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Abstract

Background: The COVID-19 pandemic has highlighted the need for targeted local

interventions given substantial heterogeneity within cities and counties. Publicly

available case data are typically aggregated to the city or county level to protect

patient privacy, but more granular data are necessary to identify and act upon

community-level risk factors that can change over time.

Methods: Individual COVID-19 case and mortality data from Massachusetts were

geocoded to residential addresses and aggregated into two time periods: “Phase 1”
(March–June 2020) and “Phase 2” (September 2020 to February 2021). Institutional

cases associated with long-term care facilities, prisons, or homeless shelters were

identified using address data and modeled separately. Census tract sociodemographic

and occupational predictors were drawn from the 2015–2019 American Community

Survey. We used mixed-effects negative binomial regression to estimate incidence

rate ratios (IRRs), accounting for town-level spatial autocorrelation.

Results: Case incidence was elevated in census tracts with higher proportions of

Black and Latinx residents, with larger associations in Phase 1 than Phase 2. Case

incidence associated with proportion of essential workers was similarly elevated in

both Phases. Mortality IRRs had differing patterns from case IRRs, decreasing less

substantially between Phases for Black and Latinx populations and increasing

between Phases for proportion of essential workers. Mortality models excluding

institutional cases yielded stronger associations for age, race/ethnicity, and essential

worker status.

Conclusions: Geocoded home address data can allow for nuanced analyses of

community disease patterns, identification of high-risk subgroups, and exclusion of

institutional cases to comprehensively reflect community risk.
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1 | INTRODUCTION

The COVID-19 pandemic has exacerbated existing racial and ethnic

health and socioeconomic disparities in the United States. Notably,

Black/African American, Latinx, and Indigenous populations have

suffered disproportionate morbidity and mortality,1–5 as well as

financial loss from subsequent economic disruption.6 These disparities

are substantially due to systemic racism and its consequences that

affect infectious disease transmission and recovery, including unequal

access to medical care,7,8 suboptimal housing characteristics,9,10 and

employment in essential services with minimal physical distancing.11

While the literature highlights the significant burden on communities

of color in the United States as a result of the pandemic, there are

few analyses to date that evaluate these disparities at higher

resolution than the county level, and even fewer that disentangle

cases originating in institutional congregate settings. Using stratified,

higher-resolution data, we may be able to identify important

community-level conditions that contribute to the clear and persistent

disparities induced by the pandemic.

In particular, it has been widely recognized that older Americans,

especially individuals living in nursing homes or assisted-living

facilities, have faced significantly elevated risk of COVID-19 morbidity

and mortality, especially early in the pandemic.12–14 Similarly, high

case burdens have been observed in other institutional residential

settings, such as prisons and homeless shelters.15,16 Models using

total case and mortality rates without removing or controlling for

these institutional settings may obfuscate trends or risk factors in

community transmission. Since the racial and ethnic composition of

institutional and non-institutional settings may differ, disparities may

be better characterized using higher-resolution data. In addition,

characteristics and risk factors associated with disease transmission

and severity within institutional settings may not coincide with those

driving COVID-19 transmission within non-institutional community

settings.17 Efforts to disaggregate institutional and community

outcomes would inform a more comprehensive understanding of

health disparities in both institutional and non-institutional settings, in

turn directing testing efforts and informing mitigation activities.

Analyses using highly resolved geospatial data provide the tools

to identify specific, local factors that contribute to disease outcomes

and hone targeted efforts to intervene and support communities.

Such data are particularly useful for local public health departments,

for whom local data from their community is more valuable than

aggregated larger-scale trends. Local case data coupled with

community-level sociodemographic data at the census-tract level can

provide public health leaders with actionable and highly relevant local

information and support pandemic response.18–21

State public health departments have served a critical role during

the pandemic in collecting and aggregating individual patient informa-

tion across municipalities within the state and communicating relevant

information back to local leaders. Due to patient privacy

regulations,22 data on residential addresses associated with

COVID-19 that would support generating census tract resolution case

estimates and distinguishing institutional from non-institutional cases

are not publicly available. Cross-sectoral partnerships and data sharing

agreements between state public health agencies and academic

researchers can support analyses that integrate protected public

health data with community-level characteristics. This study reflects

one such partnership between the Massachusetts Department of

Public Health (MDPH) and academic researchers at Boston University

School of Public Health to inform state and local interventions to miti-

gate COVID-19 risk and associated health disparities.

