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A B S T R A C T   

Detecting the adverse effects of major emergencies on financial markets and real economy is of great importance 
not only for short-term policy reactions but also for economic and financial stability. This is the lesson we learnt 
from the COVID-19 pandemic. This paper focuses on the risk spillover effect of the COVID-19 on Chinese energy 
industry using a high-dimensional and time-varying factor-augmented VAR model. The results show that the net 
volatility spillovers of the pandemic remain positive to all underlying energy sectors during January to June of 
2020 and February to April of 2021. For the former sub-period, the volatility spillover of the COVID-19 is not 
only the highest, but also lasts longest for oil exploitation sector, followed by the power and gas sectors. While for 
the latter sub-period, the COVID-19 has relatively higher volatility spillovers to the power, coal mining and 
petrochemical sectors. These findings suggest that the COVID-19 has significant risk spillover effects on Chinese 
energy sectors, and the effects vary among different energy sub-sectors and across different periods of time.   

1. Introduction 

Over the past two decades, a series of major emergencies have 
broken in the world. For example, the SARS pandemic in 2003, the In-
dian ocean tsunami in 2004, the Chinese Wenchuan earthquake in 2008, 
the Japan earthquake in 2011 and the ensuing Fukushima nuclear power 
plant leakage, the Ebola virus in 2014, and the novel coronavirus disease 
in 2019 (COVID-19) (See Fig. A1 in the Appendix). Such major emer-
gencies not only pose a serious threat to the safety of public life and 
property, but also negatively affect the social and economic stability of 
all countries. Especially for the COVID-19, it has been declared as a 
“public health emergency of international concern” by World Health 
Organization (WHO), with the fastest transmission rate, the widest 
scope of infection and the greatest difficulty in prevention. Such an 
incident has imposed serious adverse impacts on firms and households 
in a very short period of time, and also triggered a significant volatility 
in global financial markets (Baker et al., 2020; Kinateder et al., 2021). 
Compared to the impacts of other types of emergencies, the impact of the 
COVID-19 is more widespread and lasts much longer. It has produced a 
high degree of uncertainty and huge challenges to the development of 
the global economy, causing severe impacts on the global industrial 

chain, supply chain and capital chain. The production and business ac-
tivities of the affected regions and countries have been forced to stag-
nate, and the volume of global trade has declined sharply. Especially the 
complexity and changeability of the evolution of the pandemic once 
leaded to the failure of virus detection in time, which in turn weaken the 
decision making of governments, and caused a great deal of damaging 
effects on real economy, financial markets and people’s healthy and 
lives. In fact, how to ensure economic and financial stability and prevent 
potential systemic risks during the COVID-19 has attracted great 
attention from Chinese policymakers. Within the first 2 weeks of the 
COVID-19 outbreak in China, Chinese stock market has never been 
gloomier, with the volatility index reached a 5-year high since the 2015 
stock market crash. On February 23, 2020, the Chinese government 
emphasized that it is extremely urgent to prevent economic growth 
sliding out reasonable interval, and to prevent short-term shocks 
evolving into long-term trends in the context of the pandemic. For this 
reason, it is of critical importance to quantify the impacts of the COVID- 
19 on China’s macroeconomy and financial markets, and conduct in- 
depth analyses of the direction and contagion intensity of the risk 
spillover of the pandemic to real economy and financial system. A better 
knowledge of the impacts of the COVID-19 will not only help improve 

* Corresponding author. 
E-mail addresses: sidkfinance@163.com (D.-K. Si), smileman2004@126.com (X.-L. Li), 1200401153@jxufe.edu.cn (X. Xu), fangyi@cufe.edu.cn (Y. Fang).  

Contents lists available at ScienceDirect 

Energy Economics 

journal homepage: www.elsevier.com/locate/eneeco 

https://doi.org/10.1016/j.eneco.2021.105498 
Received 29 April 2021; Received in revised form 13 July 2021; Accepted 31 July 2021   

mailto:sidkfinance@163.com
mailto:smileman2004@126.com
mailto:1200401153@jxufe.edu.cn
mailto:fangyi@cufe.edu.cn
www.sciencedirect.com/science/journal/01409883
https://www.elsevier.com/locate/eneeco
https://doi.org/10.1016/j.eneco.2021.105498
https://doi.org/10.1016/j.eneco.2021.105498
https://doi.org/10.1016/j.eneco.2021.105498
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eneco.2021.105498&domain=pdf


Energy Economics 102 (2021) 105498

2

the effectiveness of governments’ policy response mechanisms and risk 
prevention measures compatible with “major incidents”, but also help 
avoid potential systemic risks across different sectors and different 
markets. 

As for China, the COVID-19 pandemic has posed serious impacts on 
its economic development and social security. Energy industry is one of 
the most essential pillar industries of Chinese economy, and thus how to 
improve the economic performance of energy industry is one of the main 
focuses of the Chinese government. In the pre-COVID period, there had 
been a rising expansion in energy imports but a much slower growth in 
energy exports in China, resulting in energy consumption being highly 
dependent on imported energy products and in turn, exerting a lot of 
pressure on energy security. The COVID-19 pandemic has affected the 
energy industry on all fronts (Huang and Liu, 2021; Nguyen et al., 2021; 
Ramelli and Wagner, 2020). The spread of COVID-19 not only signifi-
cantly influences energy prices (Devpura and Narayan, 2020; Narayan, 
2020; Prabheesh et al., 2020), but also leads to lower energy demand 
and consumption due to human mobility and economic activity lock-
down (Liu et al., 2020; Norouzi et al., 2020). Moreover, investors’ future 
expectations have been generally pessimistic in the context of COVID- 
19, and their investment strategies have altered accordingly (Mazur 
et al., 2021; Wen et al., 2021). In particular, since the COVID-19 is 
steadily worsening the demand and disrupting energy supply, the energy 
market, especially the crude oil market, is full of uncertainties and 
fluctuation, resulting in huge negative shocks for the energy and stock 
markets (Aydın and Ari, 2020; Štifanić et al., 2020). Thus, additional 
evidence shows that the COVID-19 is associated with lower stock returns 
and heighted stock volatility in energy market, and the risk contagion 
between energy and stock markets has significantly increased during the 
COVID-19. However, it should be noted that not all energy sub-sectors 
are homogeneously affected by the pandemic, given that the isolation 
and lockdown policy has greatly altered the patterns of energy demand 
and consumption of households and enterprises. Moreover, the effects of 
the COVID-19 on energy consumption vary among different economic 
sectors (Zhang et al., 2021), which would in turn result in heterogeneous 
impacts on different energy sub-sectors. An extensive literature has been 
devoted to assess the impacts of the COVID-19 on energy market from 
various perspectives, but lacks a a detailed sector-level analysis of the 
risk contagion between the pandemic and heterogeneous energy sectors 
especially for China. 

