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Abstract

We estimate the effect of current location on elderly mortality by analyzing outcomes of movers 

in the Medicare population. We control for movers’ origin locations as well as a rich vector of pre-

move health measures. We also develop a novel strategy to adjust for remaining unobservables, 

using the correlation of residual mortality with movers’ origins to gauge the importance of 

omitted variables. We estimate substantial effects of current location. Moving from a 10th to a 

90th percentile location would increase life expectancy at age 65 by 1.1 years, and equalizing 

location effects would reduce cross-sectional variation in life expectancy by 15 percent. Places 

with favorable life expectancy effects tend to have higher quality and quantity of health care, less 

extreme climates, lower crime rates, and higher socioeconomic status.

Mortality rates vary substantially across the US. Focusing on the 100 most populous 

commuting zones, Chetty et al. (2016) estimate that life expectancy at age 40 ranges 

from a high of 85 in San Jose, California to a low of 81 in Las Vegas, Nevada, with a 

standard deviation across commuting zones of 1.2 years.1 Murray et al. (2006) estimate that 

county-level life expectancy at birth in 1999 ranged from 66.6 years in Bennett County, 

South Dakota to 81.3 years in Summit County, Colorado. Currie and Schwandt (2016) 

likewise document substantial disparities across county groups in life expectancy at birth as 

well as in mortality at older ages.

Why do people in some parts of the US live longer than others? The long list of possible 

causes can be divided into two broad categories: differences in residents’ stocks of health 
capital (Grossman 1972), and differences in the environment associated with their current 

location. Health capital includes genetic endowments, as well as the persistent effects of 

prior health behaviors (e.g., smoking, diet, exercise), prior medical care, and other past 

experiences that impact current mortality. Potentially mortality-relevant aspects of residents’ 

afink@mit.edu. 
1Authors’ calculations based on the publicly reported data provided by Chetty et al. (2016b) on life expectancy for each commuting 
zone reported separately by gender, which we use to calculate overall life expectancy assuming equal shares of men and women in 
each commuting zone. Note that these data include only individuals with non-zero reported household income.
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current locations include the quality and quantity of available medical care, local climate 

and pollution, and risk factors such as crime and traffic accidents. Chetty et al. (2016) find 

that the main correlates of area mortality in the cross section are health capital factors such 

as smoking, obesity, and exercise, and that correlations with place factors such as health 

care spending or local environmental conditions are weak. Neither they nor other past work, 

however, isolate the causal impact of place effects.

In this paper, we use mortality outcomes of migrants in the elderly Medicare population to 

separately identify the effects of health capital and current location on mortality in the U.S. 

We will refer to the impact of current location by the shorthand place effects. Our strategy 

proceeds in two steps. First, we analyze mortality differences among movers to different 

destinations, controlling for both their origin locations and a rich vector of pre-move 

observable health measures in Medicare claims data. The idea behind our approach is to take 

two patients from the same origin (say, Boston), one of whom moves to a low-mortality area 

(say, Minneapolis), and the other of whom moves to a high-mortality area (say, Houston), 

and to compare their mortality outcomes after they move. If origin location plus pre-move 

health measures capture all differences in health capital potentially correlated with choice of 

destination, this would provide a valid estimate of the place effects.

Second, we apply a novel strategy to try to correct for any remaining selection on 

unobserved health capital. Our strategy builds on prior work (Murphy and Topel 1990; 

Altonji et al. 2005; Oster 2016) in using variation in observable characteristics to adjust for 

variation in unobservables. In our context, this amounts to using the correlation between 

movers’ choice of destination and their observed health capital to adjust for potential 

correlation between choice of destination and unobserved health capital. We weaken the 

assumptions of the standard approach by using the correlation between origin locations and 

residual post-move mortality as an additional moment to pin down the overall importance of 

the unobservables.

We use data on all Medicare beneficiaries aged 65 and older from 1999 through 2014 (CMS 

1998–2014b). The enrollee-level panel data contain information on zip code of residence 

and date of death (if any), along with demographic variables such as age, race, sex, and 

enrollment in Medicaid (a proxy for low income). The claims data provide us with detailed 

annual measures of health conditions based on recorded diagnoses, as well as measures 

of health care utilization. Our geographic unit of analysis is a Commuting Zone (CZ), a 

standard aggregation of counties that partitions the US and is designed to approximate 

labor markets. The main outcome we focus on is life expectancy at age 65. We model log 

mortality as an additive function of age, place effects, and health capital, following the 

standard Gompertz specification for age-mortality gradients (Olshansky and Carnes 1997; 

Chetty et al. 2016b).

Our analysis depends on two strong simplifying assumptions; we present supporting 

evidence for both and also assess robustness to possible violations. The first key assumption 

is that health capital and place effects are additively separable in the equation for log 

mortality. This is analogous to additive separability assumptions in prior work using 

movers. It implies that health capital and place effects enter the level of the mortality 
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rate multiplicatively, so that moving to a place with more favorable health care or other 

environmental factors matters more for those in worse health to begin with. We see this an 

appealing implication broadly, but note that it rules out factors that induce a constant level 

shift in mortality and also precludes more complex interactions.

The second key assumption is that health capital is constant over the post-move time 

horizon of our analysis. Of course, in general health capital will evolve endogenously as a 

function of environment and health behaviors, and late-life mortality can depend on health 

behaviors like smoking and exercise over an individual’s entire lifetime. However, we see it 

as a reasonable approximation to treat health capital as constant in the post-65 population 

over the 1 to 12 years we observe them post-move. Conditional on behavior prior to age 

65, it seems reasonable to assume that the impact of any late-life behavior changes on 

health capital is relatively modest. Moreover, to the extent that health capital does evolve 

endogenously following a move, this should produce gradual changes in mortality, rather 

than the on-impact changes in mortality we document.

We find that current location has a large impact on mortality. In our analysis sample, mean 

life expectancy at age 65 is 83.3 years, with an across-area standard deviation of 0.79 years. 

Our results imply that moving from an area at the 10th percentile of estimated place effects 

to an area at the 90th percentile would increase life expectancy at age 65 by 1.1 years, 

or about half of the 90–10 cross-sectional difference. These findings suggest that policies 

which affect short-run determinants of mortality such as medical care or environmental 

factors can potentially produce large and immediate changes in outcomes, as can policies 

such as the Moving to Opportunity Project (Ludwig et al. 2012; Chetty et al. 2016a) that 

relocate small numbers of vulnerable individuals to areas with more favorable conditions.

At the same time, our findings suggest that health capital also plays an important role. We 

estimate that equalizing place effects across areas would reduce the cross-sectional variation 

in life expectancy at age 65 by 15 percent. By comparison, equalizing health capital across 

areas would reduce the cross-sectional variation by about 70 percent. This in part reflects 

the fact that while our estimated place effects are positively correlated with average area 

life expectancy, this correlation is far from perfect. Our place-by-place estimates of these 

components identify areas such as Santa Fe, New Mexico and El Paso, Texas as having 

negative effects despite relatively high average life expectancy, and other areas such as 

Charlotte, North Carolina as having positive effects despite relatively low average life 

expectancy.

Finally, we present evidence on the observable area-level correlates of our estimated place 

effects. The results are intuitive. Areas with positive place effects tend to have higher-quality 

hospitals, more primary care physicians and specialists per capita, and higher health care 

utilization. The positive correlation between an area’s healthcare utilization and its impact 

on life expectancy contrasts with the lack of correlation between utilization and average 

health outcomes which has been emphasized in the Dartmouth Atlas literature (Fisher et al. 

2003a, b; Skinner 2011) and which we replicate here. Areas with favorable place effects 

also tend to have less extreme climates, less pollution, fewer homicides, fewer automobile 

fatalities, and higher urban shares. They also tend to have higher socioeconomic status (SES) 
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as measured by income and education, as well as better health behaviors, which may reflect 

higher willingness to pay for healthcare quality and other favorable place characteristics 

among such individuals. We emphasize that these are simply bivariate correlations which 

need not reflect causal relationships.

We emphasize a number of important caveats for interpreting our findings. A crucial one 

is that our place effects capture the impact of place in an elderly population for whom 

we treat health capital as approximately constant. These estimates are appropriate for 

evaluating relatively short-run impacts of policies that change key place characteristics (e.g., 

improving a local health care system or reducing pollution) or move small numbers of 

people across space. Long-run effects of such policies could differ, however, as resulting 

changes in the evolution of health capital could play a larger role. The effect of moving 

larger numbers of people across space may also differ, as the place effects themselves may 

evolve endogenously due to supply side responses or peer effects. Finally, effects could be 

different in younger populations.

A second important caveat is that mortality is an absorbing state, and so we are unable 

to look at changes in mortality over time for a single individual. This means that our 

identification strategy is similar to that of cross-sectional movers designs such as Chetty 

and Hendren (2018b) and Bronnenberg et al. (2012), and requires stronger assumptions than 

panel mover analyses such as Finkelstein et al. (2016). Although we adjust for selection on 

unobservables, our identifying assumptions are also likely to be stronger than those in papers 

such as Doyle (2011) and Deryugina and Molitor (2018) that study the impact of location on 

mortality using explicit natural experiments to create variation in place factors.2

Our work contributes to the large literature on the determinants of mortality. McGovern et 

al.’s (2014) recent review of studies on health determinants concludes that this literature 

tends to attribute the largest importance for mortality to health capital — specifically to 

behaviors (35–50%) and to genetics (20–30%). Among potential place effects, it attributes 

between 5–20% of the determinants of mortality to environment and around 10% to medical 

care. While the methodologies of the studies underlying these estimates vary, they generally 

all rely on correlational analyses to quantify the relative importance of these different 

factors.3 Our analysis advances this body of descriptive work with a research design that 

more convincingly isolates causal effects.

Our work is particularly related to prior work on the drivers of geographic variation 
in mortality. This work has also tended to highlight the importance of health capital, 

particularly health behaviors. Fuchs (1974) famously attributed the lower mortality rates 

of clean-living, predominantly Mormon residents of Utah to better health behaviors than 

their neighbors in the more dissolute state of Nevada.4 Chetty et al. (2016b) show that 

2Doyle (2011) uses health emergencies of visitors to different areas of Florida and shows that hospitals in high-spending areas 
produce better outcomes than hospitals in low-spending areas, while Deryugina and Molitor (2018) document that Medicare survivors 
of Hurricane Katrina who move to lower-mortality regions experience subsequently lower mortality than those who move to higher-
mortality regions.
3The underlying studies included in their review are DHH (1980), McGinnis and Foege (1993), Lantz et al. (1998), McGinnis et al. 
(2002), Mokdad et al. (2004), Danaei et al. (2009), WHO (2009), Booske et al. (2010), Stringhini et al. (2010), and Thoits (2010).
4See also Fuchs (1965) on geographic variation in mortality within the US.
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geographic variation in life expectancy for low-income individuals is significantly correlated 

with health behaviors such as smoking, obesity and exercise, but not significantly correlated 

with measures of health care quality or quantity. This is consistent with the large Dartmouth 

Atlas literature which has found health care utilization to be uncorrelated with mortality 

(Fisher et al. 2003a, b; Skinner 2011).5

Summarizing the state of knowledge on both the determinants of mortality and the 

determinants of geographic variation in mortality, Cutler (2018) concludes, “Behavior is the 

key. When we compare geographic regions, the dominant factor driving health differences 

is how Americans behave. Unhealthy areas smoke more, drink more and eat to excess; 

healthier areas avoid these behaviors.” The large role we estimate for health capital is 

consistent with this conventional wisdom. However, our results also show that there is a 

substantial impact of place-based factors that this conventional wisdom may understate.

