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Summary.

Causal mediation analysis aims to characterize an exposure’s effect on an outcome and quantify 

the indirect effect that acts through a given mediator or a group of mediators of interest. With 

the increasing availability of measurements on a large number of potential mediators, like the 

epigenome or the microbiome, new statistical methods are needed to simultaneously accommodate 
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high-dimensional mediators while directly target penalization of the natural indirect effect (NIE) 

for active mediator identification. Here, we develop two novel prior models for identification of 

active mediators in high-dimensional mediation analysis through penalizing NIEs in a Bayesian 

paradigm. Both methods specify a joint prior distribution on the exposure-mediator effect and 

mediator-outcome effect with either (a) a four-component Gaussian mixture prior or (b) a product 

threshold Gaussian prior. By jointly modeling the two parameters that contribute to the NIE, the 

proposed methods enable penalization on their product in a targeted way. Resultant inference can 

take into account the four-component composite structure underlying the NIE. We show through 

simulations that the proposed methods improve both selection and estimation accuracy compared 

to other competing methods. We applied our methods for an in-depth analysis of two ongoing 

epidemiologic studies: the Multi-Ethnic Study of Atherosclerosis (MESA) and the LIFECODES 

birth cohort. The identified active mediators in both studies reveal important biological pathways 

for understanding disease mechanisms.

Keywords

Composite null hypothesis; Environmental exposure to phthalates; Epigenetics; Gaussian mixture 
models; High-dimensional mediators; Pathway Lasso; Posterior inclusion probability; Product 
threshold Gaussian prior

1. Introduction

Mediation analysis is of increasing importance across a wide range of disciplines 

(MacKinnon et al., 2007). It investigates how an intermediate variable, called a mediator, 

explains the mechanism underlying a known relationship between the exposure and the 

outcome. The main goal of such an analysis is to disentangle the exposure’s effect and 

identify effect that acts through the mediator of interest, which is often referred to as 

the indirect/mediation effect. Built on the counterfactual framework, a causal approach 

to mediation analysis (VanderWeele, 2016) specifies assumptions for a potentially causal 

interpretation of estimated indirect effects using the classical formulas from Baron and 

Kenny (1986). Univariate mediation analysis, which analyzes one mediator at a time, 

has been studied extensively in areas of social, economic, epidemiological and genetic 

studies (MacKinnon, 2008). With the rapid development of high-throughput technologies 

and the increasing availability of large-scale omics data, however, there is an expanding 

interest in performing mediation analysis in the presence of a large number of mediators. 

As one of our motivating examples, the Multi-Ethnic Study of Atherosclerosis (MESA) 

measured gene expression and DNA methylation (DNAm) levels at the genome-wide 

scale. These molecular-level omics traits are proposed as part of the mediating mechanism 

through which neighborhood disadvantages affect physical health (Smith et al., 2017). As 

another motivating example, the LIFECODES prospective birth cohort collected data on a 

large group of endogenous biomarkers of lipid metabolism, inflammation, and oxidative 

stress. These biomarkers are hypothesized to mediate the effects of prenatal exposure 

to environmental contamination on adverse pregnancy outcomes. Mediation analysis in 

the above high-dimensional mediator settings can facilitate our understanding of disease 

etiology but is particularly challenging because the causal ordering among mediators is often 
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unknown a priori due to a lack of in-depth biological knowledge acquired on the relationship 

among the mediators. On the other hand, it is not preferable to apply univariate mediation 

analysis to the high-dimensional setting due to potential confounding of other mediators in 

the association with the outcome and mis-specification of the true model.

To enable high-dimensional mediation analysis, several statistical methods have been 

recently developed. For example, Huang and Pan (2016) and Chén et al. (2017) transform 

the high-dimensional unordered set of mediators into lower-dimensional orthogonal 

components using dimension reduction techniques. The extracted low-dimensional 

components are then analyzed through single mediation analysis. However, it is often not 

straightforward to interpret the low-dimensional components in these approaches. Shrinkage 

methods via regularization have also been explored to tackle this high-dimensional 

regression problem involving two models, the exposure-mediator model and the outcome-

exposure model. The Lasso (Tibshirani, 1996) penalty can be naturally applied to the two 

models in mediation analysis. Zhang et al. (2016) also proposed a regularized regression 

with minimax concave penalty for the outcome model after a sure independence screening 

on mediators. The above methods penalize the mediator-outcome and exposure-mediator 

coefficients separately without taking into account the structure of the indirect effect. To 

directly target the mediators with strong indirect effects, Zhao and Luo (2016) recently 

developed a new convex, Lasso-type penalty on the indirect effect, which is the product 

of the two path coefficients. This direct penalization on the pathway effects is shown 

to improve power for mediator selection and reduce the estimation bias of indirect 

effects. In addition to frequentist approaches, Bayesian non-parametric models (Kim et 

al., 2019) have been applied in the analysis with a moderate number of mediators. Song 

et al. (2019) handles high-dimensional mediators through a Bayesian variable selection 

method and specifies separate shrinkage priors on both the exposure-mediator effects 

and mediator-outcome effects. However, not modeling the indirect effects in a targeted 

way may lead to loss of power for selection of active mediators. Therefore, a more 

effective mediation analysis will require the development of statistical methods that can 

both handle high-dimensional mediators and select active mediators via direct targeting of 

their indirect contribution to the joint NIE. There is also interesting connection between 

mediation analysis and directed acyclic graph (DAG), where the ordering of the nodes 

(exposure, mediators, and outcome) is known. Our goal of identifying active mediators then 

corresponds to graph structural learning of the edges, and any mediator with inferred links 

both from the exposure and to the outcome completes a mediation pathway.

The indirect effect of a mediator is known to be proportional to the product of the exposure-

mediator and mediator-outcome effects under certain assumptions (MacKinnon, 2008). 

Testing for this product term is not easy due to the complexity in its null distribution. Recent 

literature began to recognize and leverage the composite structure in the null hypothesis 

of no indirect effect in the genome-wide mediation analysis setting, where a one-at-a-time 

single mediator analysis is performed across the entire set of mediators (Huang, 2019). 

Given a large number of mediators, we can characterize the composite space and learn 

about the structure of mediation through the four components arising from the product of 

the two effects, i.e. one component of mediators with non-zero indirect contributions (active 

mediators), and three components with zero indirect contributions.
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Motivated by the goal of directly targeting the non-null indirect contributions to identify 

active mediators in a high-dimensional mediator setting, we are interested in seeking 

the Bayesian parallel with a joint prior on the exposure-mediator and mediator-outcome 

coefficients, which is so far lacking in the literature. One common choice of the bivariate 

prior would be a Gaussian prior, and it is natural to assume a four-component Gaussian 

mixture structure on the two effects, corresponding to the composite structure underlying 

their product. On the other hand, a direct thresholding prior on the indirect contributions 

would also achieve the same goal, and we can extend the hard-thresholding priors (Ni et 

al., 2019; Cai et al., 2020) to product thresholding for mediation analysis. Therefore, in this 

paper, building on the potential outcome framework for causal inference, we develop two 

novel prior models for high-dimensional mediation analysis: (a) four-component Gaussian 

mixture prior, and (b) product threshold Gaussian prior. Both models can simultaneously 

analyze a large number of mediators without making any path-specific or causal ordering 

assumptions on mediators. The mediator categorization into four groups provides useful 

interpretations on the way in which a mediator links or does not link exposure to outcome. 

More importantly, by jointly modeling the exposure-mediator and mediator-outcome 

coefficients via either bivariate Gaussian distributions or thresholding functions, we place 

direct shrinkage on the product of the two coefficients in a targeted way. Hence, our methods 

are expected to outperform other penalization methods that apply separate shrinkage in the 

two regression models independently, for identifying active mediators with non-zero indirect 

contributions.

