status data in table 1. Since the powers for
all tests were very high when we resampled as above, we instead repeatedly subsampled 150
observations uniformly at random from the table, again computing the proportion of times
that the null hypothesis was rejected at the 5% level. Over 1000 subsamples, the proportions of
occasions on which the null hypothesis was rejected at the 5% level were 0.700, 0.583, 0.585 and
0.633 for the USP test, Pearson’s test, the G-test and Fisher’s exact test, respectively, so again the
USP test has greatest power over the subsamples.

4. Conclusion
χ2-tests of independence are ubiquitous in scientific studies, but the two most common tests,
namely Pearson’s test and the G-test, can both fail to control the probability of Type I error at the
desired level (this can be serious when some cell counts are low), and have poor power. The USP
test, by contrast, has guaranteed size control for all sample sizes, can be used without difficulty
when there are low or zero cell counts, and has two strong theoretical guarantees related to its
power. The first provides a sense in which the USP test is optimal: it is able to detect alternatives
for which the measure of dependence D converges to zero at the fastest possible rate as the sample
size increases (i.e. no other test could detect alternatives that converge to zero at a faster rate). The
second, which is the main new theoretical result of this paper, reveals that the USP test statistic is
derived from the unique minimum variance unbiased estimator of D. This provides reassurance
about the test not just in terms of the rate, but also at the level of constants. These desirable
theoretical properties have been shown to translate into excellent performance on both simulated
and real data. Specifically, while no test of independence can hope to be most powerful against
all departures from independence, we have shown that the USP test is particularly effective when
departures from independence occur primarily in high probability cells.

A further extension of our methodology is to the problem of testing homogeneity of the
distributions of the different rows of our contingency table. Since the permutations used to
generate our p-values preserve the marginal row totals, the USP test can be used without
modification in this setting, in an analogous way to Pearson’s test and the G-test.

www.mathandstatistics.com/learn-stats/probability-and-percentage/using-contingency-tables-for-probability-and-dependence
www.mathandstatistics.com/learn-stats/probability-and-percentage/using-contingency-tables-for-probability-and-dependence
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Appendix A

(a) An example to show that Pearson’sχ 2-test and the G-test can have unreliable
Type I error

The aim of this subsection is to show that both Pearson’s χ2-test and the G-test can have highly
unreliable Type I error, even in the simplest setting of a 2 × 2 contingency table, and for arbitrarily
large sample sizes. Fix a sample size n, fix 0 < λ < n1/2, and let p = λ/n1/2. Consider a 2 × 2
contingency table with cell probabilities given in table 4.

It can be checked that this table satisfies the null hypothesis of independence, since

P(X = x1) = p = 1 − P(X = x2) and P(Y = y1) = p = 1 − P(Y = y2).

Now suppose that we draw a random sample of size n from this contingency table, obtaining the
cell counts in table 5:

It is convenient to write p̂i+ = oi+/n and p̂+j = o+j/n. Then by some simple but tedious algebra,

χ2 = (o11 − e11)2

e11
+ (o12 − e12)2

e12
+ (o21 − e21)2

e21
+ (o22 − e22)2

e22

= (o11 − n̂p1+p̂+1)2

n̂p1+p̂+1
+ {o12 − n̂p1+(1 − p̂+1)}2

n̂p1+(1 − p̂+1)
+ {o21 − n̂p+1(1 − p̂1+)}2

n̂p+1(1 − p̂1+)

+ {o22 − n(1 − p̂+1)(1 − p̂1+)}2

n(1 − p̂+1)(1 − p̂1+)

= (o11 − n̂p1+p̂+1)2

n̂p1+p̂+1
+ (n̂p1+p̂+1 − o11)2

n̂p1+(1 − p̂+1)
+ (n̂p1+p̂+1 − o11)2

n̂p+1(1 − p̂1+)
+ (n̂p1+p̂+1 − o11)2

n(1 − p̂+1)(1 − p̂1+)