This paper thus aims to quantify how the outbreak of the COVID-19 
impacts Chinese energy industry, and on this basis, to depict the risk 
transmission path of the pandemic to heterogeneous energy sectors. We 
hypothesize that the COVID-19 has significant risk spillover effects on 
Chinese energy sectors, and the effects vary among different energy sub- 
sectors and across different periods of time. Due to the ever-increasing 
linkage between different energy sub-sectors, markets and industries, 
the impact of major emergencies, including the COVID-19, shows 
somewhat “accelerator” and “ripple” features, similar to the phenome-
non of “resonance”. In other words, when an individual energy sub- 
market is affected, the negative effects will be gradually transmitted to 
other markets and at last, generates systemic risk (Baruník and Křehlík, 
2018). Moreover, in the face of extreme shocks, the commodity and 
financial markets are likely to “overreact”, and in turn, produce large 
abnormal shocks in the short term (Lasfer et al., 2003), which will 
further aggravate economic fluctuations and cause risk contagion be-
tween financial institutions or markets. These facts increase the diffi-
culty of risk prevention and triggers as well a number of related studies 
regarding macro-prudential policies, local government debt, and cross- 
market contagion of extreme risks (Ballester et al., 2016; Maggio 
et al., 2017; Guidolin et al., 2019; Zhang et al., 2020). 

In order to test the above risk spillover hypotheses, this study uses 
daily stock price data on Chinese energy market from January 20, 2020 
to April 20, 2021, and utilizes a higher-dimensional time-varying factor- 
augmented VAR (HD-TVP-FAVAR) model which allows us to capture 
potential high-dimensional and time-varying features existed in 

economic and financial risk network. In particular, we consider nine 
energy sub-sectors and employ the spillover index approach based on 
the HD-TVP-FAVAR model to estimate the risk spillover effects of the 
COVID-19 to all energy sectors and to each energy sector we consider. 
The empirical results show that the net volatility spillovers of the 
pandemic remain positive to all concerned energy sectors during 
January to June of 2020 and February to April of 2021, the two most 
serious stages of the spread of the pandemic in China. For the former 
sub-period, the volatility spillover of the COVID-19 is not only the 
highest, but also lasts longest for oil exploitation sector, followed by the 
power and gas sectors. While for the latter sub-period, the COVID-19 has 
relatively higher volatility spillovers to the power, coal mining and 
petrochemical sectors. The COVID-19 shock could induce volatility co- 
movement in Chinese energy markets through affecting oil exploita-
tion sector and then spilling over into other energy sectors. Our findings 
not only have important implications for the governments to prevent the 
risks brought by major events to spread across different energy sectors, 
but also are relevant for investors regarding diversification and safe- 
haven investments. 

Compared with the existing studies, the marginal contributions of 
this paper are twofold. First, unlike existing studies employing tradi-
tional linear methods or dynamic correlation analysis between the 
COVID-19 pandemic or other types of major emergencies and macro-
economic and financial variables, this paper uses the HD-TVP-FAVAR 
model and the spillover index approach based on the model to quan-
tify the effects of COVID-19 on Chinese energy markets. Specifically, we 
simultaneously estimate the dynamic impulse response and spillover 
effects of nine selected energy sectors to the COVID-19 shock. For a more 
detailed analysis and also for a robust test, we also construct the adja-
cency matrix to include tail event covariates and further find that the 
network effect between the COVID-19 and energy markets is more 
pronounced when the pandemic related uncertainty is relatively high. 
Our findings suggest that the HD-TVP-FAVAR model we employed can 
not only quantify the volatility spillover effects of the pandemic across 
different energy sectors, but also capture substantial time-variations in 
the spillover effects. 

Second, despite a growing literature on the impacts of COVID-19 on 
energy industry, limited work pays special interest in the potential 
sectoral heterogeneity of risk contagion between COVID-19 and het-
erogeneous energy sectors. In fact, different energy sub-sectors are likely 
to be affected heterogeneously by the COVID-19. Meanwhile, during 
different stages of the COVID-19, the impacts on the same energy sector 
may also be differential. Taking account of this, the main focus of this 
paper is to perform a detailed sector-level analysis of the risk contagion 
between the pandemic and heterogeneous energy sectors for China from 
a time-varying perspective. Our empirical findings confirm that relative 
to other concerned energy sectors, oil exploitation sector, followed by 
the power and gas sectors, are affected the most by the pandemic owing 
to negative supply and demand shocks and high uncertainty shock in oil, 
power and gas sectors during the most serious stage of the COVID. 

The remainder of the paper proceeds as follows. Section 3 presents 
the HD-TVP-FAVAR model and the connectedness index approach. 
Section 4 introduces data and variables. Section 5 shows the empirical 
results and analyzes the impacts of the COVID-19 on different Chinese 
energy sectors. Section 6 summarizes the main conclusions. 