The proposed methods are generally applicable to many settings, and we examine their 

performance for both large-scale genomic and environmental data. Specifically, in the 

MESA cohort, our methods are implemented for high-dimensional mediation analysis with 

DNAm as mediators (Bild et al., 2002), focusing on the relationship between neighborhood 

disadvantage (exposure) and body mass index (BMI) as outcome. BMI is a critical risk 

factor for various diseases like type 2 diabetes (T2D) and cardiovascular disease (CVD) 

(Hjellvik et al., 2012). The important scientific discoveries made in the present study will 

advance biological understanding of how adverse social circumstances influence our internal 

molecular environment and in turn lead to cardiometabolic diseases. In the LIFECODES 

birth cohort, the proposed methods are applied to study the collective impact of endogenous 

biomarkers in biological pathways in mediating exposure to phthalates (a group of chemicals 

used to make plastic more flexible) during pregnancy on the gestational age of the newborn 

at delivery. The integration of molecular/biological data with epidemiologic data in the 

mediation framework provides interesting and important insights into underlying disease 

mechanisms. Besides the data analysis, we also perform extensive simulation studies under 

different structures of effects. We show through both simulations and data analysis that our 

proposed methods can increase power of a joint analysis and enable efficient identification 

of individual mediators.

The rest of the paper is organized as follows. In Section 2, we first define the causal 

effects of interest for the multivariate mediator setting with the counterfactual framework. 

Then we review the mediation estimands under the regression models with high-dimensional 

mediators and one continuous outcome. In Section 3, we propose two novel methods for 

direct shrinkage on natural indirect effects. Simulation studies are conducted and discussed 
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in Section 4. We apply our methods to MESA and LIFECODES data in Section 5, and 

conclude the paper with discussions in Section 6.

2. Notations, Definitions and Models

Consider a study of n subjects and for subject i, i = 1, . . . , n, we collect data on 

one exposure Ai, p candidate mediators Mi = (Mi
(1), Mi

(2), …, Mi
(p))⊤, one outcome Yi, 

and q covariates Ci = (Ci
(1), …, Ci

(q))⊤. In particular, we focus on the case where Yi and 

Mi are all continuous variables. With the same counterfactual framework as in Song 

et al. (2019), let the vector Mi(a) = (Mi
(1)(a), Mi

(2)(a), …, Mi
(p)(a)) denote the ith subject’s 

counterfactual value of the p mediators if he/she received exposure a. Let Yi(a, m) 

denote the ith subject’s counterfactual outcome if the subject’s exposure were set to 

a and mediators were set to m. The effect of an exposure can be decomposed into 

its direct effect and effect mediated through mediators. The natural direct effect (NDE) 

of the given subject is defined as Y i a, Mi a⋆ − Y i a⋆, Mi a⋆ , where the exposure 

changes from a⋆ (the reference level) to a and mediators are hypothetically controlled 

at the level that would have naturally been with exposure a⋆. The natural indirect 

effect (NIE) of the given subject is defined by Y i a, Mi(a) − Y i a, Mi a⋆ . The total 

effect (TE) can then be expressed as the summation of the NDE and the NIE: 

Y i a, Mi(a) − Y i a⋆, Mi a⋆ = Y i a, Mi(a) − Y i a, Mi a⋆ + Y i a, Mi a⋆ − Y i a⋆, Mi a⋆
= NIE + NDE

.

The counterfactual variables, which are useful concepts to formally define causal effects, are 

not necessarily observed. To connect the counterfactuals to observed data and estimate the 

average NDE and NIE from observed data, further assumptions are required, including the 

consistency assumption and four non-unmeasured confounding assumptions (VanderWeele, 

2016). We elaborate those assumptions in Section 1 of the Supplementary Materials (SM). 

It has been shown that under the required assumptions, the average NDE and NIE can be 

identified by modeling Y i ∣ Ai, Mi, Ci and Mi|Ai, Ci using observed data (Song et al., 2019). 

Therefore we can work with the two conditional models for Yi|Ai, Mi, Ci and Mi|Ai, Ci. We 

propose two linear models for the two conditional relationships Yi|Ai, Mi, Ci and Mi|Ai, Ci. 

For the outcome model, we assume

Y i = Mi
⊤βm + Aiβa + Ci

⊤βc + ϵY i, (1)

where βm = βm1, …, βmp
⊤; βc = βc1, …, βcq

⊤; and ϵY i N 0, σe2 . For the mediator model, we 

consider a multivariate regression model that jointly analyzes all p potential mediators 

together as dependent variables:

Mi = Aiαa + αcCi + ϵMi, (2)

where αa = αa1, …, αap
⊤; αc = αc1

⊤ , …, αcp⊤ ⊤
; αc1, …, αcp are q-by-1 vectors; 

ϵMi MVN(0, Σ), with Σ capturing potential residual error covariance. ϵY i and ϵMi are 
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assumed to be independent of each other and independent of Ai and Ci. With the 

identifiability assumptions and the modeling assumptions (linearity, no interaction in the 

outcome and mediator model) in (1)–(2), we can compute the average NDE, NIE and TE as 

below (Song et al., 2019). In the rest of the paper, we refer to NDE as direct effect and NIE 

as indirect/mediation effect.

NDE = E Y i a, Mi a⋆ − Y i a⋆, Mi a⋆ ∣ Ci = βa a − a⋆ . (3)

NIE = E Y i a, Mi(a) − Y i a, Mi a⋆ ∣ Ci = a − a⋆ ∑
j = 1

p
αajβmj . (4)

TE = E Y i a, Mi(a) − Y i a⋆, Mi a⋆ ∣ Ci = βa + αa⊤βm a − a⋆ . (5)

As seen from (4), the global NIE equals to the sum over mediators, M(1),M(2), . . . , 
M(p), of the product of αaj and βmj. Each of the individual terms in the sum have no 

causal interpretation of NIE corresponding to a specific mediator j, but rather its marginal 

contribution to this global NIE. The TE here can also be identified by modeling Yi|Ai, and 

by definition should not be affected by the model for mediators. Both βa and αa⊤βm are 

conditional on mediators, and their summation estimates the same TE. Alternatively, one 

may define the common total effect first, and then define the direct effect by the difference 

TE − αa⊤βm. We jointly model βmj and αaj and perform targeted shrinkage on the NIE using 

two prior models described in the next section.

3. Methods

3.1. Gaussian Mixture Model (GMM)

The first model we develop to characterize the composite structure of the exposure-mediator 

and mediator-outcome effects in mediation analysis and induce targeted shrinkage on NIE 

is the four-component Gaussian mixture model. Mixture models have been studied vastly 

for classifying subjects into different categories and inferring their association patterns 

or category-specific properties (Zeng et al., 2018). In the context of mediation analysis, 

previous mixture model approaches have primarily been proposed in the form of a principal 

stratification model (Gallop et al., 2009). Here, we introduce a Gaussian mixture model for 

the joint modeling of βmj and αaj and the subsequent inference of the composite association 

patterns. Specifically, we consider four components in the Gaussian mixture model: a 

component representing βmjαaj ≠ 0, that both βmj and αaj are non-zero; a component 

representing βmj ≠ 0 and αaj = 0; a component representing βmj = 0 and αaj ≠ 0; and 

a component representing βmj = 0 and αaj = 0. To characterize the composite structure 

underlying the product βmjαaj, we assume that the effects for each mediator follow a 

four-component Gaussian mixture distribution:

βmj, αaj
⊤ ∣ V k k = 1

3 π1MVN2 0, V 1 + π2MVN2 0, V 2 + π3MVN2 0, V 3 + π4δ0
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with prior probabilities πk (k = 1, 2, 3, 4) summing to one and MVN2 denoting a bivariate 

normal distribution. Here, π1 represents the prior probability of being an active mediator, 

with non-zero marginal mediation effect βmjαaj; and V1 models the covariance of βmj, αaj
⊤

in model (1) and (2) when both effects are non-zero. Any inactive mediator will fall into 

one of the remaining three components. π2 is the prior probability of having non-zero 

mediator-outcome effect but zero exposure-mediator effect; and V 2 = σ2
2 0

0 0
 is a low-rank 

covariance matrix restricting that only the effect of mediator on outcome βmj is non-zero. 