Our empirical strategy for correcting for selection on unobservables may have applications 

in other contexts. Oster (2016) emphasizes the sensitivity of the standard approach to 

assumptions about the overall explanatory power of the observables, and notes that direct 

information to guide such assumptions is often limited. We propose weaker assumptions 

under which this decision can be guided by the data. Our approach is most obviously 

relevant to other contexts in which individuals move across geographies, firms, or other units 

of analysis, and in which selection on unobserved individual characteristics is a potential 

confound; this could arise due to data limitations (e.g. Bronnenberg et al. 2012) or because 

an outcome cannot be measured repeatedly in individual panel-level data (such as mortality 

in our case or inter-generational mobility in Chetty and Hendren 2018b). It may also be 

applied to other settings where there are auxiliary variables whose relative correlation with 

observables and unobservables is plausibly similar to that of the treatment of interest.

The rest of the paper proceeds as follow. Sections I and II describe our model and empirical 

strategy, and Section III presents our data and summary statistics. Section IV presents 

evidence on the selection of movers across origins and destinations and describes how our 

empirical strategy addresses this selection. Section V presents our main results on the impact 

of current environment on life expectancy, and explores some observable correlates of the 

place effects. Section VI provides additional support for some of our key assumptions and 

shows robustness of our main results to alternative specifications. The last section concludes.

I. Model

We consider a set of individuals indexed by i and a set J of locations indexed by j. We 

analyze a continuous-time survival model in which an individual’s mortality rate at a given 

age depends on her accumulated stock of health capital θi and the place effect γi associated 

with her current location.6 The individuals are either (i) movers who live in an origin 

5In addition to geographic variation in medical care, a number of studies have examined the correlates of another natural component 
of place effects — current environmental factors such as air pollution — with regional variation in mortality rates (e.g. Dockery et al. 
1993; Samet et al. 2000). For example, Dockery et al. (1993) estimate that across-city variation in air pollution is positively associated 
with deaths from lung cancer and cardiopulmonary disease.
6More precisely, γj − γk is the causal effect on log mortality of living in place j rather than place k.
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location o ∈ J in years t < ti∗, move in year ti∗ from o to  j ∈ J, and then live in destination 

location j thereafter; or (ii) non-movers who live in the same location j ∈ J throughout the 

sample, and to whom we assign a reference year ti∗ as discussed below.

We follow Chetty et al. (2016b) in adopting a Gompertz specification in which the log of 

the mortality hazard rate mij (a) that individual i would experience at age a if she lived in 

location j is linear in age:

log mij(a) = βa + γj + θi . (1)

This specification embeds two key simplifying assumptions. The first is that age, place 

effects, and health capital are additively separable. Analogous assumptions are standard in 

the literature using changes in residence or employment to separate effects of individual 

characteristics from geographic or institutional factors (e.g. Card et al. 2013; Chetty and 

Hendren 2018a, b; Finkelstein et al. 2016).

This is a strong assumption, but we see it as a reasonable one in our setting. It has the 

intuitive implication that health capital and current location affect the level of mortality 

multiplicatively, and, thus, that the level of mortality of individuals with poor health capital 

(high θi) will vary more across areas than that of individuals who have better health capital 

(low θi); this has indeed been documented by Chetty et al. (2016b). More concretely, 

suppose that there are two possible levels of health capital, such that in an average location, 

individuals have either a 0.1% annual mortality hazard or a 10% annual mortality hazard. 

The additive separability assumption implies that anything about the current environment 

that reduces mortality — such as the quality of health care or the air quality — will 

reduce mortality by a constant proportion for all individuals, with a larger percentage point 

effect on individuals with worse health capital. Our specification rules out place effects that 

cause the same level shift in mortality for all patients regardless of their health capital. For 

example, if some places have a higher risk of death from auto accidents and this probability 

is independent of health capital, our assumption would be violated. We present empirical 

support for additive separability in Section VI below.

The second key assumption is that both γj and θi are time constant, with the only systematic 

changes in mortality risk over time coming from aging and changes in location. In general, 

θi will evolve endogenously as a function of an individual’s genetic endowment, health 

behaviors such as exercise and smoking, and the health care and other environmental 

factors she experiences. Importantly, this evolution may be affected by the locations where 

she lives. Different locations will affect the environmental factors she experiences, and 

may also change her health behaviors through channels including prices, information, and 

peer effects. Thus, in general, current location may impact mortality both through the 

contemporaneous causal effect γj and through changes in the future values of θi. We abstract 

from this endogenous response of health capital to current location, and instead assume 

that health capital is approximately constant in the elderly population we study over the 

relatively short time horizon of our sample post-move (1 to 12 years). This strikes us as a 

reasonable approximation: it seems likely that any changes in health behavior in an elderly 
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population upon moving will be modest and gradual, and any impacts on mortality from 

such behavioral changes in turn should cumulate over longer time horizons.7 We present 

evidence in support of this approximation in Section VI below.

To define the main quantities we will seek to measure, we let θj denote the average health 

capital of non-movers in j. In order to mirror the literature, which focuses on race and sex 

adjusted mortality rates as the object of interest, in computing θj we assign each area j the 

national average racial and gender composition. We define the mortality rate of an average 

non-mover in j at age a to be mj(a) = exp βa + γj + θj . We refer to the sum (γj + θi) as the 

mortality index of individual i, and to γj + θj  as the average mortality index in area j.

Our main outcome of interest is life expectancy at age 65, hereafter, life expectancy. Given 

a generic continuous mortality hazard rate m (a), the probability the individual survives to 

age a conditional to surviving to age 65 is given by the survival function S(a) = e−∫65
a m(v)dv. 

The life expectancy of an individual who survives until age 65 is 65 + ∫65
∞S(a)da.8 We define 

the life expectancy at 65 of an average non-mover in j by substituting mj(a) into these 

expressions. We will denote this Lj, and refer to it simply as average life expectancy in area 

j.

Our ultimate goal is to estimate the causal effect on life expectancy of living in area j. We 

define this by considering a thought experiment in which an individual with average health 

capital is assigned to live counterfactually in each location j beginning at age 65. Letting 

θ denote the average health capital over the full population of non-movers, this defines a 

set of counterfactual mortality rates mj∗(a) = exp βa + γj + θ  that differ across j only because 

of the place effects γj. Substituting mj∗(a) into the expression for life expectancy yields the 

counterfactual life expectancy Lj
∗. Letting γ denote the population-weighted average of the 

γj, and letting L denote the life expectancy associated with mortality hazard exp[βa + γ + θ], 
we define the treatment effect of area j to be Lj

∗ − L.

II. Empirical Strategy

A. Observables and Unobservables

We assume that health capital θi can be decomposed into a component that depends on 

demographics Xi, a component that depends on observed health Hi, a series of terms 

7Note that the contemporaneous causal effect γj may also work through changes in behavior. For example, the structure of different 
cities may influence the decision to drive or take public transport, and someone who chooses to drive may expose themselves to higher 
mortality risk. Such induced behavior changes do not represent changes in health capital but rather differences in contemporaneous 
mortality risk.
8Let F (a) and f (a) denote the distribution and density of age at death conditional on living to age 65, which we assume is a 

continuous random variable. We have S (a) = 1 − F (a). The hazard function is m(a) = f(a)
S(a) = − d

da logS(a). Integrating both sides 

of this equation yields logS(a) = − ∫65
a m(v)dv. Life expectancy at age 65 is ∫65

∞af (a)da. Integrating by parts, and assuming a 

finite end time, shows this is equal to 65 + ∫65
∞S(a)da.
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capturing unobserved health capital orthogonal to Xi and Hi but correlated with locations, 

and an orthogonal residual:

θi = Xiψ + Hiλ + ηj(i)
nm + ηo(i)

orig + ηj(i)
dest + ηi . (2)

Here, both Xi and Hi are measured as of year ti∗ − 1, i.e. the year prior to move. We let 

j (i) denote the observed location of individual i (permanent location if i is a non-mover, 

and destination if i is a mover), and o(i) denote the observed origin of mover i.9 We define 

ηj(i)
nm , ηo(i)

orig, and ηj(i)
dest to be the fixed effects from a hypothetical regression of θi on Xi, 

Hi, and fixed effects for non-movers’ locations, movers’ origins, and movers’ destinations 

respectively. (We fix ηj(i)
nm = 0 for movers and ηo(i)

orig = ηj(i)
dest = 0 for non-movers.) We define ηi

to be the residual from this regression. We thus have E ηi ∣ Xi, Hi, o(i), j(i) = 0 for movers 

and E ηi ∣ Xi, Hi, j(i) = 0 for non-movers by construction.

Our definition of ηi as a residual that is orthogonal by construction mirrors Altonji et al. 

(2005) and Oster (2016). It means that the coefficients ψ and λ capture both the causal 

effects of Xi and Hi and the effects of any unobservables that may be correlated with Xi and 

Hi. It is natural to assume that such correlations will exist, as unobserved determinants of 

health capital such as smoking will generally be correlated with observed measures of health 

capital such as diagnoses of hypertension. This means that equation (2) does not define a 

structural relationship, and the η terms include only the components of the unobservables 

orthogonal to Xi and Hi.

B. Estimation and Identification

Our main goal in estimation is to identify the place effects γj. This will in turn allow us to 

recover the average health capital θi of movers and non-movers in each location. Combining 

equations (1) and (2) yields the following estimating equation for the realized mortality rate 

mi (a):

log mi(a) = βa + Xiψ + Hiλ + τo(i)
orig + τj(i)

dest + τj(i)
nm + ηi . (3)

where τo(i)
orig, τj(i)

dest, and τj(i)
dest are fixed effects for movers’ origins, movers’ destinations, 

and non-movers’ locations respectively, and we have τo(i)
orig = ηo(i)

orig, τj(i)
nm = γj(i) + ηj(i)

nm , and 

τj(i)
dest = γj(i) + ηj(i)

dest.

We estimate this model by maximum likelihood. Given the estimated parameters, we can 

consistently estimate the area j mortality rate mj(a) by mj(a) = exp βa + Xjψ + Hjλ + τ j
nm , 

where Xj and Hj are the averages of Xi and Hi over non-movers in j.10 Consistent with the 

9We abuse notation slightly in using j to denote a generic location and also letting j (i) denote the observed location of individual i. 
Similarly, we use o to denote a generic origin location and o(i) to denote the observed origin of mover i.
10Note that θj = Xjψ + Hjλ + ηj(i)

nm , and so Xjψ + Hjλ + τ j
nm

 converges in probability to γj + θj.
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definition of θj above, when we compute Xj we set the elements of the vector associated 

with race and sex to their national rather than their area averages. We compute estimates Lj
of average life expectancy Lj in area j by substituting mj(a) for mj(a) in the derivation of Lj 

in Section I. All of our reported estimates of average life expectancy in area j are therefore 

race- and sex-adjusted.

