Skip to main content
. 2021 Oct 10;32(1):26–40. doi: 10.1002/ima.22659

TABLE 4.

Experimental results of the feature set created by concatenating features from two architectures (COVID‐19 image Dataset)

Feature extractor Classifier Acc. (%) SN (%) SP (%) PREC (%) Time(s) (%)
AlexNet + EfficientNet‐b0 LDA 98.0 99.0 100 100 4.651
SVM 97.2 98.0 99.2 99.0 4.589
KNN 94.0 91.8 100 100 3.864
DT 81.3 88.2 90.0 87.5 4.958
NB 94.0 98.1 97.1 96.4 10.757
AlexNet + NASNetLarge LDA 94.0 94.5 98.5 98.1 4.003
SVM 96.0 98.1 98.5 98.1 3.791
KNN 90.4 94.5 97.1 96.3 3.542
DT 80.5 90.0 90.7 88.4 3.661
NB 93.2 96.3 96.4 95.5 10.538
AlexNet + Xception LDA 92.8 94.5 100 100 4.053
SVM 96.8 98.1 100 100 3.997
KNN 92.0 92.7 100 100 3.883
DT 83.9 90.9 95.7 94.3 3.854
NB 95.6 97.2 100 100 11.171
EfficientNet‐b0 + NASNetLarge LDA 97.2 98.1 99.2 99.0 4.052
SVM 97.2 97.2 99.2 99.0 4.321
KNN 91.6 92.7 98.5 98.0 4.038
DT 76.5 84.6 87.8 84.6 3.956
NB 93.6 97.2 97.8 97.2 11.139
EfficientNet‐b0 + Xception LDA 96.0 97.2 100 100 4.217
SVM 97.2 97.2 100 100 4.153
KNN 96.4 95.4 100 100 4.019
DT 80.1 87.3 93.3 90.6 4.010
NB 93.6 95.4 100 100 11.475
NASNetLarge + Xception LDA 94.8 95.4 97.8 97.2 4.760
SVM 97.6 99.0 99.2 99.0 4.485
KNN 90.8 91.8 97.1 96.2 3.862
DT 80.1 90.9 90.0 87.8 3.942
NB 94.8 97.2 98.5 97.2 12.314