π3 is the prior probability of having non-zero exposure-mediator effect but zero mediator-

outcome effect; and V 3 =
0 0
0 σ3

2  is a low-rank covariance matrix restricting that only the 

effect of exposure on mediator αaj is non-zero. Lastly, π4 denotes the prior probability of 

zero mediator-outcome effect and zero exposure-mediator effect; and δ0 is a point mass 

at zero. Our method automatically classifies all the mediators into four groups based on 

their relationship with exposure and outcome. We note that the recently developed Bayesian 

mediation analysis method (BAMA, Song et al., 2019) can be viewed as a two-component 

version of GMM: in BAMA, the mediator-outcome effect is non-zero and follows a normal 

distribution with probability π1 + π2; while the exposure-mediator effect is non-zero and 

follows another normal distribution with probability π1 + π3. Consequently, the active 

mediator in BAMA has a priori probability (π1 + π2)(π1 + π3).

In GMM, we specify a conjugate inverse-Wishart prior on V1, V1 ~ Inv-Wishart(Ψ0, υ), 

where Ψ0 = diag {Ψ01, Ψ02} is a diagonal matrix, and ν is the degree of freedom, and 

inverse-gamma priors on σ2
2, σ3

2, σ2
2 Inv − Gamma ν/2, ψ01/2 , σ3

2 Inv − Gamma ν/2, ψ02/2 . 

We also assume {π1, π2, π3, π4} ∼ Dirichlet(a1 ,a2, a3, a4) with a1, a2 and a3 set to be 

smaller than a4 to encourage sparsity of the first three components. For the coefficients of 

the other covariates, we assume βa N 0, σa2  and βc, αc1, …, αcp MVN 0, σc2I . Since we often 

have adequate information from the data to infer βc and αc, we simply use a limiting prior 

by setting σc2 ∞. For the convenience of modeling, we also set the correlation structure 

among mediators Σ as σc2I. We use weakly informative inverse-gamma priors on the variance 

hyper-parameters (σa2, σe2 and σg2) in the models.

To facilitate computation, for the jth mediator, we create a four-vector membership indicator 

variable γj, where γjk = 1 if βmj, αaj
⊤ is from normal component k and γjk = 0 otherwise. 

Since the priors used here are all conjugate, we implement a standard Gibbs sampling 

algorithm and iterate each mediator one at a time to obtain posterior samples. The full 

details of the algorithm appear in Section 2 of the SM available online. With posterior 

samples, we can estimate the direct effect as the posterior mean of βa, and for the j-th 

mediator, estimate its indirect contribution as the product of the posterior mean of βmj and 

αaj. We also calculate the posterior probability of both βmj and αaj being non-zero as the 

posterior inclusion probability (PIP), which is P(γj1 = 1| Data). The PIP provides evidence 

for a non-zero indirect contribution, and therefore we identify mediators with the highest PIP 

as potentially active mediators.
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3.2. Product Threshold Gaussian (PTG) Prior

Although the GMM model is flexible for a range of applications, the method does not 

directly impose sparsity on βmjαaj for mediator selection. To address this issue, we develop 

a product threshold Gaussian (PTG) prior for the indirect contribution of the j-th mediator. 

Threshold priors have been recently proposed for Bayesian variable selection. For example, 

Ni et al. (2019) introduced a hard-thresholding mechanism in edge selection for sparse 

graphical structure; Cai et al. (2020) performed a feature selection over networks using 

the threshold graph Laplacian prior; and Kang et al. (2018) developed a soft-thresholding 

Gaussian process for scalar-on-image regression. As compelling alternatives to shrinkage 

priors, the threshold priors are equivalent to the non-local priors (Rossell and Telesca, 2017) 

which enjoy appealing theoretical properties and excellent performance in variable selection 

for high-dimensional regression, especially when the predictors are strongly correlated 

(Kang et al., 2018; Cai et al., 2020). In this work, we extend the threshold priors to the 

product threshold priors for mediation analysis. In particular, for the bivariate vector (βmj, 
αaj), j = 1, . . . , p,

βmj = βmjmax I |βmj| > λ1 , I |βmjαaj| > λ0

αaj = αajmax I |αaj| > λ2 , I |βmjαaj| > λ0

where the underlying un-thresholded effects βmj, αaj
⊤ MVN2 0, Σu  and I(A) is the 

indicator function with I(A) = 1 if A occurs and I(A) = 0 otherwise. We denote (βmj, αaj) ∼ 
PTG(Σu, λ) with λ = (λ0, λ1, λ2) being thresholding parameters.

As one may note, a mediator would escape thresholding and have non-zero indirect 

contribution βmjαaj only when (i) both the absolute values of the marginal effects βmj and 

αaj are larger than the threshold values, or (ii) the absolute value of the un-thresholded 

product βmjαaj is larger than the threshold value. In practice, condition (ii) does not 

necessarily indicate condition (i). The product threshold prior will facilitate the selection 

of active mediators by thresholding on the indirect contribution of the j-th mediator in 

addition to its marginal effects, and shrinking insignificant effects to zero. Similar to GMM, 

one group of active mediators and three groups of inactive ones are naturally formed. The 

thresholding on the product term also adds dependency between βmj and αaj, and we impose 

no more dependency on the un-thresholded values, namely setting Σu = diag τβ
2, τα2  in the 

rest of the paper.

The threshold parameters λ = (λ0, λ1, λ2) control a priori the sparsity of the non-zero 

effects, and larger values tend to produce a smaller subset of active mediators. Previous 

literature (Ni et al., 2019; Cai et al., 2020) have considered uniform priors on those threshold 

parameters, e.g. λ0 ∼ U[0, λ0h], λ1 ∼ U[0, λ1h], λ2 ∼ U[0, λ2h], with the upper bounds 

λ0h, λ1h, λ2h being some pre-defined large values. This approach is straightforward and 

requires little prior knowledge. However, the control of false positives is a concern due to the 
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common under-estimation of λ. In this paper, we instead determine the threshold parameters 

from the un-thresholded distributions and the desired number of declared positives, and fix 

them a priori. For example, if we set λ0 = 0.36, λ1 = λ2 = 0.6 under τβ
2 = 0.1, τα2 = 0.1, then 

the Monte Carlo estimate of the prior proportion of active mediators is approximately 0.01, 

which could also be tuned to match with π1 in the Gaussian mixture model. In practice, we 

can grid search the three hyper-parameters together with priors on τβ
2 and τα2, and find the 

values that achieve desired prior proportions. The thresholds λ can also be interpreted as the 

minimal detectable signal, and determined based on their practical meaning. Although the 

resulting selection may be conservative and heavily informed by the pre-defined thresholds, 

our specification is helpful in guarding against false positive findings. As in the GMM 

model described in 3.1, conjugate inverse-gamma priors are used for the variance terms (τβ
2, 

τα2, σe2 and σg2) in the model. The full conditional distributions for βmj and αaj are mixtures of 

truncated normals and can be sampled from Gibbs sampling (Section 3 of the SM). Similar 

to GMM, we can calculate the posterior mean of βmj and αaj, and the posterior probability of 

both βmj and αaj being non-zero as PIP, and use the PIP to rank and select active mediators.