The central challenge is identification of γj. Simply comparing average mortality rates 

across areas in the cross-section does not recover γj, because locations may differ in their 

average health capital E(θi|j (i) = j). An optimistic assumption would be that Xi and Hi 

absorb all such differences. In this case, ηjnm, ηoorig, and ηjdest would be equal to zero for all 

j, o ∈ J, and we would not need to use movers at all; we could simply estimate equation (3) 

using non-movers and the τ j
nm would be consistent estimators of γj.

A more plausible assumption would be that Xi and Hi do not absorb all area differences in 

health capital, but that the remaining differences for movers are absorbed by the origin fixed 

effects ηoorig, so that ηjdest = 0 for all j. In this case, the estimated destination fixed effects 

τ j
dest from equation (3) would be consistent estimators of γj. This assumption would follow 

from a model in which the locations where people are born and live up to age 65 or older 

may be related to their genetic endowments, health behaviors, and other determinants of 

health capital, but in which late-life moving decisions are driven by idiosyncratic factors.

Our findings below are qualitatively consistent with this intuition, in the sense that 

conditioning on movers’ origins eliminates a significant amount of non-random selection 

on observables. However, our results also suggest that some non-random selection may 

remain, implying that ηjdest ≠ 0 and thus that τ j
dest may not exactly recover γj. The selection 

correction strategy we develop in the next sub-section is designed to deal with any such 

remaining selection.

Given consistent estimates γ j of γj, we can estimate the treatment effects Lj
∗ − L of each 

area j. To do so, we estimate θ as the mean across all non-movers of Xiψ + Hiλ + τ j
nm − γ j, 

a consistent estimator of θ i. We estimate γ by the non-mover population-weighted mean of 

the γ j. We then substitute these estimates in place of their population counterparts in the 

definitions of Lj
∗ and L in Section I.

We will at various points form estimates of variances of CZ-level terms such as γj. Unless 

otherwise noted, all such estimates Var(z) for CZ-level variables z are based on a split-

sample approach in which we randomly partition our sample into two parts, form separate 

estimates z1 and z2 using the two samples, and then define Var(z) = Cov z1, z2 . We compute 

confidence intervals via 100 iterations of the Bayesian bootstrap procedure (Rubin 1981).11

11The Bayesian bootstrap smooths bootstrap samples by reweighting rather than resampling observations. For a recent application see 
Angrist et al. (2017); their online Appendix provides implementation details that we follow.
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When we report individual values of the place effects γ j or the life expectancy treatment 

effects that depend on them, we adjust the γ j estimates for sampling error using a standard 

Empirical Bayes’ procedure, producing adjusted estimates we denote γ j
EB. This closely 

follows the approach of Chetty and Hendren (2018b) and Finkelstein et al. (2017). Appendix 

A provides more detail on this procedure.

C. Adjusting for Selection on Unobservables

In this section, we introduce our strategy to allow for the possibility that movers’ 

destinations are correlated with their unobserved health—i.e., that ηjdest ≠ 0. Our approach 

builds on the now-standard methodology developed by Murphy and Topel (1990) and 

Altonji et al. (2005), and expanded on by Oster (2016), which uses variation in observables 

to make inferences about the likely bias due to unobservables.

The standard approach relies on two key assumptions. The first is that the relationship 

between the treatment of interest and the index of observables is similar to the relationship 

between the treatment of interest and an index of unobservables. Altonji et al. (2005) and 

Oster (2016) refer to this as the equal selection assumption. Intuitively, it allows us to learn 

about the direction of bias induced by the unobservables from the bias induced when we 

omit the observables. In a standard labor economics context where we would attempt to 

measure returns to education, equal selection would imply that if education is increasing 

in observed proxies for worker skill, it will be increasing in unobserved skill as well. In 

our context, equal selection implies that if movers to a particular destination tend to have 

unusually good observed health capital they will probably have unusually good unobserved 

health capital as well.

The second assumption pins down the overall importance of the unobservables relative to 

the observables. Oster (2016) operationalizes this as an assumed value for the R2 of a 

hypothetical regression of the outcome on the treatment, the observables, and all the relevant 

unobservables.12 We will refer to this as the R2 assumption. Intuitively, specifying this value 

allows us to determine the magnitude of the bias induced by the unobservables. In the labor 

economics example, the bias would be small if there is very little variation in unobserved 

skill conditional on the observed proxies, or large if this variation is large. In our context, 

the bias would be small if observed proxies captured most of the variation in health capital, 

and so the variance of the unobserved components was small. Oster (2016) emphasizes that 

the choice of the R2 value is by necessity arbitrary in typical applications, and suggests some 

benchmark values researchers could use to obtain conservative bounds.

What distinguishes our strategy from prior work is that we use an additional moment of the 

data to weaken the R2 assumption. That moment is the variance of the origin component 

of unobserved health—ηoorig in equation (2), which we recall is consistently estimated by 

the origin fixed effect τo
orig from equation (3). If our observable measures Hi captured all 

relevant dimensions of health capital, movers’ origins would have no further predictive 

12Altonji et al. (2005) do not name this assumption, but they implicitly assume that the relevant R2 is 1.
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power, and we would have ηoorig = 0 for all o. The extent to which origins remain predictive 

of mortality after we control for Hi is a gauge of the extent to which important unobserved 

components remain.

To apply this logic formally, we first introduce some new constructs and notation. First, 

define a “treatment” indicator Tij = 1 (j (i) = j) for movers equal to one if i’s destination 

is j. Second, as an input to our selection correction strategy, we will need to estimate 

the components of observed health capital related to movers’ origins and destinations 

respectively. Let hi = Hiλ (where λ is defined in equation (3)) be the index of observed 

health capital for individual i; we refer to it throughout as “observed health” for short. 

Define the following regression in the sample of movers:

ℎi = βℎa + Xiψℎ + ℎo(i)
orig + ℎj(i)

dest + ℎi, (4)

where ℎo(i)
orig and ℎj(i)

dest are origin and destination fixed effects respectively and ℎi is a residual. 

We refer to ℎo(i)
orig and ℎj(i)

dest as the origin and destination components of observed health 

respectively. These are by construction the residual components of observed health after 

partialing out age and demographics. We normalize ℎo(i)
orig so the population mean of ℎj(i)

dest is 

zero. To estimate these terms, we first form ℎi = Hiλ using the estimates λ from equation 

(3). We then estimate equation (4) replacing hi with ℎi.

Our two key assumptions can now be stated as follows.

Assumption 1. (Proportional Selection) Corr Tij, ℎj(i)
dest = φ1Corr Tij, ηj(i)

dest  in the 

sample of movers for all j ∈ J, where φ1 is a constant.

Assumption 2. (Relative Importance) 
StDev ηj(i)

orig

StDev ℎj(i)
orig = φ2

StDev ηj(i)
dest

StDev ℎj(i)
dest  in the sample of 

movers, where φ2 is a constant.

Assumption 1 is a version of the equal selection assumption of Altonji et al. (2005) and 

Oster (2016) applied to our setting. There are two key differences. First, we weaken 

their assumption to allow selection on unobservables to be proportional to selection on 

observables, with a coefficient of proportionality of φ1; this nests the special case of 

equal selection (i.e. φ1 = 1). Second, our setting differs from the one they consider in 

that our “treatment” is multidimensional—a vector of indicators for moving to the various 

destinations in J. To map this back to the standard case, we imagine a setting where the 

treatment of interest was the effect of moving to one particular destination j, and so the 

treatment variable is just the binary indicator Tij. We then assume the assumption applies 

separately for each possible destination j ∈ J.13

13Our assumption also differs in that we state it in terms of correlations rather than regression coefficients.
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Assumption 2 allows us to use information from origin unobservables in place of the R2 

assumption. Rather than assuming an arbitrary value for the variance of the destination 

unobservables Var ηj(i)
dest  as the standard approach would dictate, we assume that the 

variance of these unobservables relative to the variance of the destination observables 

Var ℎj(i)
dest  is proportional to the corresponding ratio for movers’ origins, with a coefficient of 

proportionality of φ2. Again, this nests as a special case the assumption that the ratios are not 

just proportional, but are in fact equal (i.e. φ2 = 1). Combining these two assumptions allows 

us to consistently estimate the key unobservables ηjdest for each j from observed moments of 

the data, given assumed values of φ1 and φ2. We impose φ1 = φ2 = 1 in our baseline results 

and assess robustness to alternative values of φ1 and φ2.

Assumption 1 and 2 are strong, but they follow naturally from economic primitives. They 

will hold in a broad class of models of selective migration so long as selection of locations 

is related to overall health capital but not differentially to the observed and unobserved 

components. We show this formally in Appendix B. Specifically, we show that under some 

additional structure on the distributions of observables and unobservables, Assumptions 1 

and 2 with φ1 = φ2 = 1 are both implied by the assumption that selection of origins and 

destinations may depend on the single index θi = ℎi + ηi, where ηi = ηo(i)
orig + ηj(i)

dest + ηi, but that 

origins and destinations are independent of hi and ηi conditional on θi.

If the dimensions of health capital relevant to selection are not captured by a single index, 

our baseline assumption of φ1 = φ2 = 1 requires that the relative importance of unobservable 

to observable health in determining origin must be the same as the relative importance of 

unobservable to observable health in determining destination. This could be violated if, for 

example, observed dimensions of health capital such as diabetes are more strongly related to 

people’s choice of where to live when young, while unobserved dimensions such as physical 

mobility are more strongly related to their migration decisions when they are elderly. It 

could be violated if late-life events such as widowhood affect both the likelihood of moving 

to different destinations and mortality but are uncorrelated with observed health capital. We 

provide empirical support for the assumptions behind our selection correction approach in 

Section VI.C below.

Proposition 1.—Assumption 1 is equivalent to

ηjdest = φ1
StDev ηj(i)

dest

StDev ℎj(i)
dest ℎj

dest . (5)

Proof.: Recalling that ℎj(i)
dest and ηj(i)

dest are normalized to have mean zero, it is straightforward 

to show that Cov Tij, ℎj(i)
dest = N

N′ℎj
destp(1 − p) and Cov Tij, ηj(i)

dest = N
N′ηjdestp(1 − p), where N is 

the total number of movers, N′ is the number with Tij = 0, and p = Pr(Tij = 1).14 Assumption 

1 is then equivalent to
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N
N′ℎjdestp(1 − p)

StDev Tij StDev ℎj(i)
dest = φ1

N
N′ηjdestp(1 − p)

StDev Tij StDev ηj(i)
dest .

Canceling terms yields the desired result.

This proposition is intuitive. It says that under our proportional selection assumption, the 

destination component ηjdest — i.e., the average unobserved, residual health in destination j 

— is equal to the observed term ℎj
dest scaled by a constant. Under our baseline assumption 

(φ1 = 1) the value of that constant is the ratio of the standard deviations of ηj(i)
dest and 

ℎj(i)
dest, and it can be interpreted as the relative importance of the unobserved and observed 

components of health capital correlated with destinations. Assumption 2 then allows us to 

estimate this ratio using the analogous ratio for movers’ origins.

Corollary 1.—Let StDev τj(i)
orig  and StDev τj(i)

orig  be consistent estimators of the standard 

deviations of τj(i)
orig and ℎj(i)

orig and define φ ≡ φ1φ2. Under Assumptions 1 and 2,

ηj
dest = φ

StDev τj(i)
orig

StDev ℎj(i)
orig ℎj

dest
(6)

is a consistent estimator of ηjdest, and γ j = τ j
dest − ηj

dest is a consistent estimator of γj.