2. Literature review 

If one country’s governments have not taken effective measures to 
deal with major emergencies in a timely manner, its economy would 
face great downward pressure in the short and long terms, and its 
financial markets are likely to experience violent fluctuations, which 
could in turn lead to systemic risks and even induce economic crisis. A 
growing number of studies have been undertaken to focus on the 
evolving mechanism of major emergencies, including their occurrence, 
development and spreading rules. In particular, some studies have 
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investigated the occurrence mechanism of specific major emergencies 
mainly include the evolution law of natural disasters (Cheung et al., 
2003), and the uncertainty induced by natural disasters using probabi-
listic techniques (Apel et al., 2006). In addition, a chain reaction model 
of events is used to investigate the linkages among major emergencies. 
Helbing et al. (2006) utilize semi-parametric and non-parametric tech-
niques to achieve a risk assessment of the chain reaction of public 
emergencies, and show that the chain reaction was not only helpful to 
evaluate the evolving rules and characteristics of major emergencies, 
but also to assess the effectiveness of emergency management measures 
of governments. Willis et al. (2007) estimate the uncertainty of major 
emergencies so as to provide theoretical support for short-term emer-
gency preparedness in changeable environments. In methodology, the 
existing literature often employs event intervention model (Goh and 
Law, 2002; Deryugina et al., 2018), event study method and natural 
experiment method (Boehm et al., 2019) to conduct comparative anal-
ysis of economic conditions before and after the outbreak of major 
events, given the low frequency of the occurrence of events and the 
difficulty of data statistics. Pacini and Marlett (2001) find that insurance 
companies with hurricane risk exposure had more positive responses to 
stock prices, by employing generalized least square method and 
non-parametric event study technique. Ragin and Halek (2016) focusing 
on 43 disasters since 1970 that caused the largest insurance loss, present 
that insurance brokers received abnormal stock returns on the day of the 
event. 

In addition, there is another stand of studies focusing on the impact 
of major emergencies on real economy and financial market fluctuations 
based on other advanced econometric models. For example, Bai et al. 
(2018) construct a dynamic stochastic general equilibrium (DSGE) 
model including heterogeneous multi-sector and considering the impact 
of rare disaster, and analyze the unconventional impact of unexpected 
events on firm value, with the results showing that the asset pricing 
portfolio model (CAPM) containing abnormal shocks can better predict 
stock market volatility. Lanfear et al. (2019) evaluate the abnormal 
disturbance of the US hurricanes on stock returns and illiquidity across 
portfolios of stocks sorted during 1990–2017, and document that such 
events do have substantial negative impacts on stock market. In 
particular, White et al. (2015) note that under the shock of major 
emergencies, there is a significant risk contagion and spillover effect 
across different markets. 

However, most of these earlier studies focus on the impact of natural 
disasters such as earthquakes and hurricanes on real economy and 
financial markets. Due to relatively short duration of such events, 
empirical analysis based on traditional methods is likely to induce the 
problem of “Curse of dimensions” (Marcellino and Sivec, 2016). As a 
consequence, it is difficult to achieve a comprehensive analysis of the 
economic impacts of major events (Galariotis et al., 2018). Therefore, 
most existing studies rely on constructing specific risk indicators and 
following the comparative analysis paradigm, neglecting the network 
structure consisting of heterogeneous markets. Moreover, the event 
intervention model, event study method or quasi-natural experiments 
employed by existing studies are only suitable for conducting compar-
ative analysis of the short-term effects before and after the event, which 
is not conducive to monitoring the unconventional impacts of major 
emergencies and depicting the risk contagion between heterogeneous 
market. 

Since the outbreak of the COVID-19, a large number of studies have 
emerged to focus on the economic effects of the pandemic. Altig et al. 
(2020) and Salisu and Akanni (2020) find that the COVID-19 pandemic 
and the ensuing economic fallout led to sharp uncertainty jumps. By 
employing daily data of 20 selected countries, Szczygielski et al. (2021) 
further present that the uncertainty regarding the COVID-19 has a 
negative impact on energy stock returns for all countries but is related to 
heightened volatility in most. Kinateder et al. (2021) document a sig-
nificant degradation of correlation within the major asset classes, i.e., 
sovereign bonds, commodities and major exchange rates. A number of 

studies have found the evidence that energy sector has been particularly 
impacted by the pandemic. Liu et al. (2020) find that the COVID-19 
pandemic leads to lower energy consumption due to human mobility 
and economic activity lockdown. Zhang et al. (2021) find that the 
COVID-19 had a significant impact on the spillover effect between en-
ergy and stock market, with the extent of risk acceptance of the energy 
market increased after the COVID-19 outbreak. Al-Awadhi et al. (2020) 
observe that the growth in COVID-19 cases and deaths had a negative 
impact on Chinese stock returns with the effect more pronounced for 
larger firms. Huang and Liu (2021) present firm-level evidence that the 
COVID-19 has decreased the stock price crash risk of energy firms in 
China. However, although these studies have evaluated the impacts of 
the COVID-19 on energy market from various perspectives, but still lacks 
a detailed sector-level analysis of the risk contagion between the 
pandemic and heterogeneous energy sectors. 

3. Methodology 

3.1. High-dimensional time-varying factor-augmented VAR model 

Under the impacts of unexpected external shocks, economic and 
financial variables are likely to have the characteristics of short-memory 
and long-memory. Especially when the types, magnitudes and directions 
of the impacts are different, the relationship among the variables 
probably evolves with time. Taking account of these stylized facts, Pri-
miceri (2005) and Koop and Korobilis (2013) propose a time-varying 
parameter factor-augmented model including stochastic volatility. 
Following the two studies, we further extend the model into a high- 
dimensional time-varying factor-augmented VAR (HD-TVP-FAVAR) 
model as follows: 

xn
t = λy

t yt + λf
t ft + μt (1)  

[
yt
ft

]

= ct + θt,1

[
yt− 1
ft− 1

]

+…+ θt,p

[
yt− p
ft− p

]

+ δt (2)  

where Eq.(1) is the measuring equation and Eq.(2) is the HD-TVP- 
FAVAR equation with p-lags; xt

n is the n × 1 vector matrix consisting 
of n endogenous variables; yt is the s × 1 observable factor matrix con-
sisting of s observable variables in the period t and ft is the potential 
explanatory factor of the target macroeconomic variable included in xtj. 
Therefore, λt

yand λt
f correspond to yt and ft respectively, representing 

regression coefficients and observable factor loading matrix. In Eq. (2), 
ct denotes the intercept and θt, p for t = 1, …, T, i = 1, …, p denotes the 
time-varying coefficient matrix. μt and δt are the Gaussian perturbation 
terms with zero means and time-varying covariance matrixs Vt and Qt, 
respectively. By using multivariate model system as well as the potential 
target explanatory factor, we can predict macroeconomic variables and 
examine the dynamic relationship among variables. All parameters in 
the HD-TVP-FAVAR model are assumed to be time-varying given the 
possible time-variations in the data generating process of variables. 