= (o11 − n̂p1+p̂+1)2

n̂p1+p̂+1(1 − p̂+1)(1 − p̂1+)
= (o11 − e11)2

e11(1 − p̂+1)(1 − p̂1+)
. (A 1)

We are now in a position to study the asymptotic distribution of the χ2 statistic in this model,
when n is large and λ is fixed. First, note that o11, the number of observations in the top-left
cell, has a binomial distribution with parameters n and p2 = λ2/n, so its limiting distribution is
Poisson with parameter λ2, by the law of small numbers (e.g. [14, pp. 2–3]). On the other hand,
the other terms in the final expression in (A 1) are converging to constants: p̂1+, the proportion
of observations in the first row of the table, is converging to zero in the sense that P(̂p1+ > t) → 0
as n → ∞ for every t > 0, and likewise for p̂+1, the proportion of observations in the first column.
Finally, we turn to e11, and note that we can write e11 = (n1/2̂p1+)(n1/2̂p+1). Now, n1/2̂p1+ has the
same distribution as W/n1/2, where W has a binomial random variable with parameters n and
p = λ/n1/2. Thus n1/2̂p1+ has expectation λ and variance (λ/n1/2)(1 − (λ/n1/2)), which converges
to zero as n → ∞. Since n1/2̂p+1 has the same distribution as n1/2̂p1+, we deduce that e11 = λ2 + En,
where En converges to zero in the same sense as p̂1+. These calculations allow us to conclude that
the asymptotic distribution of the χ2 statistic in this example is that of

(Z − λ2)2

λ2 ,

where Z has a Poisson distribution with parameter λ2. We can immediately see from this that,
even in the limit as n → ∞, Pearson’s test will not have the desired Type I error probability,
because this distribution differs from the χ2 distribution with 1 d.f., which is what would be
expected according to the traditional asymptotic theory where the cell probabilities do not change
with the sample size. As another way of comparing the actual asymptotic Type I error probability
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Figure 6. Plots of the asymptotic Type I error of Pearson’s test for the 2 × 2 table with cell probabilities given in table 4 when
α = 0.05 (a) andα = 0.01 (b).

with the desired level, see figure 6. Here, we plot the asymptotic Type I error probability

P
(

(Z − λ2)2

λ2 > cα

)
,

as a function of λ, where cα is the (1 − α)th quantile of the χ2
1 distribution. For an ideal test of

exact size α, this should produce a constant flat line at level α, but in fact we see that the Type I
error probability oscillates quite wildly, due to the discreteness of the Poisson distribution. For a
test at a desired 1% significance level, we may end up with a test whose Type I error probability
is 10 times larger!

These issues are not resolved by working with the G-test instead. Indeed, similar but
more involved calculations, given in appendix Ad, reveal that in this example, the asymptotic
distribution of the G-test statistic is that of

2Z log
( Z

λ2

)
− 2(Z − λ2),

where Z has a Poisson distribution with parameter λ2. Since this asymptotic distribution is not a
χ2 distribution with 1 d.f., we again see that the asymptotic size of the G-test will not be correct in
general. The corresponding asymptotic size plots, which are presented in figure 7, reveal similarly
wild behaviour as for Pearson’s test. The biggest jumps in the Type I error probabilities in figure 7
occur when λ = √

cα/2, because when λ exceeds this level, we will reject the null hypothesis on
observing Z = 0, whereas for smaller λ we will not. A similar transition occurs when λ = √

cα for
Pearson’s test in figure 6, though this is barely detectable when α = 0.01, in which case

√
cα is

approximately 2.58.
We conclude from this example that the sizes of both Pearson’s test and the G-test can

be extremely unreliable, even when the overall sample size in the contingency table is very
large. Moreover, these problems can be even further exacerbated when we move beyond 2 × 2
contingency tables, with asymptotic Type I error probabilities that deviate even further from their
desired levels.