III. Data and Summary Statistics

A. Data and Variable Definitions

We use administrative data on Medicare enrollees for a 100% panel of Medicare 

beneficiaries — both Traditional Medicare and Medicare Advantage — from 1999 to 2014 

(CMS 1998–2014b).15

14Since Tij is a binary variable, Cov Tij, ℎj(i)
dest = E ℎj(i)

dest ∣ Tij = 1 − E ℎj(i)
dest ∣ Tij = 0 p(1 − p), where p = Pr(Tij = 

1). Let I be the set of all movers and let I′ be the set of movers for whom Tij = 0. We know E ℎj(i)
dest ∣ Tij = 1 = ℎj

dest 

and E ℎj(i)
dest ∣ Tij = 0 = 1

N′ ∑i ∈ I′ℎj(i)
dest = N

N′
1
N ∑i ∈ I ℎj(i)

dest − 1
N ∑i ∈ I ∖ I′ℎj(i)

dest . Since our normalization implies the 

population mean 
1
N ∑i ∈ I ℎj(i)

dest is zero, and noting that 
1
N ∑i ∈ I ∖ I′ℎj(i)

dest = N − N′
N ℎj

dest, we have

Cov Tij, ℎj(i)
dest = ℎjdest 1 + N − N′

N′ p(1 − p)

= N
N′ℎjdestp(1 − p) .

The steps for ηj(i)
dest are analogous.

15About one-third of Medicare beneficiaries are enrolled in Medicare Advantage, a program in which private insurers receive 
capitated payments from the government in return for providing Medicare beneficiaries with health insurance. Because insurance 
claims (and hence healthcare utilization measures) for enrollees in Medicare Advantage are not available, the literature on geographic 
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We observe each enrollee’s zip code of residence each year. We define a year t for the 

purposes of our analysis to run from April 1 of calendar year t to March 31 of calendar year t 
+ 1 since, for most years, we observe residence as of March 31st of that year.

For each enrollee, we observe time-invariant indicators for race and gender. We observe 

time-varying indicators for age, as well as enrollment in Medicaid (the supplemental public 

health insurance program for low income elderly), Medicare Parts A and B, and Medicare 

Advantage. We observe all claims for inpatient and outpatient care for enrollee-years in 

Traditional Medicare. For individuals who die during our sample, we observe the date of 

death.

Our primary analysis focuses on a sample of movers and non-movers defined below. We 

restrict attention to movers whose CZ of residence changes exactly once. For each mover, 

we define year ti∗ (an individual’s “move year”) to be the year in which their location 

changes and ti∗ + 1 to be their first full year in the new location. For non-movers, we define 

ti∗ to be the second year we observe them in the data without any missing covariates, so that 

we can measure their characteristics in the prior year. As discussed below, we restrict our 

analysis to beneficiaries enrolled in Traditional Medicare during year ti∗ − 1.

We use the Chronic Conditions segment of the Master Beneficiary Summary File from 

1999 to 2014 to define 27 health status indicators for each person-year, with each indicator 

capturing the presence of a specific chronic condition (CMS 1998–2014b). Examples 

include lung cancer, diabetes, and depression; the share of patients with each of these 

conditions and the estimated coefficients for each from the Gompertz mortality hazard 

model (equation (3)) can be seen in Appendix Table A.1. The algorithms defining these 

measures are publicly available16 and are based on definitions used in the medical 

literature.17 Importantly, because we measure observed health Hi pre-move, and equation (3) 

controls for origin fixed effects, we are not concerned about bias arising in our estimation 

from the type of place-specific measurement error of health in claims data that prior work 

has highlighted (Song et al. 2010; Finkelstein et al. 2016, 2017).

We measure total health care utilization for each person-year in Traditional Medicare, 

defined to be total inpatient and outpatient spending, adjusted for price differences following 

the procedure of Gottlieb et al. (2010).18 Because we restrict our analysis sample to those 

enrolled in Traditional Medicare in year ti∗ − 1, total health care utilization is observed in that 

year for all individuals in our analysis sample, even if those individuals may be enrolled in 

Medicare Advantage (and hence have unobserved health care utilization) during years other 

than ti∗ − 1.

variation in healthcare spending and health outcomes for Medicare enrollees has focused primarily on Traditional Medicare. However, 
the Medicare data do contain demographic, health and mortality information for both Traditional Medicare and Medicare Advantage 
enrollees.
16See https://www.ccwdata.org/documents/10280/19139421/original-ccw-chronic-condition-algorithms.pdf.
17See https://www.ccwdata.org/documents/10280/19139421/original-ccw-chronic-condition-algorithms-reference-list.pdf.
18Specifically, we follow the approach from Finkelstein et al. (2016), except that we exclude physician services (“carrier files”) 
because these files are only available for a 20 percent subsample.
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We define areas j to be Commuting Zones (CZs). Specifically, we use the 709 CZs defined 

by the Census Bureau in 2000. These are aggregations of counties designed to approximate 

local labor markets. CZs have been used previously to analyze geographic variation in life 

expectancy (e.g. Chetty et al. 2016b).19

All of the enrollee-level covariates in our analysis (i.e. Hi and Xi) are measured as of year 

ti∗ − 1. In our baseline specification, observable health (Hi) is a series of indicator variables 

for each of the 27 chronic conditions in the Chronic Conditions segment of the Master 

Beneficiary Summary file and log(utilization + 1). Xi is a set of indicators for race (white or 

non-white), gender, and their interaction; we also include an indicator variable for Medicaid 

status (as a proxy for low income), a series of indicator variables for the calendar year 

corresponding to ti∗, and a constant.

Sample Restrictions and Summary Statistics—Our data contain approximately 81 

million people and over 665 million person-years. We drop from this sample person-years in 

which the enrollee is younger than 65 or older than 99.20 This leaves us with a core sample 

of about 69 million beneficiaries; we exclude a few hundred thousand beneficiaries with 

incomplete data.

To define our non-mover sample, we begin with the 62 million enrollees whose CZ of 

residence does not change over the years we observe them. We need to assign each non-

mover a valid reference year ti∗ such that we are able to see observable health characteristics 

in year ti∗ − 1. We therefore eliminate all non-movers who do not have a pre-2012 year ti∗

such that they are 99 or younger and alive until the end of that year, and also on Traditional 

Medicare during year ti∗ − 1. We take a random 10% sample of the remaining 43 million 

non-movers and define their ti∗ to be the second year they are in the sample. When we 

estimate equation (3) using the pooled sample of movers and non-movers, we upweight the 

non-movers by ten.

To define our mover sample, we begin with the 7 million enrollees whose CZ of residence 

changes at least once during our sample period. To ensure changes in address reflect real 

changes in location, we define a mover’s “claim share” in a particular year to be the ratio of 

the number of claims located in their destination to the number located in either their origin 

or their destination. We then follow Finkelstein et al. (2016) in excluding those for whom 

the claim share does not increase by at least 0.75 in their post-move years relative to their 

pre-move years. Appendix C provides more detail.

A natural question is of course why individuals in this sample are choosing to move. In 

Finkelstein et al. (2016), we use the Health and Retirement Study (HRS) data to tabulate 

survey responses about why individuals in this age group move; Choi (1996) provides a 

similar tabulation in the Longitudinal Survey of Aging (LSOA), and both datasets lead to 

19See https://www.ers.usda.gov/data-products/commuting-zones-and-labor-market-areas/ for more details.
20Individuals younger than 65 appear in our data if they are disability-eligible (through Social Security disability benefits) rather than 
age-eligible for Medicare.
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similar conclusions. The most frequently reported reason for moves in this age group is to 

be near/with children or other kin, followed by health reasons, financial reasons, or other 

amenities.21

We further restrict the sample to movers who are not on Medicare Advantage in the year 

immediately prior to or immediately after the move (since we need to measure claim shares 

in those years) and who moved in years 2000–2012 (so that we can observe pre-move 

characteristics and post-move mortality).22 We also exclude those who move at age 99 or 

later or do not survive through the end of their move year ti∗ . Our final sample contains 6.3 

million individuals, of whom 2 million are movers. Appendix C provides more detail on the 

sample restrictions. By construction, we are able to observe mortality for all beneficiaries for 

at least one year following ti∗. We are able to observe mortality at least 7 years after ti∗ for 63 

percent of movers and at least 10 years after ti∗ for 35 percent of movers.

Because our strategy for estimating place effects requires that we observe a significant 

number of movers to each area, we aggregate CZs that receive small numbers of movers to 

form larger areas within states. Specifically, we first collect the bottom quartile of CZs by 

the number of incoming movers. Then, in any case where a state contains two or more such 

CZs, we consolidate those CZs into a single area. Appendix Figure A.1 shows the locations 

of the bottom quartile of CZs; they are predominantly in the Great Plains. The number of 

movers to these CZs ranges from 2 to 359, with a median of 155. Our final sample has 

528 CZs and 35 aggregated CZs; these are the areas corresponding to the j index in our 

model and we refer to these simply as “CZs” in what follows.23 Appendix Table A.2 shows 

summary statistics on the number of movers to each CZ; the minimum number of movers to 

a CZ is 48, and the median is about 1,500.

Table 1 reports summary statistics for comparable samples of movers and non-movers. The 

first row shows our full sample, which consists of roughly 2 million movers and 4.3 million 

non-movers. The remainder of the table shows characteristics of a sub-sample of movers and 

non-movers with reference year ti∗ = 2006. We focus on this subset to facilitate comparison 

of movers’ and non-movers’ characteristics.24 Movers tend to be older than non-movers, are 

slightly more likely to be female and white, and slightly less likely to be on Medicaid. Not 

surprisingly given the age differences, movers are also less healthy as measured by their 

count of chronic conditions and their one and four year mortality.

21Online Appendix Section 3.1 of Finkelstein et al. (2016) presents a detailed analysis of this issue.
22In our previous paper, Finkelstein et al. (2016), our outcome of interest – health care spending – was only observed for individual-
years enrolled in Medicare fee for service, whereas an advantage of this setting is that individuals’ locations and mortality are 
observed whether or not they are in Medicare Advantage. Robustness analysis in our previous paper suggested that selective attrition 
due to Medicare Advantage was likely to be small.
23Note that 11 of these bottom quartile CZs are within a single state and therefore remain disaggregated. This procedure causes us to 
omit roughly 3,000 movers who move across small CZs within the same state.
24For completeness Appendix Table A.3 reports the same summary statistics on the full set of 2 million movers and 4 million 
non-movers used to estimate equation (3), but the two sets of statistics are not directly comparable given the differences in how the 
two samples are defined.

Finkelstein et al. Page 16

Am Econ Rev. Author manuscript; available in PMC 2021 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



IV. Preliminary Evidence

A. Patterns of Mortality and Migration

Figure 1 shows our estimates Lj of average non-mover life expectancy by area, constructed 

from the estimated model of equation (3) as described in Section II.B. The average life 

expectancy across areas is 83.3 years, with a standard deviation of 0.79 years. Our life 

expectancy estimates for the 100 largest CZs are highly correlated (nearly 0.9) with the life 

expectancy estimates at age 40 of Chetty et al. (2016b), as shown in Appendix Figure A.2.