In order to ensure the completeness of the model, we further define 
the the loading vectors and the time-varying coefficients and as follows: 

λt =
( (

λy
t

)’
,
(
λf

t

)’ )’ (3)  

βt =
(
c’

t , vec
(
θt,1

)’
,…, vec

(
θt,p

)’ )’ (4)  

where both Eqs. (3) and (4) are separately subjected to the following 
random walk processes: 

λt = λt− 1 + vt (5)  

βt = βt− 1 + ηt (6)  

where vt~N(0,Wt) and ηt~N(0,Ξt) are uncorrelated disturbance terms 
with time-varying covariance matrixs Wt and Ξt, respectively. 
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Koop and Korobilis (2013) point that the efficiency of the parameter 
estimation of the TVP-FAVAR model with MCMC algorithm is low and 
the parameter estimation tends to be biased. Moreover, since financial 
variables tend to change dramatically in the face of extreme shocks, the 
assumption of long memory of the variables probably works poorly. On 
the other hand, when the economy encounters a sudden and uncon-
ventional shock such as the COVID-19 pandemic, the dynamic rela-
tionship of the variables and the driving factors of the dynamic 
impacting process may change across different regimes. Therefore, in 
order to accommodate the characteristics of fast forgetting and slow 
forgetting of financial variables, following Doz et al. (2011) and Koop 
and Korobilis (2013), this paper uses the Kalman Filtering algorithm 
with forgetting factor and makes a reference of the Exponentially 
Weighted Moving Average in Primiceri (2005) to estimate the error 
covariance matrix (Vt,Qt,Wt,Ξt) and ensure the large sample property of 
the parameter estimation. 

Specifically, we embed the dynamic model selection (DMS) and 
dynamic model average (DMA) into the above model. Especially, DMS is 
a special example of DMA model. In doing so, we intend to automatically 
achieve different forgetting speed according to different market condi-
tions, avoiding the subjective error of artificial selection parameters. We 
now work with Mj, j = 1, 2, …, J models as follows: 

x(j)t = λf
t f

(j)
t + λy

t yt + μt (7)  

[
yt

f (j)t

]

= ct + θt,1

[
yt− 1

f (j)t− 1

]

+…+ θt,p

[
yt− p

f (j)t− p

]

+ δt’ (8)  

where xt
(j) is subset of xt; ft(j) is the potential factor extracted from the 

corresponding xt
(j). Because xt

n consists of n variables, DMA consists of 
2n − 1 variable combinations used to extract the forgetting factor, which 
can avoid artificial selection. 

We define π(t|t− 1,j) = Pro(Lt = j|Yt− 1), in which Yt− 1 = {y1,…,yt− 1}, 
representing the probability that model j applies in the period t. Lt refers 
to each concrete variable combination, and Lt = j represents that the j 
variable combination is selected. In order to simplify the calculation and 
ensure the fitting accuracy, this paper is based on the fast recursive al-
gorithm similar to Kalman Filtering adopted by Poole and Raftery 
(2000), in which, we assume the initial value of π(t|t− 1,j) is π(0|0,j)(j = 1,2, 
…,J), introduce the forgetting factorα(0 < α ≤ 1), and get the simplified 
probability prediction model and updated equation: 

πt|t− 1,j =
πα

t− 1|t− 1,j
∑J

l=1πα
t− 1|t− 1,l

(9)  

πt|t,j =
πt|t− 1,jfj

(
yt|Yt− 1

)

∑J
l=1πt|t− 1,lfl

(
yt|Yt− 1

) (10)  

where fj(yt|Yt− 1) is a measure of fit of model j. According to Koop and 
Korobilis (2013), we assume the initial values for the factor ft, the time- 
varying coefficient in the state equation λt andβt, the time-varying 
covariance matrix Vtand Qt as well as πt|t− 1,j are f0, λ0, V0, β0, Q0 
andπ0|0,j, respectively. These intial values are set as follows: 

f0 ∼ N(0, 4), λ0 ∼ N
(
0, 4× In(s+1)

)
, β0 ∼ N(0,VMIN), (11)  

V0 = 1× In,Q0 = 1× Is+1, π0|0,j =
1
J

(12)  

3.2. Connectedness based on high-dimensional time-varying factor- 
augmented VAR model 

In order to quantitatively analyze the fluctuation characteristic 
across markets and sectors from the perspective of spillover, Diebold and 
Yilmaz (2009, 2012) proposed the measure between total volatility and 
directional volatility correlation, which can reveal the level of volatility 

spillover in different markets. We first express the generalized predic-
tion error variance decomposition (GFEVD) in the sense that: 

(ΘH)j,k =
σ− 1

kk
∑H

h=0

(
(ΨhΣ)j,k

)2

∑H
h=0(ΨhΣΨ′

h)j,j

(13)  

where σkk = (Σ)k, k is the standard deviation of the error term, this 
equation represents the contribution of k variable about the prediction 
error variance of element j at the horizontal h, we standardized it ac-
cording to the row and can get the following result: 
(

Θ̃H

)

j,k
=

(ΘH)j,k

∑N

k=1
(ΘH)j,k

(14)  

where 
∑N

j=1

(

Θ̃H

)

j,k
= 1 and 

∑N
j,k=1

(

Θ̃H

)

j,k
= N, Diebold and Yilmaz 

(2012) define the total correlation as the share of the error in the pre-
diction except for the error itself. 

CH = 100⋅

∑
j∕=k

(
Θ̃H

)

j,k
∑

Θ̃H
= 100⋅

⎛

⎝1 −
Tr
{

Θ̃H

}

∑
Θ̃H

⎞

⎠ (15)  

where Tr{⋅} is the rank operator; 
∑

Θ̃H refers to the sum of all the ele-
ments in the Θ̃H matrix. The total correlation is the relative contribution 
of the other variables in the system to the prediction variance. In other 
words, the contagion effects of other variables on j and the contagion 
effects of variable j on other variables can be expressed as follows: 

CH
j←⋅ = 100⋅

∑N

k=1,k∕=j

(
Θ̃H

)

j,k
∑

Θ̃H
(16)  

CH
j→⋅ = 100⋅

∑N

k=1,k∕=j

(
Θ̃H

)

k,j
∑

Θ̃H
(17) 

Therefore, the total net directional spillover effect among heteroge-
neous variables can be expressed as follows: 

CH
j = CH

j→⋅ − CH
j←⋅ (18)  

where Cj
H helps determine whether variable j is driving the network (if 

Cj
H > 0) or driven by the network (if Cj

H < 0). 
Finally, we break down the net total directional spillover index to 

examine the bidirectional network spillover by computing the net 
pairwise directional spillovers. 

