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Abstract
The identification of different meat cuts for labeling and quality control on production lines is still largely a manual 
process. As a result, it is a labor-intensive exercise with the potential for not only error but also bacterial cross-
contamination. Artificial intelligence is used in many disciplines to identify objects within images, but these approaches 
usually require a considerable volume of images for training and validation. The objective of this study was to identify 
five different meat cuts from images and weights collected by a trained operator within the working environment of a 
commercial Irish beef plant. Individual cut images and weights from 7,987 meats cuts extracted from semimembranosus 
muscles (i.e., Topside muscle), post editing, were available. A variety of classical neural networks and a novel Ensemble 
machine learning approaches were then tasked with identifying each individual meat cut; performance of the approaches 
was dictated by accuracy (the percentage of correct predictions), precision (the ratio of correctly predicted objects relative 
to the number of objects identified as positive), and recall (also known as true positive rate or sensitivity). A novel Ensemble 
approach outperformed a selection of the classical neural networks including convolutional neural network and residual 
network. The accuracy, precision, and recall for the novel Ensemble method were 99.13%, 99.00%, and 98.00%, respectively, 
while that of the next best method were 98.00%, 98.00%, and 95.00%, respectively. The Ensemble approach, which requires 
relatively few gold-standard measures, can readily be deployed under normal abattoir conditions; the strategy could also be 
evaluated in the cuts from other primals or indeed other species.
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Introduction 
Access to a skilled and experienced workforce is fundamental 
to businesses that depend on human intervention in their 
production processes. The meat industry is one such sector, 

and this was highlighted by the levels of absenteeism during 
the coronavirus disease 2019 (COVID-19) restrictions. Processes 
such as meat cutting, fat determination, and meat deboning 
have been partially automated (Bostian et  al., 1985; Umino 
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et  al., 2011). However, the labeling and identification of meat 
cuts still require a substantial amount of human intervention 
and manual handling. This can incur additional labor costs as 
well as being a source of error and potential microbiological 
contamination (Choi et al., 2013). 

Primal boning lines are a typical example of where 
multiple operators simultaneously work on a range of meat 
cuts. Each cut will eventually arrive at a weighing station 
where a single operator will inspect, identify, and weigh 
the arriving meat cut. The automation of the weighing 
process on boning lines has traditionally been conducted 
on single-meat-cut production lines. However, due to spatial 
restrictions in many meat plants, there is a preference 
in the beef industry to operate multiple meat cut types 
simultaneously on a single processing line. This multi-meat-
cut processing strategy has made the automation of meat 
cut identification extremely challenging as there is a high 
probability of incorrect meat cut identification; any proposed 
automated system must have a high level of accuracy in 
order to avoid misclassification and line downtime.

Deep learning such as convolutional neural networks (CNNs), 
a branch of machine learning, has become an increasingly 
popular method for image identification. In practice, CNN 
predictions can achieve human-level accuracy for tasks such 
as face recognition, image classification, and real-time object 
detection in an image or video (Fan and Zhou, 2016; Zeng et al., 
2017; Du, 2018). CNNs are algorithms that are trained on labeled 
images (Wei et al., 2016). The training process is implemented 
by creating features from characteristics such as edges, dots, 
and lines on each image and then using these as inputs into 
a traditional neural network classification algorithm (Du, 2018).

The objectives of this study were to collect image data and 
weights of individual meat cuts from the semimembranosus 
primal and to develop a methodology to correctly classify meat 
cuts from an image, resulting in an automated process for 
the identification of meat cuts. The Ensemble approach was 
then compared against various classical neural networks. The 
resulting algorithm enables the removal of a human operator, 
thus reducing the risk of cross-contamination across samples 
and potentially improving product shelf life.

Materials and Methods
All animals used as part of the study were reviewed and 
processed under the approval of the Irish Department of 

Agriculture following European Union Council Regulation (EC) 
No. 1099/2009.

Data

The data collected for this project were from beef cuts taken 
from a Topside (i.e., semimembranosus muscle) trimming line 
of a major Irish beef processor. The process flow for this line 
required an operator to weigh the primal topside cut on a start-
of-line (SOL) weighing scales. Each cut was then placed on a 
conveyor belt where a team of operators removed fat, gristle, 
and secondary muscles. The remaining meat cuts were then 
labeled, weighed, and an image captured by a trained operator 
on an end-of-line (EOL) weighing scales, where the meat cuts 
were vacuum packed and labeled.