Since moves will be key to identifying place effects, we briefly discuss the characteristics 

of moves in our sample. There is substantial variation across moves in the destination-

origin difference in non-mover life expectancy (Lj). The standard deviation of this gap 

is roughly one year, and the share of movers to higher life expectancy destinations (48 

percent) is similar to the share of moves to lower life expectancy destinations (52 percent); 

Appendix Figure A.3 shows more detail on the destination-origin differences in average 

life expectancy. Conditional on origin, the average standard deviation of destination life 

expectancy across CZs is 0.67.

We next examine the extent to which the observed health of movers differs systematically 

according to their destinations. In panel (a) of Figure 2, we compare the average observed 

health of movers to different destinations adjusted for age and demographics (Xi). For each 

area j, we compute the mean across movers to j of the residuals from a regression of our 

observed health index ℎi = Hiλ on age in year ti∗ − 1 and demographics Xi. The left-hand 

figure shows the distribution of these average values across destinations. If movers were 

randomly assigned to destinations, these averages should vary little; this is not the case. The 

right-hand figure is a binned scatterplot showing how these average observed health values 

for movers to different destinations are correlated with the average estimated mortality 

index γj +θi of non-movers in each destination. The relationship is significant and positive, 

suggesting that low-mortality destinations tend to attract healthier movers.

In panel (b) of Figure 2, we partial out fixed effects for movers’ origins (in addition to the 

age and demographics that were already partialed out in panel (a). These values capture 

the extent to which healthier movers from a given origin select systematically different 

destinations. The results indicate that conditional on origin, mover observed health is still 

correlated with destination mortality, but conditioning on origin lowers the slope from 0.24 

to 0.15. While the selection on observed health shown here will be accounted for by the 

explicit Hi controls in our model, it suggests that there may be remaining selection on 

unobserved health which we will need to address with our selection correction strategy.

B. Inputs to Selection Correction

Table 2 shows the standard deviations of the components of health capital that enter our 

selection correction. For each component, we report the standard deviation across CZs, 

estimated using our split-sample strategy, as well as 95-percent confidence intervals based 

on our Bayesian bootstrap. The magnitudes are not easily interpretable, as they are in units 

of the log mortality rate log (mi), but to get a sense, note that a 65-year old with average 
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health capital θ and sample-wide average place effect γ (which is 0 by construction) has 

an annual mortality rate of m = 0.013, and increasing her health capital by one standard 

deviation (among 65-year-olds) would increase her mortality rate by 0.005.

The first two rows report the estimated standard deviations of the components ℎj(i)
orig and 

ηj(i)
orig correlated with movers’ origins. Recall that our estimators of these terms are the origin 

fixed effects from equations (3) and (4) respectively. We find that the standard deviation 

of the unobservable component ηj(i)
orig is 0.061, and the standard deviation of the observable 

component ℎj(i)
orig is 0.037. This suggests that, despite the richness of our observable health 

measures, the remaining systematic variation in health capital correlated with locations is 

substantial. The ratio of these terms 0.061
0.037 = 1.65 is the key conversion factor that is used in 

Corollary 1 to pin down the relative importance of unobservables and observables.

The last two rows report the estimated standard deviations of the components ℎj(i)
dest and ηj(i)

dest

correlated with movers’ destinations. The ℎj(i)
dest components are estimated by the destination 

fixed effects in equation (4); we find that their standard deviation is 0.024. The ηj(i)
dest

components cannot be directly estimated, and are the key objects our selection correction is 

designed to infer. Applying Corollary 1 with our baseline constants φ1 = φ2 = 1, we estimate 

that the standard deviation of ηj(i)
dest is 0.024 × 0.061

0.037 = 0.040.

V. Main Results

A. Place Effects

Table 3 reports our decomposition of the area average mortality index γj + θj. As shown in 

the first row, the standard deviation across CZs of this index is 0.099.

The following three rows report the decomposition of this index when we do not apply our 

selection correction — i.e., when we assume ηjdest = 0 for all j. In this case, our estimate 

of the place effects γj is simply the destination fixed effects τ j
dest from equation (3), and 

average health capital θj is given by the average value of the remaining terms in that 

equation (excluding the age term aiβ, and taking the national average of race and sex as 

discussed in Section II.B. In this case, we estimate that the standard deviation of the place 

effects is 0.077, or three-quarters of the standard deviation of the overall index. The standard 

deviation of average health capital is 0.073, and the correlation between the two components 

is slightly negative.

The bottom three rows report our preferred estimates applying the selection correction. Here, 

our estimate of the place effects γj is the difference τ j
dest − ηj

dest, where the unobservable 

component ηj
dest is inferred following the steps broken out in Table 2. Average health capital 

θj is again given by the average value of the remaining terms in equation (3) (excluding the 

age term aiβ, and taking the national average of race and sex as discussed in Section II.B). 
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The standard deviation of the selection-corrected place effects is 0.054, about one-third 

smaller than the uncorrected version, and roughly half the standard deviation of the overall 

index. The standard deviation of average health capital is 0.088, and the correlation between 

the two components remains negative.

Figure 3 shows a map of our estimated treatment effects Lj
∗ − L . These are defined in 

Section I and capture the impact of moving to an area on life expectancy for a mover with 

average health capital. Places with the most favorable effects are found along the east and 

west coasts as well as in major cities such as Chicago. Many of the places with the most 

adverse effects are in the deep south (Alabama, Arkansas, Georgia, Louisiana, and parts of 

Florida) and in the Southwest (Texas, Oklahoma, New Mexico, and Arizona).

Figure 4 shows a scatterplot of these treatment effects against estimated average life 

expectancy Lj in each place. The two are positively correlated: a one unit increase in average 

life expectancy is associated with a 0.23 year increase in the treatment effect. Interestingly, 

for Medicare survivors of Hurricane Katrina, Deryugina and Molitor (2018) estimate larger 

effects. They find that moving to a place with a one percentage point higher mortality rate 

is associated with an increase in migrant mortality of approximately one percentage point. 

The fact that they find larger effects could reflect the fact that our estimates are adjusted 

for selection, the specific sub-sample of destinations that their migrants move to, and the 

specific circumstances of the hurricane.

Figure 4 also shows a number of examples that highlight how average life expectancy and 

treatment effects can diverge. For example, Charlotte, North Carolina is a place that in the 

cross-section has low average life expectancy, despite a relatively favorable treatment effect. 

The gap reflects Charlotte unusually poor average health capital. At the other extreme, Santa 

Fe, New Mexico is an example of a place with relatively high average life expectancy 

despite a negative treatment effect. The gap reflects the unusually good health capital of 

Santa Fe residents.

Figure 5 shows the treatment effects - and their 95 percent confidence intervals - for the 

20 most populous CZs. For comparison, we also show average life expectancy in each 

location. The treatment effects of these locations range from −0.23 in Denver, CO to 1.07 

years in New York, NY. Estimates for each CZ’s treatment effect and confidence interval are 

available online.

Table 4 summarizes our estimated treatment effects across commuting zones. The top row 

reports the standard deviation across CZs of average life expectancy, which is 0.79 years. 

The second row shows the standard deviation of our estimated treatment effects, which is 

0.44, or roughly half of the cross-sectional variation in life expectancy.

To translate these estimates into the impact on life expectancy from moving from a place at 

one part of the distribution of treatment effects to another, we assume the treatment effects 

are normally distributed with a standard deviation equal to our estimate in row (2) of the 

table. This provides a simple summary measure that incorporates our split-sample correction 

for sampling error. This exercise suggests that moving from a 25th percentile area to a 
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75th percentile area would increase life expectancy by 0.60 years; moving from a 10th to a 

90th percentile area would increase life expectancy by 1.1 years, or roughly half the cross 

sectional 90–10 gap in life expectancy.

The final rows of the table show how much of the cross-sectional variation in life expectancy 

can be explained by our treatment effects. We find that about 15 percent of the cross-CZ 

variance in life expectancy would be eliminated if place effects were made equal across 

areas (with the observed variation in health capital remaining the same). Conversely, we find 

that about 70 percent of the variation would be eliminated if health capital were equalized 

(with the observed variation in the causal effects of place remaining the same).25

B. Heterogeneity

Previous work has found that geographic variation in life expectancy is higher for lower-

income individuals (Chetty et al. 2016b). We replicate this result here, and examine to what 

extent it results from different variances of place effects and health capital respectively. 

We restrict attention to the 100 largest CZs (which constitute about half of the non-mover 

population) to ensure sufficient sample sizes to estimate treatment effects for each subgroup.

Table 5 summarizes the results. The first column shows that our main results are similar 

in this restricted sample. The remaining columns re-estimate the model separately by race 

and by Medicaid enrollment (an indicator of low socio-economic status), partitioning both 

movers and non-movers. Row (2) is consistent with the prior Chetty et al. (2016b) finding: 

the standard deviation of life expectancy is larger for individuals on Medicaid compared to 

those not on Medicaid, and larger for non-white individuals compared to white individuals. 

We estimate that the standard deviation of health capital effects is larger for Medicaid 

enrollees compared to non-Medicaid (row 4), while the standard deviation of treatment 

effects is more similar (row 3). Similar patterns also are apparent for non-whites compared 

to whites, although the results are less precise.

These estimates suggest that the greater geographic variation in life expectancy for low-

income populations may be particularly driven by variation in their health capital, rather 

than by variation in treatment effects of place. This is consistent with evidence in Chetty et 

al. (2016b) suggesting that variation in area life expectancy for low-income individuals is 

strongly correlated with health behaviors such as smoking and exercise.

C. Correlates of Treatment Effects

To provide some suggestive evidence on what may drive the treatment effects we estimate, 

we explore their correlation with various observable place characteristics. In keeping with 

the existing literature, we focus primarily on observables that proxy for the environment and 

for medical care. We present detailed definitions, data sources, and summary statistics for 

these measures in Appendix D.

25Note that these shares need not sum to 1, both because of the non-zero correlation between average health capital and place effects 
and because of the non-linear translation into life expectancy.
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Figure 6 reports bivariate correlations of both average life expectancy and our estimated 

treatment effects with various area level characteristics. Each place characteristic has been 

normalized to have mean zero and standard deviation one. We emphasize that these are 

simply correlations and need not reflect causal effects. Still, most of the results follow 

intuitive patterns.

The top panel shows that places with favorable treatment effects tend to have higher quality 

and quantity of health care. Treatment effects are significantly positively correlated with 

hospital quality (as measured by the Hospital Compare score), primary care physicians per 

capita, and specialists per capita. Areas with favorable treatment effects have fewer hospital 

beds per capita.

Measures of utilization – including utilization itself, along with imaging tests and diagnostic 

tests – are also positively correlated with our treatment effects, though the magnitudes 

are smaller than they are for hospital quality or physician quantity. Our finding of a 

positive correlation between an area’s health care utilization and its estimated impact on 

life expectancy is intriguing in light of the large literature debating the impact of health care 

utilization on health outcomes (Chandra and Staiger (2007); Doyle (2011); Skinner (2011); 

Doyle et al. (2015)).

The bottom panel examines correlates with various non-healthcare area characteristics. 

Areas with favorable place effects on life expectancy tend to have less pollution, less 

extreme summer and winter temperatures, fewer homicides, and fewer automobile fatalities. 