To explain what is going on in this example in a more general but abstract way, let P denote
the set of all possible distributions on 2 × 2 contingency tables that satisfy the null hypothesis of
independence. By, e.g. Fienberg & Gilbert [15], all such distributions have cell probabilities of the
form given in table 6 for some 0 ≤ s ≤ 1 and 0 ≤ t ≤ 1.

In our example, we simplified this general case by taking s = t = p. The justification for using
cα as the critical value for Pearson’s χ2-test comes from the fact that for each P in the set P , we
have that

PP(χ2 > cα) → α,
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Figure 7. Plots of the asymptotic Type I error of the G-test for the 2 × 2 table with cell probabilities given in table 4 when
α = 0.05 (a) andα = 0.01 (b).

Table 6. Cell probabilities for a general 2 × 2 contingency table satisfying the null hypothesis of independence.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

st s(1 − t)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s(1 − t) (1 − s)(1 − t)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

as n → ∞. Here, the notation PP indicates that the probability is computed under the distribution
P. On the other hand, the crucial point about our example is that the speed at which this
probability converges to α may depend on the particular choice of P that we make; more formally,
this convergence is not uniform over the class P

sup
P∈P

∣∣PP(χ2 > cα) − α
∣∣� 0,

as n → ∞. It is this fact that allows us to find, for each n, a distribution Pn in P for which the Type
I error probability PPn (χ2 > cα) is not approaching α as n increases.

(b) An unbiased estimator of D
When n ≥ 4, the unbiased estimator of D obtained from the fourth-order U-statistic of Berrett et al.
[10] is

D̂ = 1
n(n − 3)

I∑
i=1

J∑
j=1

(oij − eij)
2 − 4

n(n − 2)(n − 3)

I∑
i=1

J∑
j=1

oijeij

+
∑I

i=1 o2
i+ +∑J

j=1 o2
+j

n(n − 1)(n − 3)
+

(3n − 2)
(∑I

i=1 o2
i+
)(∑J

j=1 o2
+j

)
n3(n − 1)(n − 2)(n − 3)

− n
(n − 1)(n − 3)

. (A 2)

(c) Proof of theorem 2.1
Since we know that D̂ is an unbiased estimator of D, it remains to show that D̂ has minimal
variance among all unbiased estimators of D and that no other unbiased estimator of D can match
this minimal variance. We may again assume without loss of generality that X takes values in
{1, . . . , I} and Y takes values in {1, . . . , J}. Our basic strategy is to apply the Lehmann–Scheffé
theorem [16,17], which can be regarded as an extension of the Rao–Blackwell theorem [18,19].
The Lehmann–Scheffé theorem relies on the notions of a sufficient statistic and a complete statistic.
Intuitively, a statistic S is sufficient for D if it encapsulates all of the information in the data that



15

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210549

..........................................................

is relevant for making inference about D. More formally, S is sufficient in our contingency table
setting if the conditional distribution of ((X1, Y1), . . . , (Xn, Yn)) given S does not depend on D.
We claim that the matrix (oij) of observed counts is sufficient for D, and this follows because the
conditional distribution of interest is given by

P
(
X1 = x1, Y1 = y1, . . . , Xn = xn, Yn = yn | (oij)

)=
∏I

i=1
∏J

j=1 oij!

n!
,

whenever
∑n

k=1 1{xk=i,yk=j} = oij for all i, j. In other words, once the cell counts are fixed, every
ordering of the way in which those cells counts could have arisen is equally likely. This probability
does not depend on D, so the matrix of observed counts is sufficient for D.

Informally, we say S is a complete statistic if there are no non-trivial unbiased estimators of
zero that are functions of S. This means that whenever Eg(S) = 0, we must have g(S) = 0. The
main part of our proof is devoted to proving that the matrix (oij) is complete. To this end, let
d = IJ, and let � denote the simplex of all d-dimensional probability vectors, so that

� =
{

(p1, . . . , pd) : p� ≥ 0 for all � and
d∑

�=1

p� = 1
}

.