In this study, we geocoded residential home addresses (street,

city/town, and zip code) of individual COVID-19 cases confirmed via

nucleic acid amplification tests (NAAT) from the first year of the

COVID-19 pandemic in Massachusetts (MA), as provided by MDPH.

We then analyzed community-level sociodemographic and occupa-

tional predictors of outcomes at the census-tract level. The goals of

this project were to (1) estimate associations between community-

level risk factors and COVID-19 cases and deaths by census tract in

the state; (2) evaluate the sensitivity of these associations to the

exclusion of institutional cases and deaths, given the relevance of

institutional settings to larger-scale disease patterns; and (3) assess

changes over time in these associations during the initial two periods

of high case burdens in the state.

2 | METHODS

2.1 | Data sources

Individual-level COVID-19 case and mortality data from March 2020–

February 2021, including residential address and date of diagnosis or

death, were provided by MDPH. Residential addresses were

geocoded using a cascade matching geocoding method developed by

combining MassGIS Address Points for Geocoding23 and ArcGIS

Business Analyst geocoding locators (© Esri, Redlands, CA), and

assigned to the census tract associated with home locations (1462

tracts within MA after dropping five tracts with zero cases or zero

population). Cases and deaths were aggregated into two time periods

for analysis: “Phase 1” (March–June 2020) and “Phase 2” (September

2020 to February 2021). The 2020 summer months were a period of

reduced COVID-19 burden of cases/deaths in MA; the exclusion of

those months in our modeling allowed comparison of periods of time

with similar levels of disease burden.

2.2 | Identification of institutional outcomes

Using geocoded addresses, we identified institutional cases and

deaths among individuals residing in a long-term care facility (LTCF),

prison, or homeless shelter in MA. Locations and capacities of licensed

nursing homes, rest homes, and assisted-living facilities (collectively

aggregated to total number of LTCF beds) were obtained from

MassGIS.24 Likewise, locations of all state, county, and federal

correctional facilities in MA were obtained from MassGIS.25 Prison

data excluded temporary processing or treatment facilities without
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residential inmates. Locations of homeless shelters in MA were

provided by the MDPH Office of Population Health upon request.

2.3 | Community-level predictors

We obtained total population counts, as well as select social, occupa-

tional, housing, and demographic data at census tract resolution from

the most recent five-year (2015–2019) American Community Survey

(ACS).26 We evaluated potential predictors hypothesized to be associ-

ated with increased risk of disease transmission, disease severity,

and/or health disparities, including: population proportions of those

who identify as Black or African American, Hispanic or Latino (Latinx),

or American Indian or Alaska Native (AIAN); share of population with

ages greater than 80 years and share with ages under 20 years; per-

cent of population enrolled as undergraduate students or employed in

essential services; the number of LTCF beds per capita; the percent of

households with more than 1.5 persons per room; and housing unit

density (number of housing units per square mile). We defined “essen-
tial services” following the approach of the American Civil Liberties