CH
jk = 100⋅

(
Θ̃H

)

k,j
−
(

Θ̃H

)

j,k
∑

Θ̃H
(19) 

If Cjk
H > 0(Cjk

H < 0), then variable j is a net transmitter (receiver) of 
spillover effect to (from) variable k. 

By employing the spillover index approach based on the high- 
dimensional time-varying factor-augmented VAR model, we can study 
the volatility spillover effects of the COVID-19 on energy markets at 
different time periods. Moreover, the extended high-dimensional time- 
varying factor-augmented VAR model employed in this paper can not 
only describe the volatility spillover effect in different variables in a 
better way, but also distinguish the heterogeneity characteristics of the 
spillover effect in different period. 

4. Data 

In order to explore the impact of the COVID-19 on Chinese energy 
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industry as well as the potential features of the impact, we obtain the 
original data of the number of the accumulated confirmed COVID-19 
cases as well as the stock prices of nine energy sub-sectors in China. 
These energy sub-sectors include oil exploitation (OE), coal mining 
(CM), other mining (OM), petrochemical (PE), power supply equipment 
(PSE), electrical automation equipment (EAE), power (POW), gas (GAS) 
and optoelectronics sectors (OPT). Note that we define these industries 
as energy sectors according to the Shenwan Industry Classification 
Standard of China. 

In particular, we use the stochastic volatility (SV) model proposed by 
Chan and Grant (2016) to estimate the stock price volatility for the 
above nine energy sectors. Since the SV model is directly related to the 
diffusion process of financial and economic variables, it is assumed that 
time-varying variance follows an unobservable random process and does 
not completely depend on past observations. Therefore, the volatility 
sequence measured by the SV model is more robust to misspecification 
and to dramatic changes in the time series than the GARCH model, and it 
can better describe the fat-tailed characteristics of high-frequency var-
iables. Next, we briefly introduce the SV model as follow: 

rt = μr + εr
t , εr

t ∼ N
(
0, eht

)
(20)  

ht = μh + χh(ht− 1 − μh)+ εh
t , εh

t ∼ N
(
0,ω2

h

)
(21)  

where rt denotes one specified energy sector’s stock returns given by rt 
= ln pt − ln pt− 1, in which pt represents stock prices; εt

r and εt
h are 

normally distributed disturbance terms; μh is an conditional mean, and ht 
is the log-volatility of an energy sector’s stock price. Eq. (20) is the 
observation equation, while Eq. (21) is the conditional variance equa-
tion of SV model. The log volatility of estimated from the SV model are 
employed in this study to measure stock price volatility for the nine 
Chinese energy sub-sectors. 

For the measurement of the COVID-19 pandemic, we make use of the 
growth rate of the number of the accumulated confirmed COVID-19 
cases. Finally, our sample period spans from January 20, 2020 to April 
20, 2021 and all original data are obtained from the Wind database of 
China. 

Table 1 presents descriptive statistics of all concerned series. The 
statistics show that four volatility series, i.e., the stock price volatility of 
other mining (OM), power supply equipment (PSE), electrical automa-
tion equipment (EAE) and optoelectronics sectors (OPT) have relatively 
higher mean values than the other volatility series, proving that the 
stock prices of the four sectors have higher volatilities than those of the 
other energy sectors on average during the sample period. Furthermore, 

the results from the skewness, kurtosis and JB tests show that all vari-
ables except the stock price volatility of electrical automation equip-
ment (EAE) sector are non-normally distributed. In addition, Q (20), Q2 

(20) and LM (20) tests indicate that nine stock price volatility series we 
consider are autocorrelated and exhibit ARCH errors, and the results 
from ADF test show that all concerned series are stationary at the sig-
nificance level of at least 10%. All these results support choosing a HD- 
TVP-FAVAR model. 

Table 2 presents the pairwise correlation coefficients and shows that 
the COVID-19 pandemic tends to positively correlate with the stock 
price volatility series of the concerned nine energy sectors. Moreover, 
the COVID-19 pandemic shows stronger correlations with oil exploita-
tion, electrical automation equipment and gas sectors, providing pre-
liminary evidence of closer relationship between the COVID-19 shock 
and the three energy sectors. Nevertheless, simple correlation analysis 
could be misleading because of temporal instability of correlation co-
efficients and cannot directly uncover the hidden causal structures. 
Therefore, in the following empirical analysis, we use the HD-TVP- 
FAVAR model to make a more profound exploration of the dynamic 
impact of the COVID-19 on the Chinese energy markets. 

5. Empirical results 

First, we use Bayesian multi-step moving Gibbs sampling method to 
implement parameter estimations of the HD-TVP-FAVAR model. Spe-
cifically, we set the sampling frequency to 11,000 times, and use the 
results of the first 1000 times as “burn-in” with the aim of avoiding the 
influence of the initial value on the parameter estimation. The impulse 
responses of the nine Chinese energy sectors to the COVID-19 are thus 
estimated and shown in Fig. 1. 

We find from Fig. 1 that the COVID-19 pandemic aggravates the 
fluctuations of all concerned energy sectors, but there is significant 
heterogeneity in the impact on different sectors. Specifically, the 
COVID-19 pandemic has the greatest impact on the oil exploitation 
sector, followed by the power sector. When in the face of one standard 
deviation shock from the pandemic, the stock price volatility for the oil 
exploitation and power sectors increases by 0.2 and 0.1 percentages 
respectively at the first day, and takes almost 13 days to converge to 
zero. On the contrast, the impact of the COVID-19 pandemic on the 
petrochemical and power supply equipment sectors is relatively small. 
The maximum magnitude of the response of the stock price volatility in 
these two sectors to the COVID-19 is less than 0.02. In addition, we also 
conclude that the impact of the COVID-19 pandemic on the stock price 
volatility of all concerned energy sectors is mainly at the short-term, and 

Table 1 
Summary statistics for all variables.   