Note that we are now thinking of stacking the columns of our matrix as a d-dimensional vector.
We let N denote the set of all possible d-dimensional vectors of observed counts with a total
sample size of n, so that

N =
{

(n1, . . . , nd) : n� is a non-negative integer for all �, and
d∑

�=1

n� = n
}

.

In the multinomial sampling model for our data, the probability of seeing observed counts
(n1, . . . , nd) is

f (n1, . . . , nd) = n!
d∏

�=1

pn�

�

n�!
.

Suppose without loss of generality that pd > 0 (if it were zero then we could simply choose a
different index). In order to study completeness, we should consider a function g with

0 =
∑

(n1,...,nd)∈N

g(n1, . . . , nd)f (n1, . . . , nd)

= n!
∑

(n1,...,nd)∈N

g(n1, . . . , nd)
(1 −∑d−1

�=1 p�)nd

nd!

d−1∏
�=1

pn�

�

n�!

= n!
nd!

(
1 −

d−1∑
�=1

p�

)n ∑
(n1,...,nd)∈N

g(n1, . . . , nd)
d−1∏
�=1

1
n�!

(
p�

1 −∑d−1
�=1 p�

)n�

. (A 3)

Here, in moving from the first line to the second, we have used the fact that pd = 1 −∑d−1
�=1 p�, and

in the final step, we exploited the fact that nd = n −∑d−1
�=1 n�. Now let

z� = p�

1 −∑d−1
�=1 p�

,

for � = 1, . . . , d − 1, and note that each z� can take any non-negative real value if we choose the
probabilities p1, . . . , pd−1 appropriately. Then from (A 3), we deduce that

∑
(n1,...,nd)∈N

g(n1, . . . , nd)
d−1∏
�=1

z�

n�!
= 0.

Thus, a polynomial in z1, . . . , zd−1 is identically zero, so its coefficients must be zero. Hence,
g(n1, . . . , nd) = 0 for all (n1, . . . , nd) ∈ N, so our matrix of observed counts is complete.
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The Lehmann–Scheffé theorem states that an unbiased estimator that is a function of a
complete, sufficient statistic is the unique minimum variance unbiased estimator. Our estimator
D̂ is an unbiased estimator of D that depends on the data (X1, Y1), . . . , (Xn, Yn) only through the
matrix (oij) of observed counts, which is a complete, sufficient statistic, so D̂ is indeed the unique
minimum variance unbiased estimator of D.

(d) Asymptotic distribution of the G-test statistic
We return to the 2 × 2 contingency table example of appendix Aa. We claim that the asymptotic
distribution of the four-dimensional standardized multinomial random vector

Yn =
(

o11 − λ2,
o12 − n1/2λ(1 − λ/n1/2)

n1/4 ,
o21 − n1/2λ(1 − λ/n1/2)

n1/4 ,
o22 − n(1 − λ/n1/2)2

n1/4

)
, (A 4)

is that of (Z1, Z2, Z3, Z4), where Z1 and (Z2, Z3, Z4) are independent, with Z1 having a centred
Poisson distribution with parameter λ2 and with (Z2, Z3, Z4) having a trivariate normal
distribution with mean vector zero and singular covariance matrix

Σ =

⎛⎜⎝ λ 0 −λ

0 λ −λ

−λ −λ 2λ

⎞⎟⎠ .