For this particular study, there were five different meat cuts 
derived from the Topside primal (Figure 1). The data acquisition 
required a hardware setup of weighing scales (Machines, 1985), 
at both the SOL and EOL together with a Vivotek bullet camera 
(IP8362—Bullet–Network Cameras:: VIVOTEK::, n.d.) at the EOL 
to capture a photo image of each meat cut. In addition, bespoke 
data capture software using a node.js platform (Cantelon et al., 
2013) was used to acquire the characteristics of each meat cut 
being weighed in a 4-step process.

1.	 A manual capture of the carcass identifier number, primal 
weight, and the time of arrival at the SOL scales.

2.	 The time and the id of the operator validating the meat cut 
image as well as the meat cut weight, meat cut label, and a 
photo image at the EOL scales were all captured on bespoke 
data capture software used as a form of data acquisition 
in the development of an Agri Data Warehouse (McCarren 
et al., 2017).

3.	 The EOL operator identified the meat cut using the data 
capture interface (shown in Figure 2), ensuring the correct 
image was stored to disk and linked to the appropriate 
database entry containing the variables captured at both 
EOL and SOL points.

4.	 After each meat cut was removed from the scales, an image 
of the empty scales was captured. This was done to help 
remove image noise (discussed later).

The user interface for the data capture software is shown 
in Figure 2. A  trained operator identified the meat cuts for 
subsequent categorization; the cuts were categorized as 1) Cap 
Off, Pear Off, Prêt A Decoupé (PAD); 2) Cap Off, Pear On; 3) Topside 
Heart PAD; 4) Topside Bullet; or 5) Cap Off Non-PAD Blue Skin 
Only. The data collection period lasted 3 wk, and a summary of 
the data captured is presented in Table 1.

At the end of the data collection period, an analysis was 
conducted to determine if there were any outlying weights; this 
was undertaken by comparing the weights of the primal cut 
weighed on the SOL scales with the weight of the corresponding 
generated meat cut on the EOL scales. The ratio of each meat 
cut weighed on the EOL relative to the primal cut on the SOL 
is known as the product yield. Boning operators generally have 
target product yields which are dependent on the product 
specification. As the beef plant operator had a specification limit 
of 10.00% for each of the meat cuts used in these experiments, 
any absolute difference between the actual product yield and 
the target product yield that exceeded 10.00% was flagged as 
an outlier and subsequently removed from the dataset (Albertí 
et al., 2005). As a result, 7,987 records were deemed acceptable 
for the final dataset (McCarren et  al., 2021). Each record in 
this dataset included an image of the meat cut along with a 

Abbreviations

CI	 colored images
CNN	 convolutional neural network
DATAS	 deductive analytics for tomorrows 

agri sector
DT	 decision tree
EMM	 estimated marginal mean
EOL	 end of line
MLR	 multinomial logistic regression
PBWI	 preprocessed black and white images
PW	 meat cut weights
ReLU	 rectified linear unit
ResNET	 residual network
SOL	 start of line
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corresponding weight and the batch number. The weights and 
images were then used as inputs to classification algorithms.

Image preprocessing

When conducting image preprocessing, one generally aims to 
improve the prediction process by enhancing certain characteristics 
and/or blurring others (Lancaster et al., 2018). For this study, each 
meat cut image was accompanied by its associated background 
image such as that shown in Figure 3. In order to remove distracting 
or confusing items (e.g., operator hands or small meat blobs), the 
background image was removed from the meat cut image. This 
image was then converted to grayscale (Figure 3), and finally, the 
meat cut was segmented from the scale using the Gaussian blur 
technique. This final set of original and grayscale images was used 
in the model construction.

The frequency breakdown of the different topside meat cuts 
is presented in Table 1; the frequency of meat cut 20002 was 
disproportionately low as it is not frequently harvested in this 
plant. Therefore, it was decided to use data augmentation to create 
artificial training samples for meat cut 20002 in order to improve 
the imbalanced nature of the dataset. As part of the augmentation 
process, transformations such as anticlockwise rotation, clockwise 
rotation, horizontal flip, vertical flip, noise addition, and blurring 
were implemented. These processes created 84 additional images 
for meat cut 20002 resulting in a final count of 98 images. The 
preprocessing and the application of deep learning algorithms 
were implemented using the Python programming language (van 
Rossum, n.d.), with the Tensorflow, Keras API, Scikit learn (Géron, 
2019), and CV2 (Bradski and Kaehler, 2008) libraries.