OE CM OM PE PSE EAE POW GAS OPT COVID 

Mean 1.26 1.734 1.938 1.288 2.502 1.984 1.09 1.431 2.245 1.77 
Variance 0.16 0.18 0.248 0.124 0.284 0.166 0.132 0.156 0.273 352.953 
Skewness 1.024*** 0.500*** 0.284** 0.922*** − 0.074 0.015 1.140*** 0.605*** 1.348*** 16.329*** 

(0.000) (0.001) (0.043) (0.000) (0.590) (0.912) (0.000) (0.000) (0.000) (0.000) 
Kurtosis 0.776** − 0.477** − 1.008*** 0.144 − 0.969*** − 0.538** 0.850** 0.726** 0.908*** 273.676*** 

(0.021) (0.039) (0.000) (0.488) (0.000) (0.014) (0.014) (0.027) (0.010) (0.000) 
JB 60.151*** 15.375*** 16.779*** 42.873*** 12.048*** 3.638 74.252*** 24.996*** 101.476*** 9527.238*** 

(0.000) (0.000) (0.000) (0.000) (0.002) (0.162) (0.000) (0.000) (0.000) (0.000) 
Q(20) 983.025*** 1677.113*** 1727.787*** 1737.236*** 2251.364*** 2134.914*** 1822.337*** 1705.299*** 2435.743*** 20.133** 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.016) 
Q2(20) 642.631*** 1239.093*** 1310.382*** 1326.796*** 2015.174*** 1575.056*** 1436.834*** 978.698*** 2353.257*** 0.006 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (1.000) 
LM(20) 230.945*** 179.570*** 63.005*** 221.880*** 218.445*** 59.123*** 134.183*** 94.971*** 38.267*** 0.024 

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (1.000) 
ADF − 4.197*** − 2.952** − 2.893** − 2.669* − 4.807*** − 5.985*** − 6.251 − 5.456*** − 3.828*** − 40.250*** 

(0.005) (0.041) (0.047) (0.081) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Note: This table provides descriptive statistics (namely, mean, variance, skewness, kurtosis, JB, Q (20), Q2 (20), LM (20) and ADF for each variable used in our 
empirical analysis. COVID represents the growth rate of cumulative confirmed cases of COVID-19; OE, CM, OM, PE, PSE, EAE, POW, GAS and OPT denote stock price 
volatility series of oil exploitation, coal mining, other mining, petrochemical, power supply equipment, electrical automation equipment, power, gas and optoelec-
tronics sectors, respectively. *, ** and *** indicate the significance levels of 10%, 5% and 1%, respectively. The numbers in parentheses are corresponding p-values. 
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the fluctuations of each industry show a trend of first rising and then 
falling, which further implies that the COVID-19 pandemic has caused 
significant risk spillover effects among various energy sectors of China. 
In other words, the COVID-19 pandemic is likely to trigger a risk co- 
movement phenomenon in energy markets, which would intensify 

potential systemic risks. 
Next, in order to intuitively observe the magnitude of the spillover 

effect of the COVID-19 pandemic on heterogenous energy sectors, we 
turn to estimate the dynamic spillover index between the COVID-19 and 
all concerned energy sectors based on the high-dimensional time- 

Table 2 
Correlation coefficients among the key variables.   

OE CM OM PE PSE EAE POW GAS OPT COVID 

OE 1.000 0.499 0.666 0.784 0.298 0.435 0.346 0.501 0.455 0.217 
CM 0.499 1.000 0.784 0.532 0.549 0.548 0.493 0.628 0.179 0.149 
OM 0.666 0.784 1.000 0.730 0.556 0.677 0.513 0.656 0.414 0.195 
PE 0.784 0.532 0.730 1.000 0.470 0.572 0.428 0.462 0.467 0.132 
PSE 0.298 0.549 0.556 0.470 1.000 0.838 0.558 0.623 0.357 0.072 
EAE 0.435 0.548 0.677 0.572 0.838 1.000 0.628 0.783 0.440 0.220 
POW 0.346 0.493 0.513 0.428 0.558 0.628 1.000 0.715 0.262 0.194 
GAS 0.501 0.628 0.656 0.462 0.623 0.783 0.715 1.000 0.581 0.280 
OPT 0.455 0.179 0.414 0.467 0.357 0.440 0.262 0.581 1.000 0.196 
COVID 0.217 0.149 0.195 0.132 0.072 0.220 0.194 0.280 0.196 1.000 

Note: This table presents the correlation coefficients among the main concerned variables. COVID represents the growth rate of cumulative confirmed cases of COVID- 
19; OE, CM, OM, PE, PSE, EAE, POW, GAS and OPT denote stock price volatility series of oil exploitation, coal mining, other mining, petrochemical, power supply 
equipment, electrical automation equipment, power, gas and optoelectronics sectors, respectively. 

Fig. 1. The impulse responses of heterogeneous energy sectors to the COVID-19 pandemic. Note: Covid ↑ → means the response to the COVID-19 pandemic shock. 
OE, CM, OM, PE, PSE, EAE, POW, GAS and OPT denote stock price volatility of oil exploitation, coal mining, other mining, petrochemical, power supply equipment, 
electrical automation equipment, power, gas and optoelectronics sectors, respectively. 
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b) Net spillover effects of COVID-19
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a) Total spillover effects of COVID-19

Fig. 2. The total and net spillover effects of COVID-19 to all energy sectors. Note: The gray areas provide spillovers. Total spillovers of COVID-19 represent 
directional ‘to’ spillovers to all energy sectors, and net spillovers are further calculated by directional ‘to’ spillovers from directional ‘from’ spillovers. If net spillovers 
are positive, then the COVID-19 is a net transmitter of spillovers. 
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varying factor-augmented VAR model. The results of the total and net 
spillover effects of COVID-19 on all energy sectors are displayed in 
Fig. 2. It is clear that during January to June of 2020 and February to 
April of 2021, i.e., the two sub-periods when the confirmed COVID-19 
cases sharply increase in China, the total and net spillovers of the 
COVID-19 pandemic to all energy sectors are obviously higher than the 
other sub-periods. This suggests a significant time-varying risk trans-
mission from the COVID-19 to Chinese energy market. Furthermore, we 
also find that such spillovers in the former sub-period are larger than 
those in the latter sub-period, indicating the COVID-19 pandemic has 
imposed an unconventional impact on energy markets when there is a 
dramatic rise in panic due to the first outbreak of the pandemic. 