They also tend to have higher income and education, which could reflect either greater 

demand for quality health care and amenities that reduce mortality or sorting of people with 

higher incomes and more education to high-treatment-effect areas. These areas also tend to 

exhibit better health behaviors (more exercise, less smoking, and lower obesity), which may 

similarly reflect either demand or sorting. Places with higher shares of urban populations 

tend to have more favorable treatment effects. The share of people over the age of 60 is 

uncorrelated with our treatment effects.

In general, the correlation of the characteristic with the estimated place component of 

life expectancy is smaller (in absolute value) than the correlation with the cross-sectional 

life expectancy. This difference is particularly pronounced for health behaviors and 

demographics, consistent with the raw correlations reflecting not only the causal effects 

but also the direct impacts of these variables on health capital.

VI. Validation and Robustness

A. Addictive Separability

Equation (1) assumes that health capital and current place have additively separable effects 

on log mortality. As discussed above, we consider this a strong assumption but one that 

is attractive economically since it has the intuitive implication that health capital and 

current location affect the level of mortality multiplicatively. Thus, the level of mortality 

of individuals with poor health capital (high θi) will vary more across areas than that of 

individuals who have better health capital.
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One way to assess the validity of the assumption that place effects are separable from health 

capital is to test whether these place effects differ across subsets of enrollees. We construct 

four partitions of our mover sample based on move year, gender, age at move, and individual 

health at move. Each partition results in two groups with approximately the same number of 

movers; we estimate the model separately for movers in each group. For each partition, we 

use two summary statistics to evaluate the stability of place effects across the two groups. 

Appendix Table A.5 shows the results.

First, we analyze the standard deviation of place effects for each group. For five of the eight 

groups the estimated standard deviations fall within the confidence interval [0.038, 0.067] 

of our baseline estimates. The three exceptions are “young movers” (standard deviation = 

0.075), movers in “good health” (standard deviation = 0.101), and male movers (standard 

deviation = 0.068).26

Second, we examine the correlation of place effects between the two groups. The correlation 

of the place effects between the two subsamples ranges from 0.16 (when we partition by 

individual health) to about 0.24 (when we partition by gender or move year). To assess 

these correlations, we need to adjust for the role of sampling error, as it reduces the 

correlation between any two independent subsamples even if the true place effects are 

the same. Appendix Figure A.4 compares the estimated correlations to the distribution 

of correlation coefficients produced by randomly partitioning the mover sample into two 

equally sized groups and re-estimating the model 200 times. The median correlation of 

place effects between two random partitions is 0.29. For partitions based on age, move year, 

and gender, the correlation coefficients are within the 95% confidence interval formed from 

the distribution of correlation coefficients from the random partitions. Only the correlation 

coefficient for the partition based on individual health is outside of this interval.

Overall, the evidence for the additive separability assumption is somewhat mixed. It is 

comforting that the estimates are relatively stable across sub-samples, and that in most cases 

we cannot reject equality. However, there are some statistically significant deviations from 

additivity, particularly along the dimension of baseline health.

While this is an important point of caution, note that when we split the sample by health in 

the final panel of Table A.5 (and thus relax additivity along this dimension), the estimated 

standard deviation of place effects actually increases in both sub-samples.27 This suggests 

that any bias due to imposing additivity may render our main results conservative.

B. Health Capital Fixed Post-Move

Equation (1) also assumes that health capital (θi) is time constant. This means that the only 

systematic changes in health over time allowed by our model are due to age and calendar 

year. While this is a strong assumption, we believe that it is a reasonable approximation 

26Note that observing a higher standard deviation of place effects in logs for movers in “good health” does not contradict the fact 
discussed above that the level effect of place will be smaller for those with better health capital.
27This implies that the contributions of health capital and current place on log mortality differ within these sub-samples relative to the 
full pooled sample.
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for our elderly population over the relatively short time horizon of our sample (1–12 years 

post-move).

The key threat to this assumption would be an immediate causal effect of destination on 

health capital. Movers to some locations might tend to adopt healthier eating habits, start 

exercising, or stop smoking, perhaps due to peer effects and/or the supply of complementary 

amenities. Movers to other locations might see their health affected by environmental factors 

such as pollution. If such changes in behavior or environment translate into large and 

immediate changes in health capital, some of our estimated place effects would partly 

capture the effect of these health capital adjustments. However, our read of the existing 

literature as well additional analyses we conduct of the time path of the treatment effects 

on mortality suggest that any threats to our identifying assumption may be quantitatively 

modest.

C. Evidence of behavioral responses and their impact

Three key facts lead us to expect that the magnitude of any such confounds is likely to 

be modest. First, available evidence suggests health behaviors are often relatively inelastic 

to environmental changes, particularly for the elderly. Substantial dietary changes are rare 

among adults of any age, even in the presence of significant events such as a diabetes 

diagnosis or retirement (Hut and Oster 2018). Consistent with this, a recent study of the 

impact of moving on nutrition finds no relationship between the diets of movers and the 

average nutrition of residents in their destinations (Hut 2018).28 Evidence of systematic 

changes in smoking behavior around moves for the general adult population is mixed,29 and 

rates of starting and stopping smoking decline sharply with age.30

Second, the impact of any behavioral change on mortality is also likely to be smaller for the 

elderly, as they have accumulated a large stock of existing health capital from experiences 

earlier in life. For example, Doll et al. (2004) find that the gain in life years from smoking 

cessation is decreasing in age of cessation, with someone who stops smoking at age 60 

achieving only 30 percent of the gain of someone who stops smoking at age 30.

Third, even if health behaviors did change immediately on move, we would still expect the 

resulting changes in health capital, and thus the observable impact on mortality, to cumulate 

gradually over time rather than changing discretely on impact. For example, studies of 

the impact of smoking cessation on mortality find effects that grow gradually over the 

28Relatedly, Allcott et al. (2019) find economically small effects of supermarket entry on measures of healthy eating within 8 years of 
entry.
29Jokela (2014) finds no evidence that moving to disadvantaged neighborhoods in Australia is associated with systematic changes 
in smoking or physical activities for a broad sample of age groups within a ten-year period. Halonen et al. (2016) find moving to 
disadvantaged areas in Finland is associated with increased smoking on average within 5 years; Ivory et al. (2015) find similar results 
within 5 years for moves to disadvantaged areas in New Zealand, but find no impact of moves to areas with higher pre-existing 
smoking rates. Pulakka et al. (2016) find in Finland that increases in distance to a tobacco store increase the probability of quitting 
smoking but decreases in distance do not increase the probability of relapse among former smokers within 9 years. The only one of 
these studies to look specifically at the over-65 population is Halonen et al. (2016), which finds no significant effect.
30Compared to the population of adult smokers as a whole, smokers who are 65 or older are less likely to want to quit (Babb et al. 
2017) and smoking rates among the elderly have declined by a much smaller amount than rates among the overall adult population 
between 2005 and 2015 (Jamal et al. 2016). This is consistent with evidence that individuals between the ages of 18 and 44 report 
that they are more likely to attempt quitting to smoke than older age groups (Goren et al. 2014). Smoking take-up rates are also much 
smaller among older individuals, with approximately 99% of smokers starting before age 26 (U.S. Department of Health and Human 
Services 2017).
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subsequent 10–15 years; estimated effects in the first few years are a small share of the total 

effect of cessation (Kawachi et al. 1993; Mons et al. 2015; U.S. Department of Health and 

Human Services 2020). The evidence in the next section suggests that the place effects we 

measure affect mortality on impact and do not grow over time, making it less likely they are 

driven by the effect of behavioral change.

Time path of the treatment effects of place—Results from two types of analyses 

suggest that the treatment effects of place following moves appear immediately upon move 

and do not grow over time. First, we consider an alternative binary Logit model of mortality, 

in which the outcome is mortality within a fixed window of n years. This allows us to 

estimate effects separately for different window lengths n, providing insight into the time 

path of mortality effects. It also provides a check on the robustness of our results to the 

Gompertz functional form assumed in our main model. We replace estimating equation (3) 

with a binary Logit model of n-year mortality. All covariates are the same as in equation 

(3) except that we include in the Xi a fully interacted set of five year age bins, race, and 

sex, rather than including age linearly and interacting race and gender. We estimate the Logit 

model for 1-year, 2-year, 3-year, and 4-year mortality.

Table 6 reports the results. The first row reports our baseline estimates of the standard 

deviation of the mortality index γj + θj  and the standard deviation of the selection-corrected 

place effects γj from Table 3. In our baseline, the standard deviation of γj is about half 

the standard deviation of γj + θj. The last four rows show the results of the Logit model 

for different horizons. The impact of place shows up immediately in the first year after 

move. Place effects on mortality are similar, and statistically indistinguishable, over the 

first four years post-move. This pattern is consistent with our place effects picking up 

contemporaneous place effects γj rather than endogenous health capital changes which we 

would expect to adjust more slowly.

Second, we limit the observation window for movers in our baseline model to 2, 4, or 6 

years post-move. As with the subsample analyses in Table 5, we restrict this analysis to the 

100 largest CZs to ensure sufficient sample sizes for these subsamples. Appendix Table A.6 

shows that the cross-CZ standard deviation of treatment effects and health capital effects 

are similar when we use either the full sample or these more limited observation windows. 

Appendix Figure A.5 shows the scatterplot of treatment effects and health capital effects for 

the sub-sample including only moves 4 years after the move against the baseline estimates; 

the estimates are highly positively correlated, and clustered around a line with a slope of 

1. As further evidence, the robustness analysis in Section VI.D below shows similar results 

when we limit the sample to movers 70 or older (who we expect are even less likely to 

change their health behaviors upon move).

Taken together, this evidence is consistent with our estimated place effects capturing causal 

effects that affect movers on-impact, and argues against bias due to endogenous adjustment 

of health capital. To explain the large effects we see in the first years post-move, any 

such bias would need to be associated with large changes in behavior that translate into 

immediate rather than cumulative mortality impacts.
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C. Selection Correction Assumptions

The key novel assumption in our selection correction strategy is Assumption 2: that the 

relative importance of the unobserved and observed components of health capital correlated 

with movers’ destinations is proportional to the relative importance of the components 

correlated with movers’ origins. In our baseline approach we make a stronger assumption 

and assume that these ratios are not just proportional, but in fact are equal (i.e., that φ = 1). 

Here, we provide some support for this assumption, and also document the robustness of our 

findings to relaxing it.

Empirical support—One way to provide support for this baseline assumption is to ask 

whether the analogous condition would hold if some of our observed health measures had 

in fact been unobserved. That is, suppose we divide Hi into K subsets Hi
k. For each subset, 

we imagine a hypothetical world where the elements of Hi
k are the unobservables and 

the elements of Hi
−k = Hi ∖ Hi

k are the observables, so the analogues of hi and ηi would 

be ℎi = Hi
−kλ−k and ηi = Hi

kλk (where λ−k and λk are the appropriate sub-vectors of λ). 

Denote the associated origin and destination components by ℎj, k
dest, ℎj, k

orig, ηj, k
dest, ηj, k

orig. We 

would like to confirm that

StDev ηj(i), k
orig

StDev ℎj(i), k
orig ≈

StDev ηj(i), k
dest

StDev ℎj(i), k
dest ∀k .

To implement this test, we define 100 different subsets Hi
k, each of which is a random draw 

of 13 of the 27 total conditions. In each case we include log utilization in Hi
−k. For each 

subset, we estimate equation (3) and compute ηj, k
orig = τ j, k

orig, ℎi = Hi
−kλ−k, and ηi = Hi

kλ−k. 