Convolutional neural network

The CNN algorithm has shown particular success in identifying 
objects within images (Wallelign et al., 2018) and was, therefore, 

considered in the present study. The CNN algorithm processes 
data by passing images through multiple convolutional and 
pooling layers and applies nonlinear transformations such as 
the Softmax or rectified linear unit (ReLU) function to obtain the 
probability-based classes (He and Chen, 2019). The functional 
form of a convolution layer is described in equation 1: 

Xl
j = g

Ñ
∑
i∈Nj

Xl−1
i ∗ Wl

ij + Blj

é
� (1)

where l is a layer and j is an output, Xl
j is an output vector, 

Wl
ij is the convolution kernel (also known as weights or 

parameter estimates), Xl−1
i  is the previous or hidden layer’s 

feature map, Blj is an additive bias given to each output map, 

Nj represents the selection of the input maps, * represents 
the convolution operation, and i is an element of the 
training set.

In a neural network, regularization is a technique to 
prevent overfitting. Overfitting occurs when the model is over-
parameterized relative to the volume of data available. A  loss 
function describes the deviation of predictions from the ground 
truth (Zhao et al., 2016) and is required to calculate the model 
error. The error for a single pattern can be expressed as in 
equation 2:

εn = εn−1 + λ
∑
i,j

∣∣(αij)
∣∣

� (2)

where ∈n is the new error calculated after each iteration, ∈n−1 
is the error from previous iteration and is highest for the first 
iteration, λ is a user-defined parameter that controls the trade-
off, and αij are the parameter estimates of the algorithm for a 
given output from layer i to j.

Figure 1.  Topside cuts: five meat cut variations. (a) Cap Off Pear Off, PAD topside muscle (20001); (b) Cap off, Pear on topside muscle (20002); (c) Topside Heart muscle 

(20003); (d) Topside Bullet muscle (20004); and (e) Cap Off, Non-PAD, Blue Skin Only topside muscle (20010). 
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After each iteration of the CNN, the parameters and 
learning rates get updated in order to minimize the error 
(loss) using algorithms such as Adaptive Moment (Adam), 
which is a first-order gradient-based optimization of the 
stochastic function and is based on adaptive estimates 
of lower-order moments (Kingma and Ba, 2014). ReLU, 
a computationally inexpensive activation function, 
accelerates the training procedure by avoiding the vanishing 
gradient problem (He and Chen, 2019). In order to avoid 
overfitting, a CNN architecture, which was originally used 
to identify numbers in a large handwritten dataset known 
as MNIST (Garg et  al., 2019), was adapted by adding max 
pooling and a dropout on each convolution layer (Park and 
Kwak, 2016).

CNN concatenated with meat cut weights

In order to model the weight of each meat cut along with the 
cut images, the cut weights were integrated into the flattened 
layer of the CNN as mentioned above and shown in Figure 4. 
Flattening the final convolution layer converts the images into a 
1-dimensional array and transfers them to the fully connected, 
dense layer. The weight is concatenated with the 1-dimensional 
array, and the last dense layer is used as an output layer that 
predicts the classes of the meat cut images.

Ensemble approach with meat cut weights

Theoretically, with CNN algorithms, there is no need to 
engineer features during the classification process, as the mix 

Figure 2.  End of line (EOL): a user interface for data collection.

Table 1.  Dataset summary statistics

Meat cut ID N1 Meat cut description X− ± S
2 Cut yield, %

20001 1,060 Cap Off, Pear Off, PAD 6.47 ± 1.17 55.11
20002 14 Cap Off, PAD On 8.87 ± 0.98 68.18
20003 2,132 Topside Heart PAD 5.87 ± 1.10 44.00
20004 2,085 Topside Bullet 1.40 ± 0.29 9.45
20010 2,696 Cap Off Non-PAD Blue Skin Only 7.82 ± 1.59 61.55

1N is the frequency of the images.
2X̄ and S are the mean and standard deviation of the weights, respectively.
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of the convolution kernels and max pooling automatically 
creates features that can be inserted into a typical neural 
network (Liu et  al., 2019). However, neural networks are 
highly nonlinear, and estimating the choice of initial 
parameter estimates can be computationally expensive. 
Creating a simplified set of initial features, such as the object 
extremities, and using these as inputs to a basket of simpler 
algorithms or an ensemble of algorithms have been found 
to be successful in other applications (Wang et  al., 2019). 
In order to identify these object extremities, images were 
standardized by rotating them so that the longest side was 
always in a vertical position (Figure 5). From this image, the 
following handcrafted features were calculated using the 
CV2 Python library:

•	 Density: white pixel counts relative to the total number of 
pixels.

•	 (Xmin,XminY): the minimum X and the corresponding Y 
coordinate.

•	 (Xmax,XmaxY ): the maximum X and the corresponding Y 
coordinate.

•	 (YminX,Ymin): the minimum Y and the corresponding X 
coordinate.