To see this, note that the random vector can be written as a sum of independent and identically
distributed random variables as

Yn =
n∑

i=1

(
Wi1 − λ2

n
,

Wi2 − (λ/n1/2)(1 − (λ/n1/2))
n1/4 ,

Wi3 − (λ/n1/2)(1 − (λ/n1/2))
n1/4 ,

Wi4 − (1 − (λ/n1/2))2

n1/4

)
, (A 5)

where, for instance, Wi1 = 1{Xi=x1,Yi=y1}. One way to study the asymptotic distribution of Yn, then,
is to compute its limiting moment generating function, which is the moment generating function
of each summand in (A 5) raised to the power n. It will also be convenient to have notation for
terms that will be asymptotically negligible: if (an) and (bn) are sequences, we write an = o(bn)
if an/bn → 0 as n → ∞; thus n−5/4 = o(n−1), for example. Each summand in (A 5) can take four
possible values, since (Wi1, Wi2, Wi3, Wi4) must be one of (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) or (0, 0, 0, 1).
Now fixing u = (u1, u2, u3, u4)
 ∈ R

4, we can compute as follows:

E(eY

n u) = e−λ2u1

{
λ2

n
e(1,0,0,0)u + λ

n1/2

(
1 − λ

n1/2

)
e(0,n−1/4,0,−n−1/4)u

+ λ

n1/2

(
1 − λ

n1/2

)
e(0,0,n−1/4,−n−1/4)u

+
(

1 − λ

n1/2

)2
e(0,−λ/n3/4,−λ/n3/4,2λ/n3/4)u + o(n−1)

}n

= e−λ2u1

{
λ2

n
eu1 + λ

n1/2

(
1 + u2

n1/4 + u2
2

2n1/2 − u4

n1/4 + u2
4

2n1/2 − u2u4

2n1/2

)
− λ2

n

+ λ

n1/2

(
1 + u3

n1/4 + u2
3

2n1/2 − u4

n1/4 + u2
4

2n1/2 − u3u4

2n1/2

)
− λ2

n

+ 1 − 2λ

n1/2 + λ2

n
− λu2

n3/4 − λu3

n3/4 + 2λu4

n3/4 + o(n−1)
}n

→ exp
{
λ2(eu1 − 1) − λ2u1 + λ

2
(u2

2 + u2
3 + 2u2

4 − u2u4 − u3u4)
}

.

This limiting moment generating function agrees with the moment generating function of
(Z1, Z2, Z3, Z4), and therefore establishes the claimed asymptotic distribution (e.g. [20, p. 390]).
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In other words,(
o11 o12
o21 o22

)
=
(

λ2 + Zn1 n1/2λ + n1/4Zn2 − λ2

n1/2λ + n1/4Zn3 − λ2 n − 2n1/2λ + n1/4Zn4 + λ2

)
, (A 6)

where the distribution of (Zn1, Zn2, Zn3, Zn4) converges to that of (Z1, Z2, Z3, Z4) as n → ∞. Note
that, since the sum of the entries of this matrix is n, we must have that Zn1 + n1/4(Zn2 + Zn3 +
Zn4) = 0. Similarly to our ‘little o’ notation for negligible deterministic sequences, we now
introduce a notation for negligible random sequences: we write Vn = op(1) if P(|Vn| > t) → 0 as
n → ∞, for every t > 0. We can now calculate further that

e11 = (o11 + o12)(o11 + o21)
n

= (n1/2λ + n1/4Zn2 + Zn1)(n1/2λ + n1/4Zn3 + Zn1)
n

= λ2 + op(1);

e12 = (o12 + o11)(o12 + o22)
n

= (n1/2λ + n1/4Zn2 + Zn1)(n − n1/2λ + n1/4Zn2 + n1/4Zn4)
n

= n1/2λ + n1/4Zn2 + Zn1 − λ2 + op(1)

and e22 = (o22 + o12)(o22 + o21)
n

= (n − n1/2λ + n1/4Zn2 + n1/4Zn4)(n − n1/2λ + n1/4Zn3 + n1/4Zn4)
n

= n − 2n1/2λ + n1/4Zn4 + λ2 − Zn1 + op(1).