The proposed GMM relies on small values of π1, π2, π3 to reflect sparsity on the effects. 

The Gaussian priors shrink the effects continuously toward zero, and help the model achieve 

better estimation and prediction performance, but not necessarily mediator selection by 

the product of βmjαaj. On the other hand, the PTG utilizes a hard threshold function to 

directly select on βmjαaj and map near zero effects to zero. Instead of centering around 

zero, the effects produced from PTG will be similar to truncated normals away from zero. 

As a practical procedure, we suggest median inclusion probabilities (PIP = 0.5) as the 

significance threshold for mediator selection.

3.3. Other Approaches for High-dimensional Mediation Analysis

Besides GMM and PTG, we also explore a few other approaches. Many of them place 

simple penalty functions or shrinkage priors on the natural indirect effects.

Univariate Mediation Analysis is perhaps the simplest approach to perform mediation 

analysis. In univariate mediation analysis, we examine one mediator at a time and test 

whether the mediator has non-zero indirect effect. We extract P-values for testing the 

indirect effects using the R package mediation.

Bi-Lasso—The least absolute shrinkage and selection operator (Lasso) introduced by 

Tibshirani (1996) is a widely used penalty function to perform both variable regularization 

and selection. Here, we consider placing Lasso regularization on the mediator-outcome 

effects and the exposure-mediator effects separately. For the mediator-outcome effects, 

we attempt to minimize the following loss function based on the outcome model 

(1): f βm, βa, βc = 1
2 ∑i = 1

n Y i − Mi
⊤βm − Aiβa − Ci

⊤βc
2 + λ1∑i = 1

p |βmj|. For the exposure-

mediator effects, we attempt to minimize the following loss function based on the mediator 

model (2): f αa, αc = 1
2 ∑i = 1

n Mi − Aiαa − αcCi
⊤ Mi − Aiαa − αcCi + λ2∑j = 1

p |αaj|. We 

perform optimization in the first function using the R package glmnet and perform 
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optimization in the second function using soft-thresholding. We choose the two tuning 

parameters λ1 > 0 and λ2 > 0 through 10-fold cross validation in the two functions 

separately. We refer this approach of applying Lasso separately to the outcome and mediator 

models as Bi-Lasso.

Bi-Bayesian Lasso is effectively the Bayesian version of Bi-Lasso. It is equivalent to 

placing a Bayesian Lasso prior (Park and Casella, 2008) on the mediator-outcome effects 

βm and a separate Bayesian Lasso prior on the exposure-mediator effects αa. Here, we 

specify the Bayesian Lasso prior for the j-th element of βm or αa as a scale mixture 

of normal distributions N 0, zjσz2 , where the scale parameter zj follows an exponential 

distribution exp(s2/2) and 1/s2 is given a diffuse inverse-gamma prior. We implement the 

Bi-Bayesian Lasso using a Gibbs sampler following Park and Casella (2008) and obtain 

posterior samples for βm and αa.

Pathway Lasso is a method developed by Zhao and Luo (2016) for high-

dimensional mediation analysis under the linear structural equation modeling 

(LSEM) framework. The squared-error loss in the joint model is defined 

from equations (1) and (2) as l βm, αa, βa, βc, αc = ∑i = 1
n Y i − Mi

⊤βm − Aiβa − Ci
⊤βc

2

+ ∑i = 1
n Mi − Aiαa − αcCi

⊤ Mi − Aiαa − αcCi

. 

The Pathway Lasso then aims to minimize the penalized function, 

f βm, αa, βa, βc, αc = 1
2 l βm, αa, βa, βc, αc + λ ∑j = 1

p |βmjαaj| + ϕ βmj
2 + αaj2 + |βa|

+ ω ∑j = 1
p |βmj| + |αaj| = 1

2 l βm, αa, βa, βc, αc + λP1 βm, αa, βa + ωP2 βm, αa , ϕ ≥ 1/2

.

The first penalty term P1 stabilizes and shrinks the estimates for the product βmjαaj. The 

second penalty term P2 provides additional shrinkage on βm and αa through a common 

Lasso penalty placed on both of them. We use the algorithm from Zhao and Luo (2016) to 

fit Pathway Lasso. We choose the three tuning parameters (φ, ω, and λ): φ = 2, ω = 0.1λ, 

and choose λ through 10-fold cross-validation as in the original paper. HIMA is another 

frequentist method developed for high-dimensional mediation analysis (Zhang et al., 2016). 

HIMA first applies a sure independence screening to the outcome model to select a small set 

of potential mediators. With the selected mediators, HIMA then places a minimax concave 

penalty on the mediator-outcome effects in the outcome model (1) to obtain effect estimates. 

The method finally performs a joint significance test and rejects the null hypothesis of no 

indirect effect with the j-th mediator if both βmj and αaj are significant. Using the HIMA 

software, we obtain the Bonferroni corrected P-values for testing the indirect effects.

In addition to the aforementioned methods, we note that several other approaches exist. 

For example, the methods developed by Huang and Pan (2016) and Chén et al. (2017) 

first perform dimension reduction on the mediators to extract low dimensional factors on 

the reduced dimensional space, and then carry out mediation analysis by treating the low 

dimensional factors as new mediators. Because these approaches analyze the latent factors 

instead of the original mediators, we do not compare our methods with them in the present 

study.
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4. Simulation

Simulation Overview and Evaluation Metrics

We evaluate the performance of the two proposed methods (GMM and PTG) and compare 

them with existing methods in different simulation scenarios. As described in Section 3, we 

consider a total of eight methods: one univariate method and seven multivariate methods 

that include four Bayesian methods (GMM, PTG, BAMA and Bi-Bayesian Lasso) and 

three frequentist methods (Bi-Lasso, Pathway Lasso, and HIMA). We examine the power 

of different methods to detect true mediators in the simulations. To do so, we rely on 

PIP to prioritize mediators in PTG, GMM and BAMA; rely on P-value to rank mediators 

in the univariate method and HIMA; and rely on the estimated indirect contributions as 

an measure of evidence for mediation for the remaining methods. To evaluate selection 

accuracy, we calculate the true positive rate (TPR) based on a fixed false discovery rate 

(FDR) of 10% and area under the ROC curve (AUC). To evaluate estimation accuracy, we 

compute the mean square error (MSE) for the indirect contributions (βmjαaj) of the truly 

active mediators (MSEnon-null), and MSE for the indirect contributions of the truly inactive 

mediators (MSEnull). We also include the bias metric on joint NIE, NDE and TE in the SM. 

We perform 200 simulation replicates for each scenario to report the average of the above 

metrics.

Simulation Design –

Fixed Effect Simulations—We consider one small sample scenario with n = 100, p 
= 200, and one large sample scenario with n = 1000, p = 2000. In both scenarios, we 

set the proportions of the four different mediator groups to be π1 = 0.05, π2 = 0.05, 
π3 = 0.10, π4 = 0.80. In each scenario, we further explore two different settings. In 

Setting (I), we fix the non-zero effects of both βmj and αaj to be 0.5, with their signs 

randomly assigned as positive or negative. In Setting (II), we fix 40% of the non-zero βmj 

(or αaj) to be 0.3, 30% of them to be 0.5, and 30% of them to be 0.7, with their signs 

randomly assigned as positive or negative. In both settings, we simulate the continuous 

exposure {Ai, i = 1, . . . , n} independently from a standard normal distribution N(0, 1). 