•	 (YmaxX,Ymax): the maximum Y and the corresponding X 
coordinate.

The Ensemble architecture is shown in Figure 6 as a 5-layer 
structure. At the first layer (Training: Data-Level 1), the handcrafted 
features, Xmin, XminY, Xmax, XmaxY, YminX, Ymin, YmaxX, and Ymax, 
were used in conjunction with each meat cut weight, together with 
a basket of machine learning approaches to identify each meat 
cut. The three base learners shown at layer 2 were multinomial 
logistic regression (MLR), decision tree (DT) classifier, and CNN.

MLR can be used for the classification of a task with multiple 
response variables. The general equations of the MLR model are 
equations 3 and 4, where: pi is the probability of occurrence of 
each event; θ is the likelihood parameter; pk+1 represents the 
monotonicity of the lower bound iterate; x = (x1, . . . , xm)

T 
is the covariate vector; k is the maximum number of possible 
outcomes; and θi is the parameter vector corresponding to the 
i− th response category (Böhning, 1992; Li et al., 2010):

pi =
exp(θ(i)

T
x)

1+
∑k

j=1 exp(θ( j)
Tx)

for i = 1, . . . , k� (3)

pk+1 =
1

1+
∑k

j=1 exp
Ä
θ( j)

Tx
ä� (4)

Figure 4.  Convolutional neural network with meat cut weight: architecture 

where the weight is concatenated with the image in the flattened layer.

Figure 3.  Images at various stages of preprocessing: (a) The background image reflecting the scale on which the meat cuts were placed, (b) the scale with a meat cut on 

it, (c) the difference between image (a) and (b), (d) the grayscale conversion of image (c), and (e) image represents the segmented meat cut.
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DT classifiers are a rapid and useful top–down greedy 
approach to classify a dataset with a large number of variables 
(Farid et al., 2014). In general, each DT is a rule set. Researchers 
have used the ID3 (Iterative Dichotomizer) algorithm widely 
where objects are classified based on the improvement in 
information gain given by a proposed split in the tree (Chandra 
and Varghese, 2009). In the approach used in this study, the 

handcrafted features were used to calculate the information 
content, and then the classes were subsequently predicted. In 
addition to the DT and MLR classifier, the CNN predictions were 
also included as part of the input layer to the neural network 
as shown in Figure 6.

The predictions from the base learners comprise layer 3 of the 
ensemble architecture. The predictions y1i, y2i, . . . , y4k, y5k are 

Figure 5.  Handcrafted features: these features are created from the coordinates of the virtual box surrounding the meat cut.

Figure 6.  Ensemble architecture: integrating the multinomial logistic regression (MLR), decision tree classifier (DTC), and convolutional neural network (CNN) learners, 

where the handcrafted features Xmin, XminY, Xmax, XmaxY, YminX, Ymin, YmaxX, Ymax and images are used as inputs. The outputs y1i.. y5k are the predictions of each 

product cut from the MLR, DTC, and CNN algorithms, which are then fed to a standard Neural Network (NN), whose outputs correspond to prediction of product cuts 

20001, 20002, 20003, 20004, and 20010.
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shown in Figure 6, where i (s) are the predictions of MLR, j (s) are 
the predictions from DT classifier, and k (s) are the predictions 
from CNN. These are then used in conjunction with the meat cut 
weights (PW) with an additional learner neural network (layer 
4), and the final predictions of the meat cuts (20001, 20002, …, 
20010) are delivered at layer 5 in the architecture.

Transfer learning

Transfer learning approaches such as a residual network 
(ResNET) have been found to be successful in classifying images 
(He et  al., 2016; Marsden et  al., 2017; Setyono et  al., 2018). 
A ResNET is a CNN with a skip connection, which is also known 
as an identity shortcut connection. The concept behind the skip 
connection is to enable gradients to flow between layers as they 
help to reduce the impact of the vanishing gradient problem 
in deep learning architectures. The general form is shown in 
equation 5, where a is the activation (outputs) of neurons in 
layer l, θ is the learning parameter, m is the total number of 
layers, i = 1, 2, . . . , m, and j = 0, 1, . . . , m− 1:

a(l+2i) = g(θ + a(l+2j))� (5)

A 34-layer ResNET architecture was used with and without 
considering cut weights in the present study. Such architectures 
are well balanced and are as accurate as the CNN with relatively 
low computational power requirements (He et al., 2016).