Hence

G = 2(λ2 + Zn1) log
(

λ2 + Zn1

λ2 + op(1)

)

+ 2(n1/2λ + n1/4Zn2 − λ2) log
(

n1/2λ + n1/4Zn2 − λ2

n1/2λ + n1/4Zn2 − λ2 + Zn1 + op(1)

)

+ 2(n1/2λ + n1/4Zn3 − λ2) log
(

n1/2λ + n1/4Zn3 − λ2

n1/2λ + n1/4Zn3 − λ2 + Zn1 + op(1)

)

+ 2(n − 2n1/2λ + n1/4Zn4 + λ2) log
(

n − 2n1/2λ + n1/4Zn4 + λ2

n − 2n1/2λ + n1/4Zn4 + λ2 − Zn1 + op(1)

)
.

By a Taylor expansion of the logarithms in the second, third and fourth terms, we conclude that
the asymptotic distribution of G is that of

2(λ2 + Z1) log
(

1 + Z1

λ2

)
− 2Z1,

as claimed in appendix Aa.

(e) Additional simulation results
Here, we present further numerical comparisons between the USP test, Pearson’s test, the G-test
and Fisher’s exact test. Figure 8 shows power functions for the first (sparse alternative) example
in §2b, but with n = 400 instead of n = 100. The figure is qualitatively similar in most respects
to figure 3, and reveals that the improved performance of the USP test is not diminished by
increasing the sample size. One slight difference is that we can see that the version of Pearson’s
test with the χ2 quantile is anti-conservative (fails to control the size at the nominal level) for this
sample size.
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Figure 8. Power curves of the USP test in the sparse example with n= 400, compared with Pearson’s test (a) and both the
G-test and Fisher’s exact test (b). In each case, the power of the USP test is given in black. The power functions of theχ 2 quantile
versions of the first two comparators are shown in blue (a) and purple (b), while those of the permutation versions of these tests
are given in red (a) and green (b). The power curve of Fisher’s exact test is shown in cyan on the right. (Online version in colour.)

Figure 9. Pictorial representation of the cell probabilities in (A 7). (Online version in colour.)
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Figure 10. Power curves of the USP test (black), Pearson’s test (red), the G-test (green) and Fisher’s exact test (cyan) for the
multiplicative example with n= 100. (Online version in colour.)
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A feature of both our sparse and dense examples is that the perturbations from the null
distribution are additive. An alternative mechanism for departing from the null distribution that
is also of interest is where the perturbations are multiplicative. For example, for I = J = 4 and ε ≥ 0,
consider the cell probabilities

p(ε)
ij = 1 + (−1)i+jε

Cε · 2i+j
, (A 7)

where Cε =∑I
i=1

∑J
j=1(1 + (−1)i+jε/2i+j) is a normalization constant; see figure 9. Figure 10

shows the power curves of our four permutation tests with n = 100. Despite the fact that the
perturbations here are dense, we see that the USP test is best able to detect the violations of
independence for small and moderate values of ε, while Fisher’s test slightly outperforms it for
larger ε.
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Sankhyā 15, 219–236.

18. Blackwell D. 1947 Conditional expectation and unbiased sequential estimation. Ann. Math.
Stat. 18, 105–110. (doi:10.1214/aoms/1177730497)

19. Rao CR. 1945 Information and accuracy attainable in the estimation of statistical parameters.
Bull. Calcutta Math. Soc. 37, 81–91.

20. Billingsley P. 1995 Probability and measure. Wiley Series in Probability and Statistics. New York,
NY: John Wiley & Sons.

http://dx.doi.org/10.1214/aoms/1177730497

	Introduction
	The USP test of independence
	Numerical results
	Software
	Simulated data
	Real data

	Conclusion
	An example to show that Pearson's 2-test and the G-test can have unreliableType I error
	An unbiased estimator of D
	Proof of theorem 2.1
	Asymptotic distribution of the G-test statistic
	Additional simulation results

	References