We further estimate the pairwise net volatility spillovers of COVID- 
19 to each energy sector, in order to determine whether the COVID-19 
shock is a net transmitter of spillover effect to individual energy sec-
tors. The corresponding results are shown in Fig. 3. The overall evidence 
confirms that the responses of energy sectors to the pandemic shock are 
time-varying. We still observe that the net volatility spillovers of the 
pandemic remain positive to all underlying energy sectors during the 
two above-mentioned sub-periods, while are negative for the other sub- 
periods. On the other hand, we also find that the responses of different 
energy sectors are obviously heterogenous. For the first sub-period, i.e., 
from January to June of 2020, there are positive net pairwise volatility 
spillovers of the COVID-19 pandemic to all nine energy sectors except 
the power supply equipment sector. This implies that the COVID-19 

pandemic serves as a risk transmitter to eight out of nine concerned 
energy sectors in this sub-period. Moreover, the volatility spillover is not 
only the highest, but also lasts longest for oil exploitation sector, fol-
lowed by the power and gas sectors. While for the second sub-period, i. 
e., from February to April of 2021, the COVID-19 pandemic serves as a 
risk transmitter to all underlying energy sectors except the gas sector, 
and has relatively higher volatility spillovers to the power, coal mining 
and petrochemical sectors. These findings support the heterogeneous 
impacts of the COVID-19 on different energy sectors, and confirm the 
time-varying nature of the impacts. In fact, due to the skyrocketing 
infection rate for the early stage of the COVID-19, the restriction of the 
population from outdoor activities has severely affected the energy 
consumption in different areas, including business, industries, tourism, 
manufacturing, transportation and the residential sectors. The demand 
and prices for oil and gas have been affected the most under the gloomy 
scenario and lockdown policy, which turns to be increased uncertainty 
and higher spillovers from the COVID-19 for these energy sectors. 

We also plot the net directional volatility spillover network topol-
ogies among all concerned series for the two above-mentioned sub-pe-
riods in Figs. 4 and 5, respectively. As shown in Fig. 4, we intuitively 
observe that five energy sectors, namely the oil exploitation, gas, elec-
trical automation equipment, petrochemical and power sectors, are the 
domain risk transmitters within the risk network model consisting of 
nine concerned energy sectors during January to June of 2020. Mean-
while, we have concluded that the COVID-19 remains positive 
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Fig. 3. The pairwise net spillover effects of COVID-19 to each energy sector. Note: The gray areas in the figure provide pairwise net spillovers. Positive ones indicates 
that the COVID-19 is a net transmitter of spillovers to specified energy sub-sector. 
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directional net spillovers for these five energy sectors, especially the oil 
exploitation and gas sectors. This further suggests that the uncertainty 
shock originated from the COVID-19 pandemic could be ultimately 
transmitted to all energy sectors through the five sectors, resulting in 
possible risk contagions across different energy markets. However, the 

results differs greatly when it comes to the sub-period from February to 
April of 2021. The domain risk transmitters within the risk network 
model consisting of nine concerned energy sectors turn to be another 
four energy sectors, including coal mining, petrochemical and opto-
electronics sectors. The COVID-19 pandemic shock is likely to induce 
volatility co-movement in the Chinese energy markets through first 
spilling over into these four sectors. 

The risk correlation among the heterogeneous departments is also 
measured based on the similarity matrix and the adjacency matrix. In 
particular, we measure the cosine correlation of each time node based on 
the risk characteristics of the covariates, and accurately screen the 
characteristics of the risk curve. Fig. 6 displays the characteristics of 
heterogeneous cross-sector risk correlations at specific time points 
during the sub-period of January to June of 2020. It is obvious that 
during the sub-period, with the intensification of the COVID-19 
pandemic, the correlation among the nine energy markets selected in 
this paper has increased significantly. In particular, in February and 
March when the spread of the pandemic was the most serious, the color 
of the similar matrix was gradually covered by yellow, which fully re-
flected that the dependence among different energy sub-sectors was 
significantly increased. As the COVID-19 pandemic was brought under 
control in April 2020, the number of newly diagnosed also showed a 
downward trend, and meanwhile, the duration of the co-movement 
among different markets also exhibits a declining trend to a certain 
extent. However, with the intensification of overseas imported risks, 
some regions (e.g., Heilongjiang, Jilin, Beijing and Xinjiang) of China 
experienced a second outbreak of the COVID-19 from May to June of 
2020. As expected, the color of the similar matrix turned yellow, sug-
gesting that risk contagion between the energy sub-sectors happens 
when the pandemic comes back. These findings confirm previous results 
that energy sectors were indeed affected by the pandemic, and the risk 
contagion among different energy sectors has a significant time-varying 
nature, with the risk contagion highly sensitive to the COVID-19 related 
uncertainty. 