Experimental setup and evaluation

Two broad sets of experiments were carried out in order to 
better understand the effect of a data transformation step on 
the predictive performance of the three applied algorithms. 
In the first set of experiments, the colored input images were 
transformed to grayscale which has been shown to reduce the 
noise-to-signal ratio (Vidal and Amigo, 2012), thus reducing 
the complexity and improving the performance of statistical 
learning techniques. In the second set of experiments, the color 
of the input images was retained as it was hypothesized that 
the color contrasts between the fat and meat components of 
each cut contained potentially useful information that would 
inform a better predictive performance. In each experiment, 
the datasets were split into a training set and a test set using 
an 80:20 stratified sampling ratio. The training set was further 
split using a 90:10 ratio for the purpose of implementing a 
validation strategy. The training data were used to train the 

model, whereas the validation data were used to examine if the 
hyperparameters required further tuning. A hyperparameter is a 
parameter whose values cannot be estimated from the data and 
are external to the model. The test data were used as an unseen 
dataset to examine the results of the model.

Evaluation metrics used in image identification are typically 
accuracy, precision, recall, F1 score, and convergence time 
(Larsen et al., 2014; Ropodi et al., 2015; Al-Sarayreh et al., 2018; 
Setyono et al., 2018; Wang et al., 2019). Accuracy and F1 scores 
are described in equations 6 and 7, respectively:

Overall Accuracy =

∑n=5
i=1 TPi
N

� (6)

In equation 6, TPi or the true positive is the number of 
instances predicted correctly for instance i, and N is the total 
number of predictions:

F1i = 2 ∗ Precisioni ∗ Recalli
Precisioni + Recalli

� (7)

where,

Precisioni =
TPi

TPi + FPi
� (8)

Recalli =
TPi

TPi + FNi
� (9)

where FPi or the false positive is the number of instances 
where the true label is negative or of a different class but 
incorrectly predicted as positive, while FNi or false negative is 
the number of instances where the true label is positive but the 
class is incorrectly predicted as negative. The weighted-average 
F1 score was derived from the average F1 score from each 
classification category weighted by the number of meat cuts in 
each product group as described in equation 10:

F1i(wt) =

∑n
i=1 F1i
n

� (10)

where n is the number of categories. Table 2 demonstrates 
the value of these metrics along with the time taken to converge 
for each algorithm.

Table 2.  Comparative performances for all three models1

Model
Image 
type

Train 
accuracy

Test 
accuracy

Average precision 
(test)

Average 
recall (test)

Weighted F1 
score (test) Time(s)

CNN2 PBWI 96.80% 92.00% 86.00% 82.00% 84.00% 6,675
CNN CI 98.90% 96.00% 96.00% 92.00% 92.00% 3,093
CNN with weights PBWI 98.80% 93.00% 91.00% 83.00% 86.00% 6,059
CNN with weights CI 99.60% 98.00% 98.00% 95.00% 96.00% 11,251
ResNET3 PBWI 91.80% 90.90% 90.90% 90.80% 90.80% 1,745
ResNET CI 96.80% 96.50% 96.50% 96.00% 96.00% 12,500
ResNET with weights PBWI 95.20% 92.00% 90.00% 78.00% 81.00% 8,345
ResNET with weights CI 99.10% 97.00% 97.00% 87.00% 90.00% 9,278
Ensemble PBWI 95.00% 95.00% 92.00% 82.00% 85.00% 18,518
Ensemble CI 99.50% 99.13% 99.00% 98.00% 98.00% 19,224

1The accuracy for the training and test datasets and the weighted-average F1 score for the test dataset are shown in the columns train 
accuracy, test accuracy, and test weighted F1 score, respectively. For each of the models, there are two rows representing the preprocessed 
black and white images (PBWI) and the colored images (CI). The time (s) column displays the time, in seconds, to train the model.
2CNN, convolutional neural network.
3ResNET, residual network.
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In order to determine the statistical significance of the 
results, a beta regression model with a “loglog” link function was 
implemented in the R programming language using the betareg 
package (Cribari-Neto and Zeileis, 2010) to model accuracy 
against the algorithm, dataset, and meat cut variables (R Core 
Team, 2020). Only two-way interaction terms on combinations 
of the product, algorithm, and image type were examined, as 
the degrees of freedom in this particular analysis was limited 
to 40. The final beta regression model had pseudo R2 of 0.98, 
and the comparison with an identity link was significant 
(Φ = 350.37, z = 3.99, P < 0.001). A type III analysis was conducted, 
and interaction effects between algorithm and image type and 
between algorithm and product were found to be significant 
(Algorithm * Image Type: F4,26 = 3.046 and P = 0.016 and Algorithm 
* Product: F12,26 = 5.082 and P < 0.001). From this analysis, a post 
hoc analysis on the estimated marginal means with a Tukey 
correction for multiple comparisons was conducted and is 
outlined in Table 3.