Union (ACLU) Massachusetts.27 These variables are informed by and

consistent with our previous modeling work at the town level, in

which we used backwards model selection to select non-correlated

covariates (confirming that none of the independent variables had a

correlation of jrj > 0.60).28

2.4 | Statistical analysis

We used mixed-effects negative binomial regression models to gener-

ate incidence rate ratios (IRRs) and 95% confidence intervals for each

predictor in the model. We modeled case and death outcomes sepa-

rately for each Phase, and we fit case and death models inclusive and

exclusive of cases/deaths identified as institutional (yielding eight

models in total). A random effect of town (351 towns in MA) was

included to address within-town spatial autocorrelation of residuals

for nearby tracts. We used counts of cases or deaths at each census

tract as the outcome variable, with census tract population used as an

offset term to reflect consistent rates. Predictors that affected model-

ing estimates significantly or that demonstrated changes between the

Phases were retained in the models, as were predictors of a priori

interest to health disparities or specific COVID-19 risk factors regard-

less of statistical significance (e.g., housing unit density and proportion

of AIAN residents). All statistical analyses were conducted in R

(version 4.0.3)29 using the “glmmTMB” function from the glmmTMB

package (version 1.0.2.9).30

3 | RESULTS

Total cases, deaths, and average community characteristics differed

between Phase 1 and Phase 2 of the COVID-19 pandemic in

Massachusetts (Table 1). Phase 1 had substantially fewer cases than

Phase 2 (99,051 vs. 407,525), but more deaths (7285 vs. 6207). Com-

pared to Phase 1, non-institutional outcomes in Phase 2 accounted T
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for greater shares of total cases (96.6% vs. 80.1%) and deaths (57.0%

vs. 37.0%). Geocoding was highly successfully at matching individuals

with census tracts of residence, with each outcome group having at

least a 99.7% match rate; in total, 1360 cases (0.27%) were excluded

from the models due to inability to geocode to a census tract.

3.1 | Total cases and deaths

Our first models assessed the relationship between the total number

of COVID-19 cases and deaths in each census tract in Phase 1 and

Phase 2 (four models in total). These models included all cases and

deaths, including those in institutional settings.

3.1.1 | Models predicting total case incidence

Models of key predictors of COVID-19 cases by census tract in each

of the two phases are presented in Figure 1 (left points, in lighter

blue). Overall, census tract characteristics consistently associated with

increased risk of COVID-19 cases included higher population propor-

tions of essential workers, those without health insurance, Black or

Latinx residents, and number of LTCF beds per capita. By contrast,

proportion of residents aged 20 years or younger, proportion of

undergraduate students, and housing density were significantly asso-

ciated with decreased IRRs. Crowded housing, % aged over 80 years,

and proportion of AIAN residents were not statistically significantly

associated with tract-level COVID-19 case incidence rates. All associ-

ations were statistically stable between Phase 1 and Phase 2 (i.e., there

were no changes in directionality or statistical significance), but a few

variables had substantive attenuations in magnitudes (i.e., more than a

10% change in point estimates toward the null): IRRs for % Black

decreased from 1.20 (95% confidence interval [CI]: 1.16, 1.24) in

Phase 1 to 1.04 (1.03, 1.06) in Phase 2, % Latinx decreased from 1.37

(1.30, 1.44) to 1.16 (1.13, 1.19), LTCF beds decreased from 1.39

(1.35, 1.44) to 1.06 (1.04, 1.07), and % undergraduates increased from

0.83 (0.80, 0.86) to 0.93 (0.91, 0.94).

3.1.2 | Models predicting total mortality incidence

Models of key predictors of COVID-19 deaths by census tract in each

of the two phases are presented in Figure 1 (right points, in darker

blue). Overall, tract-level characteristics consistently associated with

increased risk of COVID-19 mortality included population proportions

of Black or Latinx residents, share of population aged over 80 years,

and number of LTCF beds per capita. The only variable consistently

associated with decreased risk of census-tract mortality rates was

proportion of undergraduate students. Crowded housing, proportion

of AIAN residents, and rate of uninsured individuals were not statisti-

cally significantly associated with tract-level COVID-19 deaths in

F I GU R E 1 Incidence rate ratios (IRR) for census tract-level factors included in the regression models for total cases (lighter blue, on left) and
total deaths (darker blue, on right) by phase of the pandemic in Massachusetts (Phase 1: March–June 2020, Phase 2: September 2020 to
February 2021). Inset for LTCF Beds variable provided to show IRRs for deaths, which are outside the scale of the other variables
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either phase. While most variables were statistically stable between