We also included three confounders in the fixed effect simulations: the first two continuous 

covariates C1 and C2 are simulated from N(2,1) and N(0,1) respectively, and the third 

binary covariate C3 is simuated from Binom(1, 0.6). We simulate the residual error ϵYi 

in the outcome model independently from N(0, 1), and simulate the residual errors ϵMi 

in the mediator model from MVN(0, Σ). Here, we use the sample covariance estimated 

from MESA data to serve as Σ in the simulations. Afterwards, we generate a p-vector 

of mediators for the ith individual from Mi = Aiαa + C1iαc1 + C2iαc2 + C3iαc3 + ϵMi, where 

αc1 N(0, 0.5), αc2, αc3 N(0, 1). We also generate the outcome Yi for the ith individual from 

Y i = Mi
⊤βm + Aiβa − 0.1C1i + 0.3C2i + 0.2C3i + ϵY i, with βa = 0.5.

Random Effect Simulations—In the above settings, we have fixed the effect sizes to 

specific values across replicates. To further examine the performance of our methods over a 

wide range of effect sizes, we perform additional simulations where we simulate βmj, αaj
⊤

randomly in each simulation replicate. Specifically, we generate these two effects from three 

Song et al. Page 11

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2021 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



different joint distributions detailed below (Figure S1): the first two correspond to the prior 

distributions assumed in PTG and GMM, respectively, while the last one is a horseshoe 

distribution, i.e.

A. Simulate effects under the PTG model: βmj, αaj
⊤ PTG diag σu2, σu2 , λ , where λ 

= (λ0, λ1, λ2) are set to satisfy the desired proportions of the four groups (π1, 

π2, π3, π4). We set σu2 = 0.3 for p = 200, and σu2 = 0.1 for p = 2000.

B. Simulate effects under the GMM model: 
βmj
αaj

π1MVN(0, σ2 σ2/3
σ2/3 σ2 ) + π2MVN(0, σ2 0

0 0
) + π3MVN(0,

0 0
0 σ2 ) + π4δ0. We 

set σ2 = 0.3 for p = 200, and σ2 = 0.1 for p = 2000.

C. Simulate effects from a mixture of bivariate horseshoe distributions, 

which can be generated from a scale mixture of normals: 
βmj
αaj

π1MVN(0, Zj
2 σ2 σ2/3

σ2/3 σ2 ) + π2MVN(0, Zj
2 σ2 0

0 0
) + π3MVN(0, Zj

2 0 0
0 σ2 )

+ π4δ0

. 

Here, Zj ∼ halfCauchy(0, 1), but truncated at a value of b to avoid impractically 

large values. We set σ2 = 0.5 for p = 200, and σ2 = 0.3 for p = 2000, and b = 

3. Note that the effect size distribution assumed here is different from either of 

our proposed models, thus allowing us to study the robustness of our methods. 

With the effect size distributions, we follow the same procedure described as in 

the fixed effects settings.

We apply different methods to analyze the simulated data. In GMM, we set the Dirichlet 

parameters a1 = 0.01p, a2 = a3 = 0.05p, a4 = 0.89p. We adopt an empirical Bayesian 

approach to set the diagonal entries of Ψ0 as the sample variances of the non-zero βm 

and αa fitted through Lasso. We set the degree of freedom ν in the inverse-Wishart 

distribution to be two, which makes the distribution reasonably noninformative while still 

well-defined. In PTG, we set the pre-defined minimal detectable effect sizes (λ0, λ1, λ2) to 

be the 90% quantiles of the estimated |βm| and |αa| fitted through Lasso. To be consistent 

with the GMM, we choose the parameter τ2 in the priors τβ
2 IG 1.1, τ2 , τα2 IG 1.1, τ2  to 

ensure that the prior inclusion probability is around 0.01. For the Bayesian methods, we 

perform 150,000 iterations and discard the first 100,000 iterations as burn-in. The MCMC 

convergence has been checked using the potential scale reduction factor (PSRF) for the PIPs.

Results for Fixed Effect Simulations: Setting (I)-(II)

Table 1 shows the results under the fixed effects for the small sample scenario n = 100, p 
= 200 and the large sample scenario n = 1000, p = 2000. Overall, our proposed methods, 

GMM and PTG, outperform the other methods. These two methods achieve the highest 

AUC and are up to ∼ 30% more powerful than the other methods in identifying active 

mediators, with performance gain more apparent in the large sample scenario. Under Setting 

(I) where the mediation effects are large, the PTG method has the highest average TPR for 

both small and large sample settings. The performance of PTG is followed by GMM and 

BAMA. In contrast, under Setting (II) where the mediation effects are uneven, PTG may 
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fail to identify some of the active mediators with small effects due to the thresholding set 

by the pre-defined parameter λ. Instead, GMM performs the best and its performance is 

followed by PTG and BAMA. Importantly, median inclusion probabilities (PIP = 0.5) in 

both GMM and PTG can be used as a criterion to declare active mediators (details in SM), 

producing decent empirical estimates for FDR in simulations (Table S1, S2). Among the 

frequentist methods, the Bi-Lasso performs best over the others and is also competitive in 

the small sample setting. HIMA and the univariate method are among the worst methods for 

mediator selection, presumably because neither models the entire set of mediators jointly in 

the outcome model.

In terms of the effects estimation, GMM has the lowest MSEnon-null across most simulation 

scenarios. Due to hard thresholding, PTG tends to provide a conservative list of the active 

mediators. Consequently, the non-zero indirect contributions of some active mediators are 

shrunk to zero in PTG, leading to relatively high MSEnon-null but small MSEnull by PTG. 

Both methods provide lower bias on joint NIE and NDE, especially in the large sample 

scenario. Meanwhile, we find that the Pathway Lasso does not appear to exhibit much 

advantage over the simple alternative Bi-Lasso. Indeed, Pathway Lasso requires multiple 

tuning parameters for inducing the penalty term on the indirect effects, and those parameters 

may benefit from more careful specifications than the default setting. The univariate method 

in particular has a quite high MSEnull (also large bias for NIE and NDE) as it does not 

apply any shrinkage on the effect estimates. We also performed a sensitivity analysis to 

examine how robust the posterior inference of PTG is regarding mild changes in terms of the 

prior choices. The results are summarized in Table S8. In general, the lambda parameters, 

especially the lower bounds for βmj and αaj, play an important role in PTG’s performance. 

As the lambda parameters vary, the TPR and MSE vary in a reasonable range, and is mostly 

better than the other methods.

Results for Random Effect Simulations: Setting (A)-(C)

Table 2 shows the results in the small sample scenario and Table 3 shows the results 

in the large sample scenario. In all the settings, our proposed methods, PTG and GMM, 

outperform the other methods with an approximately 10% power gain in identifying active 

mediators. Between PTG and GMM, we find that both methods work preferably well in 

the setting where their corresponding effect size distribution is used. Specifically, in Setting 

(A) with p = 2000, the PTG method has the highest AUC (0.98) and TPR (0.40) at FDR = 

10%. The performance of PTG is followed by GMM (AUC = 0.98, TPR = 0.37). In Setting 

(B) with p = 2000, the GMM method has the highest AUC (0.95) and TPR (0.51). The 

performance of GMM is followed by PTG (AUC = 0.92, TPR = 0.42). In Setting (C) where 

the effects are simulated with a horseshoe distribution, we find that GMM performs the best 

and its performance is followed by PTG and BAMA. The horseshoe distribution has a tall 

spike near zero and heavy tails, and therefore leads to a particularly challenging setting for 

most methods. The good performance of GMM in Setting (C) thus supports the robustness 

of the method. In addition, as before, both PTG and GMM provide reasonable empirical 

estimates of FDR and TPR (Table S1, S2 of SM) based on a PIP = 0.5 cutoff. The accuracy 

gain in effects estimation basically follows the same pattern as the power gain in mediator 
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selection. The computing time of the proposed methods is reported in Table S3 of SM, with 

both methods being relatively efficient for p = 200 and p = 2000 cases.