Results
Accuracy statistics for each model and for both the color and 
grayscale images are presented in Table 2 for the training and 
test datasets. In addition, the convergence times for the color 
and grayscale images, for each method, are also summarized in 
Table 2. While there was a wide disparity in convergence times, 
ranging from 1,745 s for the ResNET on the preprocessed black 
and white images to 19,224 s for the Ensemble approach with 
color images, it was not unexpected given the difference in 
model complexities.

The Ensemble approach with color images was the best-
performing algorithm with a test accuracy of 99.13% and a 
training accuracy of 99.50%. The estimated marginal mean 
(EMM) for the test accuracy difference on color images was 
higher for the Ensemble approach compared with either the 
CNN ([EMMCNN − EMMEnsemble] Z score = −4.72 or P < 0.001) or the 
ResNET ([EMMEnsemble − EMMResNET] Z score  =  7.82 or P <0.001) 
algorithms without incorporating the cut weight information. 
The same algorithm also performed best for images in grayscale, 

with a test and training accuracy score of 95.00%. However, the 
only statistical difference found was between the Ensemble and 
the ResNET without using cut weight information algorithms 
([EMMEnsemble − EMMResNET] Z score  =  4.42 or P  <  0.001). With a 
score of 98.00%, the Ensemble approach also had the highest 
weighted-average F1 score.

Figure 7 illustrates both the training and validation accuracy 
as the number of epochs changed for each method, for both the 
color and grayscale images. All approaches, with the exception 
of the Ensemble approach, demonstrated varying degrees of 
percentage difference in accuracy between the training and test 
accuracy on the grayscale images (CNN 4.80%, CNN with weights 
5.80%, ResNET 0.90%, and Ensemble 0.00%), implying the 
algorithms overfitted the training data. The level of overfitting 
was reduced for both the CNN and the CNN that also used the 
cut weight information; albeit, there was a marginal increase 
in overfitting with the ResNET and Ensemble approaches for 
the color images (CNN 2.90%, CNN with weights 1.60%, ResNET 
1.30%, and Ensemble 0.43%).

All five algorithms, CNN, CNN concatenated with weights, 
ResNET, ResNET concatenated with weights, and the 
Ensemble method, performed better with color images, as the 
EMM difference between algorithms run on color images with 
those run on grayscale images was statistically significant 
([EMMColor − EMMgrayscale] Zratio = 13.649, P < 0.001) as presented 
in Table 3.

The inclusion of product weights in the model demonstrated 
a beneficial effect when detecting meat cuts from images, as 
the CNN and Ensemble approaches when including weights 
outperformed the same algorithms when excluding the weights 
([EMMCNN with Weights − EMMCNN] Zratio = 3.527, P < 0.015; [EMMCNN with Weights −  
EMMResNET] Zratio  =  5.37, P  <  0.001; [EMMEnsemble − EMMCNN] 
Zratio  =  3.211, P  <  0.043; [EMMEnsemble − EMMResNET] Zratio  =  5.095, 
P < 0.001) as presented in Table 3.

Figure 8 shows the F1 score for each model for each individual 
meat cut. In all cases, the highest F1 score was achieved for the 
Ensemble method with colored images (CI); while meat cut 
20004 had the highest F1 score (100.00%) using the Ensemble 
method, Meat cut 20002 had the fewest number of images and 

Table 3.  Tukey post hoc contrast analysis of predicted marginal mean difference (SE) between algorithms by image type 

Image type Contrast Marginal mean difference (SE)  Z ratio  Adjusted P-value

Color  CNN1 – CNN with weights −0.7573 (0.215) 0.0153 0.0153
Color  CNN – Ensemble −0.6719 (0.209) −3.211 0.0433
Color  CNN – ResNET2 0.3505 (0.174) 2.017 0.5871
Color  CNN – ResNET with weight −0.0801 (0.186) −0.429 1
Color  CNN with weights – Ensemble 0.0854 (0.237) 0.361 1
Color  CNN with weights – ResNET 1.1078 (0.206) 5.37 <0.0001
Color  CNN with weights – ResNET with weight 0.6773 (0.217) 3.122 0.0566
Color  Ensemble – ResNET 1.0224 (0.201) 5.095  <0.0001
Color  Ensemble – ResNET with weight 0.5919 (0.212) 2.798 0.137
Color  ResNET – ResNET with weight −0.4305 (0.177) −2.437 0.3036
Grayscale  (CNN) – (Ensemble) −0.4688 (0.175) −2.687 0.1789
Grayscale  (CNN) – (ResNET) 0.2886 (0.145) 1.996 0.602
Grayscale  (CNN) – (ResNET with weight) −0.0423 (0.155) −0.272 1
Grayscale  (CNN with weights) – (Ensemble) −0.3269 (0.183) −1.782 0.7468
Grayscale  (CNN with weights) – (ResNET) 0.4306 (0.155) 2.769 0.147
Grayscale  (CNN with weights) – (ResNET with weight) 0.0997 (0.166) 0.602 0.9999
Grayscale  (Ensemble) – (ResNET) 0.7575 (0.171) 4.422 0.0004
Grayscale  (Ensemble) – (ResNET with weight) 0.4266 (0.180) 2.364 0.3477