Phase 1 and Phase 2 (i.e., consistent directionality and statistical sig-

nificance), proportion of essential workers went from not statistically

significant in Phase 1 (IRR: 0.98 [0.90, 1.06]) to statistically signifi-

cantly positive in Phase 2 (IRR: 1.08 [1.03, 1.14]), and housing density

went from not statistically significant (0.94 [0.85, 1.03]) to statistically

significantly negative (0.89 [0.83, 0.97]). Other variables had substan-

tive attenuations in their point estimates between Phase 1 and Phase

2 (i.e., greater than 10% change toward the null): IRRs decreased for

proportion of Black residents (decreasing from 1.20 [1.11, 1.30] in

Phase 1 to 1.07 [1.01, 1.13] in Phase 2) and LTCF beds per capita

(decreasing from 2.53 [2.33, 2.74] to 1.70 [1.62, 1.78]), while IRRs

increased for proportion of residents aged 20 years or younger, albeit

to become statistically non-significant (increasing from 0.90 [0.82,

0.98] to 0.98 [0.92, 1.04]).

3.2 | Non-institutional cases and deaths

3.2.1 | Models predicting non-institutional case
incidence

Variables associated with non-institutional cases are shown in

Figure 2 (left points in lighter green). As with the models of all cases,

consistent, statistically significant positive associations in both Phase

1 and Phase 2 included proportions of Black and Latinx residents,

essential services workers, and those without health insurance. Pro-

portion of undergraduate students was the only consistent, statisti-

cally significant negative association for non-institutional cases.

Substantive attenuations toward the null between Phases 1 and

2 were exhibited in % Black (decreasing from 1.22 [1.18, 1.25] to 1.03

[1.01, 1.05]), % Latinx (decreasing from 1.36 [1.31, 1.42] to 1.13

[1.11, 1.16]), and % undergraduates (increasing from 0.83 [0.80, 0.86]

to 0.93 [0.91, 0.94]). LTCF beds per capita, population proportions of

AIAN residents, housing density, and share of individuals aged over

80 years were not statistically significant predictors of non-

institutional cases.

3.2.2 | Models predicting non-institutional death
incidence

Variables associated with non-institutional deaths are shown in

Figure 2 (right points in darker green). Consistent, statistically

significant positive associations in both Phase 1 and Phase 2 include

proportions of Black and Latinx residents, as well as the percent of

people aged over 80 years. No covariate was found to have statisti-

cally significant negative associations in both phases, though % aged

F I GU R E 2 Incidence rate ratios (IRR) for census tract-level factors included in the regression models for non-institutional cases (lighter green,
on left) and non-institutional deaths (darker green, on right) by phase of the pandemic in Massachusetts (Phase 1: March–June 2020, Phase 2:
September 2020 to February 2021). Non-institutional cases and deaths are defined as confirmed COVID-19 cases and deaths geolocated to an
address not affiliated with a long-term care facility, prison, or shelter

SPANGLER ET AL. 217



under 20 years was negative in Phase 1 (0.82 [0.75, 0.89]) and %

undergraduates was negative in Phase 2 (0.87 [0.81, 0.94]).

Substantive changes in point estimates were seen for % of workers in

essential services, which increased from 1.03 (0.96, 1.12) in Phase

1 to 1.14 (1.08, 1.21) in Phase 2, and for % Black, which decreased

from 1.32 (1.23, 1.41) to 1.14 (1.08, 1.20).

3.3 | Comparisons between total and non-
institutional cases and deaths

We observed some similarities and differences in predictors between

the models for total cases and deaths and for non-institutional cases

and deaths (Table 2). Most notably, the strongly positive associations

between LTCF beds per capita and total cases and deaths were

sharply reduced to statistical non-significance in the non-institutional

models, per our original hypotheses. All other variables had

confidence intervals that overlapped between the total and non-

institutional models, and estimates were similar across all remaining

variables in both phases between total and non-institutional cases.