Finally, among the three frequentist methods, the bi-Lasso yields higher power as compared 

to the other two in all the scenarios and has smaller MSE in almost all the settings except 

for the horseshoe setting. Between bi-Lasso and bi-Bayesian Lasso, we find that the former 

outperforms the latter with higher TPR and smaller MSEnull. This comparison suggests that 

under this sparse setup, the estimated non-sparse indirect estimates in bi-Bayesian Lasso 

may not be ideal for classifying mediators as compared to the sparse solutions produced by 

bi-Lasso.

Alternative to fixing the threshold parameter λ, we also consider a data-adaptive uniform 

prior that favors large positive value of λ’s. That is, we first fit the Lasso method 

and then use the posterior quantiles (e.g. 95% to 99%) of the estimated |βm|, |αa| to 

determine the range of corresponding λ’s. To be specific, a priori, λ1 U |βm|(95%), |βm|(99%)
, 

λ2 U |αa|(95%), |αa|(99%) , and we always set the value of λ0 as λ1λ2. The results (Table S6 in 

SM) indicate that uniform priors with adequately large lower bounds (e.g. 95% quantiles) of 

λ1 (and λ2) can boost the selection power and estimation accuracy. The thresholds specified 

this way also cover a reasonably wide range, e.g. 0.2 ∼ 0.6 when the non-zero true effect is 

0.5 in our simulation. This relatively objective approach can be used to guide the selection of 

λ’s in grid search.

In summary, the simulations demonstrate that GMM enjoys superior and robust performance 

for mediator selection and effect estimation, while PTG is preferable under potentially large 

non-zero effects in mediator selection.

5. Data Application

5.1. Analysis of DNA Methylation in the MESA Cohort

We applied the proposed GMM and PTG to investigate the mediation mechanism of DNAm 

in the pathway from neighborhood socioeconomic disadvantage to BMI in the MESA data. 

Neighborhood SES is the exposure variable and is created based on a principal components 

analysis of 16 census-tract level variables reflecting dimensions of education, occupation, 

income, poverty, housing, etc. BMI is the outcome variable and also a critical risk factor 

for various diseases including T2D and CVD (Hjellvik et al., 2012). Understanding how 

methylation at different CpG sites mediates the effects of neighborhood SES on BMI can 

shed light on the molecular mechanisms of complex diseases, thus leading to potential 

therapeutic strategies. The detailed processing steps for MESA data are provided in the SM. 

Briefly, we selected 1,225 individuals with non-missing data. Due to computational reasons, 

we focused on a final set of 2,000 CpG sites that have the strongest marginal associations 

with neighborhood SES. We applied various methods for the mediation analysis. In the 

outcome model, we adjust for age, gender, race/ethnicity, childhood socioeconomic status 

(SES) and adult SES (more details on the SES variables can be found at Smith et al. (2017)). 

In the mediator model, we control for age, gender, race/ethnicity, childhood SES, adult 

SES, and enrichment scores for 4 major blood cell types (neutrophils, B cells, T cells and 
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natural killer cells) to account for potential contamination by non-monocyte cell types. All 

the continuous variables are standardized to have zero mean and unit variance.

We display the PIP values for each of the 2,000 CpG sites from PTG and GMM in Figure 

1. GMM identified nine CpG sites with significant evidence for mediating the neighborhood 

SES effects on BMI based on 0.5 cutoff of PIPs. In contrast, PTG identified twelve 

significant CpG sites at the same threshold, which include all the nine sites selected by 

GMM method. The top five CpG sites identified by the two methods are identical. The rank 

correlation for the mediator rank lists obtained from both methods is 0.87, supporting the 

high consistency between the two methods. We carefully examine the nearby genes of the 

detected methylation sites by GMM and PTG. Among them, genetic variation in PTK2, 

a gene encoding structural protein in muscle, may be associated with BMI (Zeller et al., 

2018); genetic variations in PCID2 and NFE2L1 have been shown to be associated with 

cardiovascular disease, glucose and insulin resistance in human and animal systems (Zheng 

et al., 2015; Erdmann et al., 2018); Differences in COX6A1P2 methylation was robustly 

recognized to link with obesity development in multiple epigenome-wide studies (Kvaløy 

et al., 2018) and EVI2B was reported as one of the regulatory genes related to obesity in a 

porcine model (Kogelman et al., 2014). Therefore, the genes nearby the detected CpG sites 

may play an important role in transmitting the effects of neighborhood SES to BMI. For the 

other competing methods, BAMA and the univariate methods do not have sufficient power 

to identify any significant CpG sites at 0.10 FDR. HIMA identifies one CpG site in the gene 

region of PCID2 as active mediator through its joint significance test (adjusted P-value = 

6.3×10−5), and this single site has also been detected by PTG and GMM methods. Bi-Lasso 

and Pathway Lasso tend to produce a large number of false positives in simulations, and thus 

it is hard to verify their findings in the real data application.

5.2. Analysis of Endogenous Biomarkers and Environmental Data in the LIFECODES 
Birth Cohort

As another data example, we study the collective impact of endogenous signaling molecules 

derived from lipids, peptides, and DNA in mediating prenatal exposure to environmental 

contaminants on the risk of preterm birth in the LIFECODES birth cohort. Detailed 

description of the study is provided in the SM. Briefly, we consider n = 161 pregnant women 

registered at the Brigham and Women’s Hospital in Boston, MA between 2006 and 2008. 

Subjects’ urine and plasma specimens were collected at one study visit occurring between 

23.1 and 28.9 weeks gestation. Four classes of environmental contaminants, including 

phthalates, phenols, polycyclic aromatic hydrocarbons, and trace metals, were measured 

in each urine sample. Among them, phthalates are the high-production volume chemicals 

commonly used as plasticizers in numerous consumer products. Previous studies have shown 

that everyday exposure to phthalates during pregnancy would increase risk of delivering 

preterm (Ferguson et al., 2014). Recent studies have also uncovered associations between 

multiple lipid biomarkers and preterm birth (Aung et al., 2019). Based on those evidence, 

we aim to understand the molecular mechanism underlying the effects of phthalates on 

preterm. We first follow Aung et al. (2020) to create an environmental risk score for the 

phthalate class and treat such risk score as the exposure variable. The gestational age 

at delivery was recorded as the continuous birth outcome. For mediators, we obtained 
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61 endogenous biomarkers from urine and plasma that included 51 eicosanoids, five 

oxidative stress biomarkers and five immunological biomarkers. In the analysis, we perform 

log-transformation on all measurements of the exposure metabolites and endogenous 

biomarkers. We adjust for age and maternal BMI from the initial visit, race, and urinary 

specific gravity levels inside both models of the mediation analysis. Since the cohort is 

oversampled for preterm cases (< 37 weeks gestation), we multiply the data by the case-

control sampling weights to adjust for that.