1CNN, convolutional neural network.
2ResNET, residual network.
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correspondingly had the smallest F1 scores. However, using the 
Ensemble method with CI, meat cut 20002 did have the highest 
F1 score (97.00%).

Discussion
The primary aim of this study was to create an automated 
meat cut identification strategy for beef boning lines that 
simultaneously process multiple beef cuts; the present study 
focused solely on the cuts from the semimembranosus muscle. 

In order to do this, a number of classical neural networks 
that perform image detection and a novel Ensemble strategy 
were applied to a dataset (McCarren et al., 2021) consisting of 
7,987 product cut images and their corresponding weights. 
A  series of eight experiments was conducted on both color 
and preprocessed grayscale images, and the novel Ensemble 
approach developed in this study performed best for each 
individual cut and that using color images outperformed 
those that used grayscale while availing of product weights 
also improved the accuracy of categorization. These results 

Figure 7.  Training and Validation Loss Graphs: (a), (c), (g), and (h) show the overfitting as there is a significant difference between the train and the valid curves. In (b), 

(d), (e), and (f), there is no overfitting as the two lines are almost overlapping showing very minimal or no differences between train and valid results. Abbreviations: 

CNN, convolutional neural network; ResNET, residual network.
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demonstrated findings relating to artificial intelligence (AI) 
and implementation strategies that would be applicable for 
future commercial deployment strategies. 

AI strategy

Typically, in image detection problems, one highlights image 
features using a variety of preprocessing techniques to improve 
the algorithm’s performance. However, on the live production 
environment, where these experiments were conducted, the 
opposite result was found; accuracy and weighted-average 
F1 score were 4.00% higher for all models using color images. 
While this is not typical in object detection problems (Xu et al., 
2016), the occurrence in these experiments can be explained 
by the fact that the background remained relatively constant 
throughout the experimental period, and thus removing it 
from the images had little or no effect. In addition, grayscaling 
the images potentially limited the ability of all algorithms to 
differentiate between the fat and red meat.

In the meat industry, meat cuts are generally extracted 
from primal cuts, and knowing the weights of these cuts can 
potentially help in the identification of candidate labels. Results 
from the present study clearly demonstrate a benefit of knowing 
the weight of the on-coming cut, as the inclusion of the product 
weight into the flat layer of both the CNN and ResNET improved 
the resulting meat cut identification. This is not surprising as 
it has been shown to be successful in previous research on 
product identification (Shi et al., 2020). However, in this study, 
a simplified model where product weights alone were used as 
the only independent variable resulted in an accuracy of 60.12% 
on the test dataset. This result not only justifies the importance 
of the product weights but also demonstrates that the product 
weights alone are not sufficient for categorizing product cuts.

Transfer learning is one of the more recent evolutions of 
machine learning and, in particular, the ResNET transfer learning 
algorithm is considered to be one of the most advanced deep 
learning architectures in image detection (Marsden et al., 2017). 
However, in the experiments conducted in the present study, 
the incorporation of the weight of each meat cut in the final 

layer and the outputs of the simpler approaches outperformed 
the ResNET architecture. While this was somewhat surprising,  
the combined use of MLR, the CNN, and the DT algorithm in the 
ensemble approach on the set of artificially created features was 
the most consistent with respect to overfitting and suggests that 
the use of simpler algorithms in the Ensemble approach may 
have assisted the CNN algorithm in finding a stable solution. 
While the Ensemble approach with color images took longer to 
converge, the ability to avoid overfitting is extremely important 
in a live environment. In a live environment, the convergence 
time would not be a considerable issue as model fitting would 
only be implemented in order to calibrate the model in an offline 
mode. Finding a stable solution can be an issue when using 
neural network algorithms as the level of nonlinearity in the 
cost function can cause overfitting (Nguyen et al., 2011). Using a 
mixture of simpler algorithms in the early stage of the Ensemble 
has been shown to outperform more complex methods with 
regard to accuracy and F1 score (Abdelaal et  al., 2018) and to 
reduce overfitting (Perrone and Cooper, 1992). GC et  al. (2021) 
achieved a maximum test accuracy of 98.57% and a weighted 
average F1 score of 94.00% on the test dataset of beef cuts using 
the alternative VGG16 transfer learning model, a state-of-the-art 
method. The proposed Ensemble method was able to achieve an 
accuracy up to 99.13% and weighted-average F1 score of 98.00%.