We then compute the implied ℎj, k
dest

 and ℎj, k
orig

 by re-estimating equation (4), and compute 

ηj
dest from equation (6) maintaining our baseline assumption that φ = 1.

Panel (a) of Figure 7 shows the results. This figure plots 
StDev ηj(i), k

orig

StDev ℎj(i), k
orig  on the x-axis and 

StDev ηj(i), k
dest

StDev ℎj(i), k
dest  on the y-axis. If these ratios vary proportionately for any subset of health 

measures k, they should lie on a line that goes through the origin. The results support this; 

the points have a clear monotonic relationship and we estimate an intercept of −0.26.31

31If anything, Panel (a) of Figure 7 suggests that the true constant of proportionality φ2 in Assumption 2 may be somewhat larger than 
our baseline assumption of φ2=1. If φ2 = 1, the points should have a slope of one. The observed slope of 3.86 is larger. To look at this 

another way, Appendix Figure A.6 shows the distribution of the ratio of 
StDev ηj(i), k

dest

StDev ℎj(i), k
dest   to 

StDev ηj(i), k
orig

StDev ℎj(i), k
orig  across the 100 draws. This 

ratio is always larger than 1 with a median value of 1.97.
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Panel (b) of Figure 7 directly examines how our key estimates vary if we re-estimate 

the entire model using the different subsets of observables Hi in panel (a). It plots the 

distribution of these 100 estimates for the standard deviation of treatment effects (left-hand 

panel) and the correlation of the estimated treatment effects with our baseline estimates 

(right-hand panel). The results indicate that the standard deviation of treatment effects is 

lowest in our baseline model, suggesting it is conservative, and that the correlation of 

treatment effects with the baseline is high.

Another way to assess the validity of our baseline approach is to apply it to outcomes which, 

unlike mortality, are observed repeatedly for the same individual. For such outcomes, we 

can follow Finkelstein et al. (2016) and adjust for selection directly by including individual 

fixed effects. We can then compare the fixed effects estimates for these outcomes to those 

we obtain using our selection-correction approach.

The panel regression of Finkelstein et al. (2016) is:

yijt = αi + γj + ωt + xitβ + ϵijt (7)

where yijt is an outcome observed in a panel, such as a particular measure of health care 

utilization; αi, γj, and ωt are individual, CZ, and calendar year fixed effects; and xit consists 

of dummies for five-year age bins as well as fixed effects for relative year for movers.

We consider three panel outcomes yijt that we can construct using the inpatient and 

outpatient claims data: an indicator for any hospital admission, an indicator for any 

emergency room visit, and an indicator for any outpatient visit. For each of these outcomes, 

we first assume that we only observe the outcome once post-move (as we do for mortality), 

and estimate equation (3) for the binary outcome measured one year post-move. We report 

results both with and without the selection correction. We then estimate equation (7) and 

compare.

The results are shown in Appendix Table A.7. In all cases, the selection correction 

moves the estimates closer to the panel estimates. For both any hospital admission and 

any emergency room visit, this is a substantial change, closing more than half the gap 

between the naive uncorrected estimates and the panel estimates. For any outpatient visit, 

the effect of the selection correction is smaller, though in the right direction. These results 

provide independent validation that our selection correction succeeds in reducing bias due to 

unobservables.

Relaxing the assumptions—We assess robustness to relaxing our baseline assumptions 

of equal selection and equal ratios, which together imply φ = 1. We focus on the implied 

variability of the place effects γj and of the treatment effects Lj
∗ − L as summary outcomes 

in this exercise. The results are summarized in Appendix Table A.8.

The first row reports results from our baseline approach (φ = 1); our baseline estimate of 

the standard deviation of treatment effects is 0.44. Row (2) considers the value of φ that 

minimizes the implied StDev (γj). StDev (γj) is not monotonic in φ, but is minimized when 

Finkelstein et al. Page 26

Am Econ Rev. Author manuscript; available in PMC 2021 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



φ =
Cov τjdest, ηjbaseline

Var ηjbaseline , where ηjbaseline =
StDev τj(i)

orig

StDev ℎj(i)
orig ℎj

dest is the population value of our 

baseline estimator ηj
dest in equation (6).32 In our data 

Cov τjdest, ηjbaseline

Var ηjbaseline = 1.26, suggesting 

that assuming our baseline assumption of φ = 1 implies a conservative estimate of the 

importance of place effects relative to alternatives φ < 1 or φ > 1.26. In practice, the results 

in row (2) indicate that if we choose the variance minimizing value φ = 1.26, the implied 

standard deviation of treatment effects falls to 0.43. In the row (3), we show that if we set φ 
equal to the median value 1.97 from Figure A.6, the implied standard deviation of treatment 

effects is 0.45.33

In the bottom rows of the table, we show results for the values of φ that minimize the 

absolute difference between the standard deviation of the place effects estimated via the 

panel approach and via the adjusted cross-sectional approach, separately for the different 

outcome variables from Table A.7. Specifically, in rows (4) through (6) we choose the value 

of φ that minimize this difference for the outcomes of any ER visit, any hospital admission, 

and any outpatient visit respectively, while in row (7) we use the value of φ that minimizes 

the average absolute difference across all three outcomes. The values of φ range from 1.75 

to 7.10, and the resultant standard deviation of the treatment effects is increasing in φ, from 

0.48 (for φ = 1.75) to 2.27 (for φ = 7.10). We conclude that our results are not sensitive 

to modest deviations from our baseline assumption φ = 1, and that this assumption is, if 

anything, conservative in the sense that the alternatives imply even larger effects of place.

D. Robustness

Appendix Table A.9 reports a suite of additional robustness checks. For each, we report a 

number of key results: the standard deviation of average life expectancy (Lj), the standard 

deviation of area treatment effects Lj
∗ − L , the correlation between the treatment effects 

estimated in that row and the baseline treatment effects, and the correlation between average 

life expectancy and the treatment effects Corr Lj, Lj
∗ . The first row repeats our baseline 

estimates for reference; once again, we focus on the 100 largest CZs since many of the 

robustness analyses are conducted on sub-samples of the data.

32Since ηjdest = φηjbaseline, we have γj = τjdest − φ ⋅ ηjbaseline and thus

Var γj = Var τjdest + Var φ ⋅ ηjbaseline − 2 ⋅ Cov τjdest, φ ⋅ ηjbaseline .

Minimizing with respect to φ yields the desired result.
33The finding that a relatively large change in φ corresponds to a relatively small change in the standard deviation in treatment 
effects reflects the fact that our baseline estimate happens to fall on the flat part of the function relating φ to Var(γj). Over this 

range increasing φ increases the term Var φ ⋅ ηjbaseline  but also increases the term Cov τjdest, φ ⋅ ηjbaseline  and these two effects 

approximately cancel out.
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In row (2), we estimate a variant of our baseline model that allows the coefficients on age, 

demographics, and health (β, ψ, and λ, respectively in equation (3)) to differ for movers and 

non-movers.

In row (3), we interact the components of observed health Hi with an enrollee’s age in the 

year prior to their reference year ti∗. Since we define Hi as of ti∗ − 1 for all enrollees, our 

baseline specification assumes that the coefficients that relate specific chronic conditions to 

log mortality are independent of age. This robustness check relaxes that assumption in a 

limited way.

In row (4), we add an interaction between gender and age to the Gompertz model.

In row (5), we add average race- and sex-adjusted mortality rates in a mover’s origin county 
as a control variable. This adjusts for selection of movers across different areas within origin 

CZs.

In row (6), we restrict the sample of moves to those of more than 100 miles, as measured 

between the centroids of the mover’s origin and destination zip codes.

In row (7), we restrict the sample of movers to those who are 70 or older at the time of move 

and moved after 2003. Given the range of years that we observe in our data, this ensures that 

movers who joined Medicare at age 65 were observed in their origin for at least five years.

In rows (8) and (9), we focus on moves in which the gap between life expectancy in the 

mover’s origin and in her destination is either above or below the median gap among all 

movers.

In row (10), we exclude any moves in which the origin CZ is geographically adjacent to the 

destination CZ.

In row (11), we exclude moves to Florida, Arizona, and California. This provides a check 

that patterns of selection specific to these popular retirement destinations are not biasing our 

results.

Rows (12) and (13) restrict the sample to moves occurring in 1999–2003 or to moves 

occurring in 2004–2012 respectively. In the latter case we define the reference year ti∗ for 

non-movers to be the second year they appear in the data in the 2004–2012 period.

In all of these cases, the results are qualitatively unchanged. The correlation between the 

estimated treatment effects and our baseline treatment effects is above 0.9 in all but three 

cases, and above 0.8 in all cases.

VII. Conclusion

This paper documents a substantial impact of current locations on mortality. We estimate 

that moving from the 10th percentile area in terms of impact on life expectancy to the 

90th percentile area would increase life expectancy at 65 by 1.1 years, or about 5 percent 
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of average remaining life expectancy at 65. Equalizing place effects would reduce the 

cross-sectional variation in life expectancy at 65 by 15 percent.

We emphasize that these findings capture short-run, partial equilibrium impacts of place 

on life expectancy for an elderly population. Effects could well be different in younger 

populations. They could also be different over longer time horizons during which health 

capital itself could be substantially affected by location. We consider this a promising area 

for further work, especially since our results suggest an important role for heath capital 

in affecting life expectancy. More work is needed to understand what aspects of health 

capital are important causal determinants of life expectancy, and the extent to which current 

environment in childhood or adulthood affects health capital.

Our findings also suggest that it is important to better understand what aspects of current 

environments are important for life expectancy. We present suggestive, cross-sectional 

evidence on the characteristics of places that are more favorable for life expectancy. 

More work is needed to understand the causal mechanisms. In addition, while our 

partial equilibrium analysis takes place characteristics as fixed, it would be interesting to 

understand the extent to which they are endogenously determined by the composition of an 

area’s population in equilibrium.
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Figure 1: 
Age 65 Life Expectancy

Notes: Figure reports estimated life expectancy at age 65 for non-movers in each CZ (Lj). 

Average life expectancy at 65 in each CZ is computed assuming a non-mover with the 

average characteristics in that CZ, except for race and sex for which national averages are 

used. Note that small CZs have been aggregated within each state (see Appendix Figure A.1) 

and a single life expectancy estimate is reported for each aggregate CZ.
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Figure 2: 
Observable Health and Non-Mover Mortality

Notes: The left panels plot the distribution across CZs of the average observable, 

residualized health of movers to CZ j. Specifically, the top left panel plots average residual 

observed health ℎi , conditional on Xi and age. The bottom left panel plots ℎj
dest as defined 

in the text, and also conditions on origin fixed effects in addition to Xi and age. All estimates 

are normalized such that the mean (across movers) of each is zero; both panels also report 

the cross-CZ standard deviation. The right panels show binned scatterplots of these two 

measures of average, residualized observable health of movers to CZ j against the average 

mortality index in CZ j mj . The average mortality index estimates come from the sample 

and model estimates of only non-movers (i.e. the same estimates as are used in Figure 1). 