We summarize the application results in Table 4. Both PTG and GMM identified significant 

mediators that mediate the effects of the phthalate exposure on gestational age at delivery 

based on PIP = 0.5 cutoff (Figure 2), with rank lists of mediators positively correlated 

with each other (rank correlation = 0.48). Specifically, GMM identified two significant 

biomarkers (9-oxooctadeca-dienoic acid [9-oxoODE], 12, 13-epoxy-octadecenoic acid 

[12(13)-EpoME]). PTG identified three significant biomarkers (8-hydroxydeoxyguanosine 

[8-OHdG], 12(13)-EpoME, leukotriene D4 [LTD4]), one of which (12(13)-EpoME) overlaps 

with those identified by GMM. Among the identified biomarkers, 8-OHdG is commonly 

utilized as a marker of oxidative stress generated upon repair of oxidative DNA damage and 

has been found to be strongly associated with decreased gestational length and increased 

risk of preterm (Ferguson et al., 2015); while LTD4 has been shown to exhibit significant 

associations with preterm birth, and 9-oxoODE and 12(13)-EpoME had an important 

protective effect on preterm birth (Aung et al., 2019). As a comparison, BAMA, HIMA 

and the univariate methods fail to identify any significant active mediators at 0.10 FDR in 

this application. Our results help improve the understanding of the molecular mechanisms 

underlying the effects of environmental exposure on preterm, and could further lead to 

improvement of treatment and prevention strategies.

6. Discussion

In this paper, we present two novel joint modeling approaches, PTG and GMM, for 

high-dimensional mediation analysis. Our methods can jointly model a large number of 

mediators and enable penalization on the indirect effects in a targeted way. Our methods 

effectively characterize the high-dimensional set of potential mediators into four groups 

based on the exposure-mediator and mediator-outcome effects: the active mediating group 

and three non-mediating groups. These group categorizations are in consonance with 

the composite structure for testing the indirect effect recently proposed in genome-wide 

mediation analyses (Huang, 2019). With extensive simulations, we show that our methods 

achieve up to 30% power gain in identifying true non-null mediators as compared with 

other existing alternatives, including several recently developed penalized and Bayesian 

methods for mediation analysis. We have demonstrated the benefits of our methods with 

both genetic and environmental data in the MESA and LIFECODES cohorts. For example, 

in the MESA cohort, we identify several DNAm and their nearby genes, e.g. NFE2L1 and 

PTK2, with strong evidence for mediating neighborhood SES effects on BMI. This is an 

important finding in biosocial research where we try to characterize how the insults from our 

external environment influence the internal cellular environment and finally manifest into 

development of a chronic disease.

Song et al. Page 16

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2021 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



On the methodological front, we still have challenges remaining that are unsolved in this 

modeling exercise. Bayesian FDR control is of great importance to safeguard false positives 

in the scientific discovery. For PTG and GMM, we rely on the median inclusion probabilities 

(PIP = 0.5) to identify active mediators, which provides effective FDR control as validated 

through simulations. For bi-Bayesian Lasso and other continuous shrinkage methods, such 

as the scale mixture of normals prior, we have attempted to define PIP using shrinkage 

factors following Carvalho et al. (2010). However, we find it challenging to adapt the 

shrinkage factors to devise an optimal strategy for computing PIP analogs and ranking 

correlated mediators. Consequently, we have to rely on the estimated indirect contributions 

from these methods to rank mediators, which may account for at least partially the relatively 

poor performance of these methods. Therefore, coming up with an analog of PIP as the 

selection criterion in mediation analysis for various other methods remains a topic of future 

investigation.

One limitation of our current work is that the proposed methods do not explicitly 

incorporate the correlation structure among mediators in the modeling process. Treating 

mediators independent a priori, the models may fail to distinguish among highly correlated 

mediators and lose power in mediator selection when two truly active mediators tend to be 

correlated with each other. Correlations among mediators are commonly seen in modern 

data analysis; such examples include genomic data that measure hundreds of thousands 

of gene expressions/single nucleotide polymorphisms (SNPs), and brain image data that 

contain a large number of voxels/regions. Incorporating mediator correlation information 

explicitly into our Bayesian paradigm could be a promising direction for future work.

7. Software

Software in the form of C++ codes is available on github https://github.com/yanys7/

GMM_PTG_Mediation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Data analysis results for the trio Neighborhood SES → DNAm → BMI in MESA data. The 

upper panel shows the PIPs obtained from the GMM method, and the lower panels shows 

the PIPs obtained from the PTG method. The blue lines mark the PIP = 0.5 threshold, and 

we include the nearby genes of the selected CpG sites. Most of the sites are identified by 

both methods, and the three genes in green are additional findings from PTG.
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Fig. 2. 
Data analysis results for the LIFECODES cohort. The panel shows the PIPs obtained from 

GMM (blue) and PTG (yellow) methods for the trio Exposure to phthalates → Biomarkers 

→ Gestational age of the newborn at delivery.
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Table 1.

Simulation results for fixed effects under n = 100, p = 200 and n = 1000, p = 2000, p11 is the number of 

truly active mediators. TPR: true positive rate at false discovery rate (FDR) = 0.10. MSEnon-null: mean squared 

error for the indirect contributions of truly active mediators. MSEnull: mean squared error for the indirect 

contributions of truly inactive mediators. The results are based on 200 replicates for each setting, and the 

standard errors are shown within parentheses. For PTG, we include the pre-defined thresholds (λ0, λ1, λ2) 

under each setting. Bolded TPRs indicate the top two performers.

n = 100, p = 200, p11 = 10, fixed effects (I)

Method AUC TPR MSE non-null MSEnull × 10−4

PTG (0.15,0.4,0.4) 0.99(0.001) 0.52(0.026) 0.043 0.395

GMM 0.98(0.001) 0.44(0.022) 0.047 1.409

BAMA 0.97(0.002) 0.38(0.021) 0.063 2.471

Bi-BLasso 0.90(0.005) 0.27(0.015) 0.092 21.879

PathLasso 0.81(0.004) 0.35(0.019) 0.045 1.418

Bi-Lasso 0.80(0.008) 0.36(0.018) 0.043 0.661

HIMA 0.61(0.005) 0.23(0.010) 0.056 2.895

Univariate 0.80(0.007) 0.25(0.014) 0.060 49.764

n = 100, p = 200, p11 = 10, fixed effects (II)

Method AUC TPR MSE non-null MSEnull × 10−4

PTG (0.15,0.4,0.4) 0.96(0.003) 0.35(0.016) 0.073 0.309

GMM 0.96(0.003) 0.37(0.017) 0.062 0.940

BAMA 0.95(0.003) 0.31(0.015) 0.075 2.389

Bi-BLasso 0.90(0.005) 0.25(0.013) 0.044 11.040

PathLasso 0.70(0.009) 0.28(0.015) 0.092 0.576

Bi-Lasso 0.72(0.006) 0.29(0.013) 0.079 0.422

HIMA 0.60(0.005) 0.21(0.010) 0.083 1.923

Univariate 0.82(0.007) 0.23(0.013) 0.081 26.540

n = 1000, p = 2000, p11 = 100, fixed effects (I)

Method AUC TPR MSE non-null MSEnull × 10−4

PTG (0.15,0.4,0.4) 0.98(0.001) 0.64(0.008) 0.028 0.070

GMM 0.99(0.001) 0.61(0.009) 0.023 0.134

BAMA 0.98(0.001) 0.54(0.007) 0.040 0.150

Bi-BLasso 0.90(0.002) 0.23(0.004) 0.063 5.711

PathLasso 0.70(0.002) 0.20(0.005) 0.057 3.982

Bi-Lasso 0.72(0.001) 0.23(0.003) 0.051 0.293

HIMA 0.54(0.001) 0.15(0.003) 0.077 1.780

Univariate 0.89(0.002) 0.10(0.005) 0.092 225.056

n = 1000, p = 2000, p11 = 100, fixed effects (II)

Method AUC TPR MSE non-null MSEnull × 10−6
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PTG (0.15,0.4,0.4) 0.96(0.002) 0.40(0.008) 0.008 0.164

GMM 0.97(0.001) 0.48(0.006) 0.003 3.437

BAMA 0.95(0.001) 0.35(0.005) 0.005 7.485

Bi-BLasso 0.85(0.001) 0.18(0.004) 0.011 184.761

PathLasso 0.67(0.002) 0.19(0.003) 0.017 19.540

Bi-Lasso 0.70(0.001) 0.23(0.005) 0.007 5.059

HIMA 0.56(0.002) 0.08(0.003) 0.013 25.432

Univariate 0.85(0.001) 0.12(0.003) 0.075 208.660
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Table 2.