However, a few substantive differences emerged in the IRR point

estimates from models with total versus non-institutional deaths,

albeit the confidence intervals overlapped. Associations between %

Black, % Latinx, % aged over 80 years, and % essential workers and

non-institutional deaths were greater than the associations with total

deaths across both phases. The largest absolute difference was for

the % Black variable in Phase 1 deaths, which was 1.20 (1.11, 1.30)

for total deaths and 1.32 (1.23, 1.41) for non-institutional deaths.

4 | DISCUSSION

By using individual geocoded addresses of COVID-19 cases and

deaths in MA, we were able to both evaluate community-level risk for

T AB L E 2 Incidence rate ratios (IRRs) for COVID-19 cases and deaths in MA census tracts, by total and non-institutional settings and phase of
the pandemic

COVID-19 Cases Incidence Rate Ratios (95% Confidence Interval)

Phase 1 Phase 2

Predictors Total Cases Non-Inst. Cases Total Cases Non-Inst. Cases

% Age < 20 0.95 (0.91, 0.99) 0.95 (0.92, 0.98)^ 0.96 (0.94, 0.98) 0.98 (0.96, 1.00)

% Age > 80 1.01 (0.97, 1.05)^ 1.02 (1.00, 1.05)^ 0.98 (0.96, 1.00)^ 0.99 (0.97, 1.01)^

% AIAN 1.02 (0.99, 1.04) 1.01 (0.99, 1.03) 1.01 (0.99, 1.02) 1.00 (0.98, 1.01)

% Black 1.20 (1.16, 1.24) 1.22 (1.18, 1.25) 1.04 (1.03, 1.06) 1.03 (1.01, 1.05)^

% Latinx 1.37 (1.30, 1.44) 1.36 (1.31, 1.42) 1.16 (1.13, 1.19) 1.13 (1.11, 1.16)

% Uninsured 1.06 (1.03, 1.09) 1.05 (1.03, 1.08) 1.03 (1.01, 1.04) 1.02 (1.01, 1.04)

% Essential Workers 1.08 (1.04, 1.11) 1.13 (1.10, 1.17) 1.09 (1.07, 1.11) 1.13 (1.11, 1.15)

LTCF Beds per 100 pop. 1.39 (1.35, 1.44)^ 1.02 (1.00, 1.04) 1.06 (1.04, 1.07)^ 1.01 (0.99, 1.02)

% Undergrads 0.83 (0.80, 0.86) 0.83 (0.81, 0.86) 0.93 (0.91, 0.94) 0.92 (0.91, 0.94)

% Crowding (1.5+/Room) 1.01 (0.98, 1.04) 1.00 (0.98, 1.02) 0.99 (0.98, 1.01) 0.99 (0.98, 1.01)

Housing Density (Units/mi2) 0.95 (0.91, 0.99) 0.95 (0.92, 0.98) 0.96 (0.94, 0.98) 0.98 (0.96, 1.00)

COVID-19 Deaths Incidence Rate Ratios (95% Confidence Interval)

Phase 1 Phase 2

Predictors Total Deaths Non-Inst. Deaths Total Deaths Non-Inst. Deaths

% Age < 20 0.90 (0.82, 0.98) 0.82 (0.75, 0.89)^ 0.98 (0.92, 1.04) 0.94 (0.88, 1.00)

% Age > 80 1.15 (1.06, 1.25)^ 1.25 (1.16, 1.35)^ 1.17 (1.11, 1.23)^ 1.26 (1.19, 1.32)^

% AIAN 0.98 (0.92, 1.05) 1.00 (0.95, 1.06) 1.00 (0.96, 1.04) 0.98 (0.95, 1.02)

% Black 1.20 (1.11, 1.30) 1.32 (1.23, 1.41) 1.07 (1.01, 1.13) 1.14 (1.08, 1.20)^

% Latinx 1.23 (1.11, 1.36) 1.28 (1.16, 1.41) 1.14 (1.07, 1.22) 1.21 (1.13, 1.29)