The regression line and standard errors are both estimated using the CZ level data.
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Figure 3: 
Life Expectancy Treatment Effects

Notes: The map shows the Empirical Bayes-adjusted estimates of life-expectancy treatment 

effects Lj
∗ − L . Note that small CZs have been aggregated within state (see Appendix 

Figure A.1) and a single life expectancy estimate is reported for each aggregate CZ.
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Figure 4: 
Life Expectancy Treatment Effects vs. Life Expectancy

Notes: The plot shows a scatterplot of the Empirical Bayes (EB)-adjusted age 65 life-

expectancy treatment effects for CZ j Lj
∗ − L  on the average age 65 non-mover life 

expectancy (Lj). The line of best fit comes from a regression of non-EB-adjusted treatment 

effects on average non-mover life expectancy. The horizontal and vertical dashed lines show 

the medians of treatment effects and life expectancy, respectively, over all CZs. Confidence 

intervals for the treatment effects and life expectancies of all CZs are provided online.
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Figure 5: 
Life Expectancy Treatment Effects for 20 Largest CZs

Notes: This figure plots the Empirical Bayes-adjusted life expectancy treatment effect for 

the 20 most populous CZs (calculated using the 2000 and 2010 census), sorted by their 

Empirical Bayes-adjusted life-expectancy treatment effects. 95% confidence intervals are 

calculated as described in Appendix A using the mean-squared error of each optimal 

prediction of the Empirical Bayes-adjusted life expectancy treatment effect. The x marks 

indicate the point estimates for the age-65 life-expectancy within each CZ.
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Figure 6: 
Correlations with Place Characteristics

Notes: The dots in this panel report bivariate variance-weighted least squares regression 

results of our life expectancy treatment effects Lj
∗ − L  on z-scores of the indicated place 

characteristic; Appendix D provides more detail on their definitions. The x marks report 

bivariate variance-weighted least squares regression results of our age 65 life-expectancy 

estimates (Lj) on z-scores of the indicated place characteristic. All regressions are at the 

CZ level, and the regressions are weighted by the inverse variance of each measure. 95% 

confidence intervals are based on standard errors from the regressions. In this figure, the 

sample for each bivariate regression is all CZs for which that place characteristic is defined 

(see Appendix Table A.11 column 3), although the results are nearly identical if we instead 

use the 554 CZs for which every place characteristic (except homicide rates) is defined.
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Figure 7: 
Support for Selection-Correction Assumptions

Notes: Panel (a) plots 
StDev ηj(i), k

dest

StDev ℎj(i), k
dest  against 

StDev ηj(i)
orig, k

StDev ℎj(i), k
orig  for 100 different subsets Hi

k; each 

point in the scatter plot represents a different definition of k. For each k, Hi includes 

log(overall utilization) and a random subset of 13 of the 27 chronic conditions. Panel (b) 

reports various summary statistics about the treatment effects Lj
∗ − L  produced by each of 

the 100 different definitions of k in panel (a). The left figure in panel (b) plots the standard 

deviation across CZs of the treatment effects from each of these alternate specifications; 

the dotted line shows the standard deviation across CZs of the treatment effects in the 

baseline specification (Table 4). All standard deviations are computed using the split-sample 

approach. The right figure in panel (b) plots the correlation of the treatment effects in each 

of the alternate specifications with the baseline treatment effects.
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Table 1:

Summary Statistics

(1)
Movers

(2)
Non-movers

Estimation sample (# of individuals) 2,032,872 4,312,726

2006 comparison sample (# of individuals) 168,853 168,853

Age:

 65–74 0.48 0.54

 75–84 0.35 0.35

 85+ 0.17 0.11

Female 0.60 0.57

White 0.89 0.86

Region:

 Northeast 0.19 0.20

 South 0.43 0.37

 Midwest 0.19 0.27

 West 0.19 0.16

On Medicaid 0.10 0.12

Avg. # of chronic conditions 3.08 2.82

1-year mortality 0.09 0.05

4-year mortality 0.29 0.20

Notes: The first row shows the sample size for the full estimation sample. The summary statistics on movers in the comparison sample are 
restricted to those who moved in the year 2006 (8.30% of movers in the whole sample). A random subset of non-movers that meet sample 
restrictions in 2006 are included, with their reference years set to 2006, such that the number of movers is equal to the number of non-movers. 
Rows for female, white, age, and region report the share of individuals with the given characteristics. Time-varying characteristics are measured in 
the year prior to each enrollee’s reference year.
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Table 2:

Inputs to Selection Correction

Standard Deviation

Origin Components:

 Observed health ℎj(i)
orig 0.037 [0.036, 0.037]

 Unobserved health ηj(i)
orig 0.061 [0.058, 0.064]

Destination Components:

 Observed health ℎj(i)
dest 0.024 [0.024, 0.025]

 Unobserved health ηj(i)
dest , inferred based on Corollary 1 0.040 [0.037, 0.043]

Notes: Standard deviations are computed using the split-sample approach, and are weighted by the number of movers with each CZ as their 
destination. Confidence intervals are computed using 100 replications of the Bayesian bootstrap.
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Table 3:

Mortality Components

Standard Deviation

Mortality Index γj + θj 0.099 [0.095, 0.103]

Unadjusted:

 Place Effects (γj) 0.077 [0.067, 0.087]

 Health Capital θj 0.073 [0.057, 0.085]

 Correlation of γj and θj −0.139 [−0.322, 0.281]

Selection Corrected:

 Place Effects (γj) 0.054 [0.040, 0.069]

 Health Capital θj 0.088 [0.071, 0.099]

 Correlation of γj and θj −0.093 [−0.322, 0.413]

Notes: These standard deviations across CZ give equal weight to each CZ and standard deviations for the mortality index, place effects, and 
health capital use the split-sample approach. 95% confidence intervals are computed using 100 replications of the Bayesian bootstrap. For the 

“unadjusted” results in the top panel, γj is defined as the destination fixed effects τ j
dest

 from equation (3), and average health capital θj is 

given by the average value of the remaining terms in that equation (excluding the age term aiβ) within each bootstrap and split-sample. For 

the “selection corrected” results in the bottom panel, γj is defined as the difference τ j
dest − ηj

dest
, where τ j

dest
 is the destination fixed effect 

from equation (3) and the unobservable component ηj
dest

 is inferred following the steps broken out in Table 2; average health capital θj is 

then calculated using the same approach as in the unadjusted results. Within each bootstrap, the correlation of γj and θj are calculated as 

Var γj + θj − Var γj − Var θj / 2StDev γj StDev θj , with each variance and standard deviation calculated using the split-sample 

approach.
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Table 4:

Life Expectancy Decompositions

Cross-CZ standard deviation of:

(1) Age 65 Life Expectancy (Lj) 0.79 [0.76, 0.83]

(2) Treatment Effects Lj
∗ − L 0.44 [0.32, 0.55]

(3) Health Capital Effects 0.73 [0.60, 0.83]

(4) Correlation of Treatment and Health Capital Effects −0.04 [−0.15, 0.09]

Share variance would be reduced if:

(5) Place Effects were Made Equal 0.15 [−0.10, 0.46]

(6) Health Capital was Made Equal 0.69 [0.53, 0.83]

Notes: All objects are computed at the CZ level using the split-sample approach described in Section II.B and give equal weight to each CZ; 95% 
confidence intervals are computed via 100 replications of the Bayesian bootstrap. In row (2), we compute the standard deviation of life expectancy 
if health capital were held constant; specifically, for each CZ j, we compute the counterfactual age 65 life expectancy if each CZ had its own γj 
but the nationally representative health capital θ as defined in the text. In row (3), we compute the standard deviation in life expectancy if the place 

effects were held constant; specifically, we define the nationally representative place effect as the median of γj among non-movers, and for each 

CZ j, compute the counterfactual age 65 life expectancy where the CZ has its own θj, but a nationally representative place effect. Row (4) reports 

the correlation between the health capital component of life expectancy (whose standard deviation is shown in row 3) and the place component of 
life expectancy (whose standard deviation is shown in row 2). This is computed by calculating the correlation between the treatment effects in one 
split-sample and the health capital effects in the other split-sample, and then averaging the resulting correlations from each pair. In row (5) we show 
the share of the variance that would be reduced if place effects were made equal; this is computed by calculating the variance of life expectancy 
with place effects held constant (i.e. the square of row 3) and the variance in life expectancy (i.e. the square of row 1), and taking 1 minus the ratio 
of these numbers. Row (6) is computed in an analogous fashion. Confidence intervals for rows (5) and (6) are computed by using this procedure 
within each bootstrap.
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Table 5:

Heterogeneity by Medicaid Status and Race

Medicaid Status Race

Baseline (Large CZs) Non-Medicaid Medicaid White Non-White

(1) Number of movers 710,990 650,246 60,744 629,126 81,864

Cross-CZ standard deviation of:

(2) Life expectancy (Lj) 0.66 [0.64, 0.68] 0.63 [0.61, 0.65] 1.54 [1.49, 1.59] 0.56 [0.53, 0.58] 1.35 [1.23, 1.46]

(3) Treatment effects Lj
∗ − L 0.47 [0.40, 0.53] 0.46 [0.38, 0.54] 0.72 [0.37, 1.01] 0.48 [0.41, 0.54] 0.74 [0.00, 1.17]

(4) Health capital effects 0.53 [0.44, 0.59] 0.52 [0.44, 0.63] 1.50 [1.30, 1.81] 0.52 [0.45, 0.62] 1.04 [0.72, 1.57]

Notes: This table summarizes the decompositions for the largest 100 CZs by population in 2000, estimated separately by race and Medicaid status 
during the year prior to the reference year. Both non-mover and mover samples are partitioned by race or Medicaid status. Sample sizes in row (1) 
exclude movers to or from any CZ outside of the 100 largest CZs; this leaves us with about one-third of the baseline mover sample. Row (2) shows 
the cross-CZ standard deviation of life expectancy at 65 among non-movers in the indicated sample. All standard deviations in rows (2), (3), and 
(4). are computed using the split-sample approach, giving equal weight to each CZ. Brackets show the 95% confidence intervals computed via 100 
iterations of the Bayesian bootstrap. Since standard deviations cannot be negative, any split-sample approach that produces a negative result we set 
to 0.00.

Am Econ Rev. Author manuscript; available in PMC 2021 December 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Finkelstein et al. Page 49

Table 6:

Logistic Model

(1) (2)

Standard Deviation of Mortality Index γj + θj Standard Deviation of Place Effects (γj)

Baseline 0.099 [0.095, 0.103] 0.054 [0.040, 0.069]

Logistic Model:

 1-year mortality 0.062 [0.061, 0.063] 0.081 [0.071, 0.090]

 2-year mortality 0.068 [0.068, 0.069] 0.073 [0.062, 0.079]

 3-year mortality 0.077 [0.076, 0.077] 0.083 [0.076, 0.088]

 4-year mortality 0.086 [0.086, 0.086] 0.082 [0.075, 0.089]

Notes: Column (1) reports the cross-CZ standard deviation of our mortality index. Row (1) reports results for the baseline Gompertz specification 
(See Table 3). For the baseline specification, the mortality index is age, race, and sex adjusted; for the logit specifications it is not. Furthermore, in 
the logit specifications, rather than a β · t term, five-year age bins are fully interacted with race and sex. Column (2) reports the cross-CZ standard 
deviation of our place effects. 95% confidence intervals are reported underneath the point estimates, and are computed with 100 replications of the 
Bayesian bootstrap. All standard deviations are computed using the split-sample approach, and all standard deviations in both columns give equal 
weight to each CZ.
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