Simulation results for random effects under n = 100, p = 200, p11 is the number of truly active mediators. 

TPR: true positive rate at false discovery rate (FDR) = 0.10. MSEnon-null: mean squared error for the indirect 

contributions of truly active mediators. MSEnull: mean squared error for the indirect contributions of truly 

inactive mediators. The results are based on 200 replicates for each setting, and the standard errors are shown 

within parentheses. For PTG, we include the pre-defined thresholds (λ0, λ1, λ2) under each setting. Bolded 

TPRs indicate the top two performers.

n = 100, p = 200, p11 = 10, PTG, σu2 = 0.3

Method AUC TPR MSE non-null MSEnull × 10 −4

PTG (0.15, 0.4, 0.4) 0.98(0.002) 0.45(0.020) 0.05 1.59

GMM 0.98(0.001) 0.43(0.015) 0.03 4.25

BAMA 0.98(0.001) 0.41(0.019) 0.04 2.64

Bi-BLasso 0.89(0.006) 0.35(0.017) 0.05 6.83

PathLasso 0.65(0.013) 0.31(0.015) 0.06 2.43

Bi-Lasso 0.78(0.009) 0.40(0.020) 0.05 1.12

HIMA 0.60(0.007) 0.29(0.012) 0.07 5.46

Univariate 0.85(0.008) 0.29(0.023) 0.15 76.25

n = 100, p = 200, p11 = 10, Gaussian, σ2 = 0.3

Method AUC TPR MSEnon-null × 10−3 MSEnull × 10 −5

PTG (0.04, 0.2, 0.2) 0.92(0.002) 0.38(0.008) 6.24 4.05

GMM 0.94(0.003) 0.41(0.006) 3.92 3.56

BAMA 0.95(0.003) 0.38(0.011) 5.06 3.39

Bi-BLasso 0.83(0.006) 0.28(0.014) 23.31 14.38

PathLasso 0.75(0.008) 0.30(0.011) 11.57 3.09

Bi-Lasso 0.75(0.003) 0.36(0.011) 7.50 1.52

HIMA 0.65(0.005) 0.21(0.009) 14.98 7.93

Univariate 0.75(0.006) 0.26(0.025) 62.46 234.30

n = 100, p = 200, p11 = 10, Horseshoe, σ2 = 0.5, b = 3

Method AUC TPR MSE non-null MSEnull × 10−4

PTG (0.15, 0.5, 0.3) 0.80(0.009) 0.30(0.015) 0.42 7.16

GMM 0.83(0.006) 0.33(0.011) 0.03 5.21

BAMA 0.80(0.008) 0.28(0.017) 0.11 6.28

Bi-BLasso 0.76(0.011) 0.23(0.010) 0.45 42.36

PathLasso 0.65(0.019) 0.25(0.026) 0.51 6.04

Bi-Lasso 0.68(0.009) 0.27(0.017) 0.46 5.41

HIMA 0.60(0.006) 0.20(0.010) 0.41 26.51

Univariate 0.72(0.009) 0.20(0.020) 0.44 512.33
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Table 3.

Simulation results for random effects under n = 1000, p = 2000, p11 is the number of truly active mediators. 

TPR: true positive rate at false discovery rate (FDR) = 0.10, MSEnon-null: mean squared error for the indirect 

contributions of truly active mediators. MSEnull: mean squared error for the indirect contributions of truly 

inactive mediators. The results are based on 200 replicates for each setting, and the standard errors are shown 

within parentheses. For PTG, we include the pre-defined thresholds (λ0, λ1, λ2) under each setting. Bolded 

TPRs indicate the top two performers.

n = 1000, p = 2000, p11 = 100, PTG, σu2 = 0.1

Method AUC TPR MSEnon-null × 10−4 MSEnull × 10−6

PTG (0.05,0.15,0.15) 0.98(0.001) 0.40(0.008) 5.28 2.46

GMM 0.98(0.001) 0.37(0.010) 3.86 4.26

BAMA 0.98(0.001) 0.30(0.012) 4.84 3.62

Bi-BLasso 0.92(0.003) 0.29(0.018) 7.92 11.38

PathLasso 0.77(0.009) 0.22(0.007) 7.02 1.74

Bi-Lasso 0.83(0.003) 0.28(0.014) 5.60 1.81

HIMA 0.53(0.002) 0.14(0.004) 9.96 4.96

Univariate 0.85(0.003) 0.11(0.023) 60.24 214.57

n = 1000, p = 2000, p11 = 100, Gaussian, σ2 = 0.1

Method AUC TPR MSEnon-null × 10−3 MSEnull × 10−5

PTG (0.02,0.2,0.1) 0.92(0.002) 0.42(0.006) 4.76 0.874

GMM 0.95(0.001) 0.51(0.007) 2.09 0.712

BAMA 0.90(0.003) 0.41(0.018) 2.85 0.722

Bi-BLasso 0.88(0.002) 0.32(0.007) 4.85 1.632

PathLasso 0.78(0.011) 0.25(0.003) 4.88 1.256

Bi-Lasso 0.81(0.002) 0.38(0.010) 2.53 0.368

HIMA 0.55(0.002) 0.19(0.004) 8.41 1.544

Univariate 0.82(0.003) 0.19(0.017) 34.08 20.05

n = 1000, p = 2000, p11 = 100, Horseshoe, σ2 = 0.3, b = 3

Method AUC TPR MSE non-null MSEnull × 10−4

PTG (0.03,0.3,0.1) 0.74(0.002) 0.29(0.008) 0.18 10.04

GMM 0.80(0.001) 0.38(0.007) 0.14 2.94

BAMA 0.75(0.002) 0.27(0.006) 0.25 3.88

Bi-BLasso 0.71(0.002) 0.09(0.003) 0.26 127.55

PathLasso 0.66(0.008) 0.05(0.002) 0.41 2.03

Bi-Lasso 0.72(0.003) 0.24(0.007) 0.24 1.57

HIMA 0.55(0.002) 0.09(0.004) 0.39 1.56

Univariate 0.77(0.003) 0.09(0.015) 0.59 644.07
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Table 4.

Summary of the identified active mediators from the data application on MESA and LIFECODES study. For 

PTG, we include the pre-defined thresholds (λ0, λ1, λ2) for the two real datasets.

Method Selected Mediators

MESA : Neighborhood SES → DNAm → BMI

GMM CRHR2, NFE2L1, PTK2, PCID2, MNDA, SLK, CREB1, CASZ1, EVI2B

PTG (0.01,0.05,0.1) CRHR2, NFE2L1, PTK2, PCID2, MNDA, CREB1, SLK, EVI2B, OR2M5, SLC18B1, COX6A1P2, CASZ1

LIFECODES: Phthalates → Biomarkers → Gestational age

GMM 12(13)-EpoME, 9-oxoODE

PTG (3.0,2.0,1.5) 12(13)-EpoME, 8-OHdG, LTD4
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