% Uninsured 0.99 (0.91, 1.07) 1.00 (0.93, 1.08) 1.02 (0.97, 1.08) 1.01 (0.96, 1.07)

% Essential 0.98 (0.90, 1.06) 1.03 (0.96, 1.12) 1.08 (1.03, 1.14) 1.14 (1.08, 1.21)

LTCF Beds 2.53 (2.33, 2.74)^ 1.02 (0.96, 1.08) 1.70 (1.62, 1.78)^ 1.01 (0.97, 1.05)

% Undergrads 0.88 (0.81, 0.97) 0.92 (0.84, 1.01) 0.85 (0.79, 0.91) 0.87 (0.81, 0.94)

% Crowding 1.01 (0.94, 1.08) 1.01 (0.95, 1.07) 1.00 (0.95, 1.05) 0.99 (0.94, 1.04)

Housing Density 0.94 (0.85, 1.03) 1.02 (0.93, 1.11) 0.89 (0.83, 0.97) 0.97 (0.90, 1.05)

Note: Bold values indicate non-overlapping confidence intervals between total and non-institutional outcomes (rows); carets (^) indicate non-overlapping

confidence intervals between cases and deaths within the same type of outcome (columns).
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these outcomes at high spatial resolution and distinguish institutional

outcomes from those in community models of disease over time.

Removing institutional cases from our models, especially in the con-

text of mortality endpoints where institutional facilities contributed

an appreciable percentage of total deaths, allowed for a more nuanced

understanding of local risk and disease drivers. Additionally, assessing

trends over time across both case and mortality outcomes shed light

on differential case fatality by subpopulation over time. Overall, our

efforts highlight the value of collaboration between state public health

departments and academic researchers to access, analyze, and inter-

pret COVID-19 data to maximize its effective use in public health

practice.

We observed key disparities in models of both cases and death

outcomes associated with the proportion of Black and Latinx

populations by tract, findings that parallel those at town-level resolu-

tion across a shorter time period, as well as findings from other stud-

ies.28,31–34 The variability observed in the size of these estimates over

time reinforces how these race and ethnicity variables reflect social

constructs and not biological or constant risk factors. Broader assess-

ments of the structural factors that result in these disparities - notably

systemic racism and its consequences associated with inequities in

wealth, healthcare, housing, and employment - are vital to compre-

hensively understand why these communities have experienced ele-

vated COVID-19 risk. The variable IRRs over time could be coupled

with other community-level information to better assess the particular

factors driving disparities in each phase of the pandemic.

The finding that the association between disease incidence and %

Black residents was smaller during Phase 2 than Phase 1 may indicate

that public health policies and other measures enacted by Fall 2020

among communities with higher proportions of Black residents suc-

cessfully reduced risk relative to other communities. This could

include greater availability of testing compared to availability during

the early months of the pandemic. Notably, we did not see as sub-

stantial of a reduction for communities with higher proportions of

Latinx residents, which points toward the need for a closer look at

testing as well as structural barriers to implementing risk-reduction

methods (such as ability to self-isolate, work from home, or physically

distance) across MA communities.

Our study period captured only the early months of vaccination

availability in the state, reflecting availability for healthcare workers

(beginning on December 15, 2020), residents of long-term care

facilities (December 28, 2020), and all individuals aged 75 and over

(February 1, 2021). It is possible that our findings related to

racial/ethnic patterns for Phase 2 reflect, in part, differential

vaccination patterns from early 2021; however, this is unlikely to have

a large influence on our overall findings, given the limited number of

individuals fully vaccinated by the end of the time period assessed here.

Given that LTCF residents were eligible for vaccination for several

weeks of the study period, it is plausible that our estimate for the LTCF

beds per capita variable is an underestimate of the true association.