Furthermore, we construct the network effect of risk into a unified 
confidence interval, and evaluates its nonlinearity or deviation from 
ordinary linear regression, thereby forming risk differences among 
heterogeneous markets. However, it should also be pointed out that, 
when describing the risk resonance characteristics among different 
markets during the COVID-19 pandemic period, we found that different 
markets did not show the same shock characteristics. In other words, the 
impact of the pandemic on different markets has asymmetric charac-
teristics. However, because the systemic risk is caused by the positive 
correlation among heterogeneous sectors, that is, the increase in the 
positive dependence of heterogeneous market risk tends to aggravate 
the systemic risk. In order to further describe the asymmetric charac-
teristics of cross-market risk spillover effect, we divide risk transmission 
into “direct co-action, uncertainty co-action and inverse co-action”, and 
the specific results are shown in Fig. 7. As shown, during the period from 
January to March 2020, the number of white grids shows a trend of 
gradual increase, which means that the risk spillover effect among 
heterogeneous energy sectors presents a significant positive correlation. 
As the interest rate in the inter-bank lending market can be regarded as 
the proxy variable of monetary policy, its adjustment process is mainly 
counter-cyclical regulation. Therefore, for the interest rate market 
marked with 10, its correlation with other markets is mainly black, 
which also reflects the realistic characteristics of counter-cyclical regu-
lation of China’s monetary policy. As mentioned above, under the strong 
leadership of the CPC Central Committee with Secretary Xi Jinping at its 
core, and the arduous efforts of the people across the country with great 
sacrifices, major strategic achievements have been achieved in the 
prevention and control of the COVID-19 pandemic. The number of 
newly diagnosed patients in China dropped to the lowest level. At this 
time, nodes in the network graph gradually show negative correlation 
during April 2020, that is, the earlier implied risk aggregation phe-
nomenon begins to scatter, that is, the color of the graph in April 2020 is 

Fig. 4. The risk transmission network of COVID-19 and Chinese energy sectors 
during 2020M1 to 2020M6. Note: The size of the nodes reflects the strength of 
the total net spillovers. The larger the node, the stronger the net spillover effect. 
The thickness of the line and the size of the arrow indicates the strength of the 
pairwise net spillovers. 

Fig. 5. The risk transmission network of COVID-19 and Chinese energy sectors 
during 2021M2 to 2021M4. Note: The size of the nodes reflect the strength of 
the total net spillovers of the COVID-19 shock. The larger the node, the stronger 
the net spillover effect. The thickness of the line and the size of the arrow in-
dicates the strength of the pairwise net spillovers. 
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gray. However, due to the adverse impact of overseas imported risks, the 
COVID-19 pandemic in May–June 2020 began to rebound, which made 
the risks among different markets begin to show positive linkage and 
strong “resonance” spillover effect. 

6. Conclusions 

The unconventional shocks originated from major emergencies not 
only pose a great threat to life safety and health of people, but also cause 
negative impacts on production and consumption and bring huge chal-
lenges to social and economic stability. Therefore, effectively moni-
toring the impacts of major emergencies on the real economy and 
financial markets, and capturing the transmission direction, magnitude 
and path of the shocks between heterogenous markets are not only 

helpful to improve governments’ response mechanism and risk pre-
vention, but also help to avoid systemic risks due to risk contagion across 
sectors and markets and finally, to maintain economic development and 
social stability. 

This paper employs the COVID-19 pandemic that broke out in early 
2020 as an unconventional pandemic shock, and utilizes a HD-TVP- 
FAVAR model to assess the dynamic impacts of the COVID-19 
pandemic on the nine energy sub-markets in China. In particular, this 
study analyzes the time-varying volatility spillover effects of the 
pandemic to these energy sub-industries. We find that the net volatility 
spillovers of the pandemic remain positive to all underlying energy 
sectors during January to June of 2020 and February to April of 2021, 
supporting the presence of the risk spillover effect of the COVID-19 to 
energy markets. In addition, our empirical evidence also suggests that 

Fig. 6. The risk similarity matrix of heterogeneous energy sectors and the COVID-19 pandemic during 2020M1 to 2020M6. Note: The colors used to represent the 
degree of similarity vary from negative (blue) to positive correlation (yellow) in the grids. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 

D.-K. Si et al.                                                                                                                                                                                                                                    



Energy Economics 102 (2021) 105498

10

the spillover effects vary among different energy sub-sectors. For the 
sub-period of January to June of 2020, the volatility spillover of the 
COVID-19 is not only the highest, but also lasts longest for oil exploi-
tation sector, followed by the power and gas sectors. The finding is in 
line with recent evidence that the oil exploitation sector, followed by the 
power and gas sectors, is affected the most by the pandemic owing to 
negative supply and demand shocks and high uncertainty shock in oil, 
power and gas sectors during the most serious stage of the COVID. While 
for the latter sub-period, i.e., February to April of 2021, the COVID-19 
turns to impose relatively higher volatility spillovers to the power, 
coal mining and petrochemical sectors. 

This study has several policy implications. First, given that energy 
markets could be largely affected by extreme events including COVID- 
19, the Chinese governments should take appropriate energy policies 

to avoid possible energy insecurity and poverty, and to improve energy 
price mechanism, and to encourage the transition to a more renewable 
and sustainable energy system. Second, the spillover effects could be 
strengthened in the short term, and are heterogeneous among different 
energy sub-sectors and across different periods of time, governments 
should comprehensively consider different development stages of both 
energy industries and major emergencies, and thus purposefully adjust 
policy tools for risks from different sources to avoid negative impacts of 
improper policy implementation on real economy and financial markets. 
Third, since abnormal fluctuations in energy stock sectors, especially for 
those energy sectors highly sensitive to external uncertainty shocks, are 
easily contagious and could induce the resonance of the entire risk 
network during major emergencies, governments should monitor 
abnormal fluctuations in these sectors and effectively control the 

Fig. 7. The risk adjacency matrix of heterogeneous energy sectors and COVID-19 during 2020M1 to 2020M6. Note: the highly positive correlation (in white), the 
highly negative correlation (in gray) and the weak correlation (in black) are shown for each month of interest. 
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direction and intensity of policy tools, which is essential for reducing the 
risk of cross-contagion between different energy sectors. 

The implications from our research can potentially instigate further 
research. The ongoing COVID-19 pandemic can impact energy in-
dustries profoundly and persistently. This is an important starting point. 
The next step, and possible extension, is to analyze the long-term effects 
of the COVID-19 on the investment and financial decisions as well as 
innovation activities of specific energy industries, given that the 
pandemic also could bring some dividends and opportunities to energy 
industries, like promoting the transition to a more renewable and sus-
tainable energy system. 
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Baruník, J., Křehlík, T., 2018. Measuring the frequency dynamics of financial 
connectedness and systemic risk[J]. J. Financ. Econ. 16 (2), 271–296. 

Boehm, C.E., Flaaen, A., Pandalai-Nayar, N., 2019. Input linkages and the transmission of 
shocks: Firm-level evidence from the 2011 Tōhoku earthquake. Rev. Econ. Stat. 101 
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