Case risk associated with proportion essential workers by tract

remained elevated across both time periods in our study. This finding

may reflect the limitations of workplace interventions to reduce

exposure risk among this workforce, including challenges to physical

distancing in essential service jobs, and lack of paid sick leave.35 Our

study period did not overlap with vaccine availability targeting

essential workers outside of healthcare settings (March 22, 2021);

analyses utilizing more recent data could consider the effect of

targeted vaccination on these estimates by tract. The elevated mortal-

ity risk observed in association with proportion essential workers by

tract, especially in Phase 2, may suggest that communities with more

essential workers faced a higher case fatality rate, although it is

difficult to conclude with certainty from our data.

One important aspect of modeling cases and deaths separately

across pandemic phases is the ability to effectively control for differ-

ential testing availability and utilization. This was particularly salient

during Phase 2, which saw increased availability of testing to the pub-

lic and widespread asymptomatic surveillance testing at workplaces

and schools. Since testing is not uniformly distributed across all

census tracts,36 IRRs are likely higher in places with more testing,

irrespective of case severity. By contrast, COVID-19 deaths in Phase

2 are expected to have much more consistent identification, making

comparisons less susceptible to testing biases. The greater mortality

risk for Black/Latinx populations, essential workers, and older

residents that we observed in Phase 2 may thus provide a more

accurate depiction of racial and ethnic inequities in COVID-19

impacts than case rates alone, which could potentially be more useful

for informing targeted public health interventions.

By retaining LTCF facilities in non-institutional models, we

attempted to estimate the impact of LTCF cases on disease incidence

outside of these facilities. Our data indicate that density of long-term

care services was not a major correlate of infections or deaths in the

community at large (among individuals who were not residing in these

institutions; see Section 3.2). This observation may indicate successful

biocontainment within these facilities or limited interaction between

residents/employees and community members. However, we lack key

information to definitively make this determination, including

information on controls within facilities and residential location of

LTCF employees. Our findings also may indicate that risk factors for

institutional cases and deaths differed in meaningful ways from what

was observed at the community level. While beyond the scope of this

study, considerations of risk factors for mortality specifically within

institutions, and comparisons between these within-institution and

community-level risk factors, would be a valuable addition to this

literature.

Our analysis is limited by a few key factors. First, census tracts

are heterogenous and not distinctly classified by the variables in our

models, which complicates the interpretation of our findings. We

identified tracts using continuous demographic and occupational

characteristics, and the same town may have elevated proportions of

some, but not all, of the covariates in our model. As such, our analyses

can serve as a guide for understanding differential risk by population

subgroups but not to identify specific tracts to target with public

health interventions, as would be possible with spatial methods.

Additionally, as mentioned previously, limited availability of testing

during Phase 1 resulted in testing and diagnosis of only symptomatic
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cases early in the pandemic, while testing was widely available in

Phase 2, both for symptomatic cases and asymptomatic surveillance.

It is difficult to concretely assess the directionality of these biases, but

these trends may indicate that our data from Phase 1 reflects

underestimates of true associations. In addition, the variables we

included might not be all, or the strongest, predictors of cases or

deaths. Another limitation is that patient address information likely

contains errors, which cascade into the geocoding process, resulting

in misclassification of LTCF residents and tract of residence; however,

this is likely non-differential with respect to outcome and, moreover,

there is no feasible way to ameliorate this type of error. Our

age-related covariates may imprecisely classify risk associated with

age. Finally, ACS data were derived pre-pandemic and may not fully

reflect conditions during the pandemic, especially with respect to

employment and housing.

Our project is strengthened by our geocoded individual-level

data, which was facilitated by a cross-sectoral partnership. Using

address geocodes of individual patients who were diagnosed or died

of COVID-19, we observed significant disparities in both case and

mortality burden in association with population proportions of Black

and Latinx residents, as well as essential workers at the census tract

level in the first year of the pandemic in Massachusetts. Modeling

cases and deaths separately, as well as with and without institutional

outcomes, allowed us to more comprehensively understand health

disparities experienced by vulnerable subgroups during the first year

of the pandemic.
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