Deployment strategy

The data capture unit developed in the present study was 
implemented using the Node.js programming language 
and consisted of a DEM weighing scale (Machines, 1985), a 
DEM terminal, and a Vivotek harsh environment camera. In 
order to truly automate the collection of the cut weight and 
subsequently identify the products in a live environment, 
an external harsh environment color camera will need to be 
integrated into an inline weighing scale. The terminal for this 
scale will then need a script that runs the Ensemble machine 
learning models; however, the code used to create the Ensemble 
approach in the present study can be easily integrated into many 
diverse operating systems. For each new group of products, the 

Figure 8.  The F1 score for all five meat cuts with different models on both the preprocessed black and white (PBWI) and the colored images (CI). Abbreviations: CNN, 

convolutional neural network; ResNET, residual network.
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algorithm will need to be trained on images collected from 
the live production of the corresponding plant. The number 
of samples required to train the algorithm will be problem 
specific. However, in previous research studies, researchers have 
recommended that at least 1,000 images of each object should 
be used during the AI training phase (Cho et al., 2016). This is 
not a hard rule, and, in this study, the results demonstrated that 
there were ample data with the exception of product 20002, 
where the overall accuracy was lower. As mentioned previously, 
the data collection for this study was implemented on bespoke 
software. This code can be readily implemented to help create 
training data for the Ensemble machine learning algorithm 
during new deployments and makes the implementation in a 
commercial environment an attractive proposition. 

The cost of deployment is not envisaged to be expensive for a 
live environment as all the software used is open source (Tilkov 
and Vinoski, 2010; van Rossum, n.d.). The camera technology is 
relatively inexpensive as the image processing in the present 
study was conducted without the use of spectral images which 
was not the case in other studies (Larsen et al., 2014; Ropodi et al., 
2015; Al-Sarayreh et al., 2018; Yu et al., 2018). The advancement 
in object detection algorithms and the inclusion of the weights 
seem to have negated the need for infrared spectroscopy and 
potentially could be used in many other applications in the 
food industry. The test accuracy with the ensemble algorithm 
demonstrates the ability of artificial intelligence to replicate the 
behavior of a human operator.

Applications

In the meat processing industry, the decision to implement 
automated or robotic processes is usually dictated by the return-
on-investment which, in turn, is usually a function of improved 
product quality, reduced labor costs, or a reduction in safety 
incidents (Purnell, 2013). Automation has been introduced in 
the sector and has been used in applications such as fat and red 
meat yield prediction (Pabiou et al., 2011) and a limited number of 
cutting procedures. However, beef boning is still predominantly 
a highly manual process on modern pace boning lines. These 
operations rely on operators at the end of the line to identify 
products, check their quality characteristics, and then manually 
redirect them to the appropriate packing stations. At present, 
in operations where there are multiple cuts being processed 
simultaneously, there is generally no facility to monitor yields 
during the boning process. This is a major weakness in current 
systems as plant management relies on in-line supervision 
to continually monitor the operator cut decisions of boning 
operators. By automating the identification of the relevant meat 
cuts and in conjunction with automated weighing technology, 
the yield of the cut relative to the original primal weight can be 
accurately monitored during production rather than at the end 
the batch, thus improving the meat yield of the plant.

In addition to potential yield improvement, removing an 
operator on the line can potentially reduce the possibility for 
cross-contamination from bacteria such as Staphylococcus 
or Escherichia coli which are commonly transmitted due to 
food operations by line operators (Coma, 2008). However, the 
potential for misspecification of the meat cut could potentially 
rise without the use of a trained human operator. In order 
to avoid this issue, the system applied in this study could be 
adapted to remove products onto a separate quality control 
line if either it did not recognize the meat cut or it was outside 
the weight specification, effectively mimicking the actions of a 
human operator. 

Conclusions
In the present study, an approach to automate the identification 
of meat cuts was presented using a live beef production line over 
a 3-wk period. It was unclear at the outset as to which machine 
learning model would perform best on these types of images 
in the live environment, and thus a number of computer vision 
algorithms were evaluated. As is normal with the construction 
of a new dataset, imbalances in terms of image distribution 
frequencies can occur but this was offset using different 
preprocessing methods and data augmentation. The outcome 
was that an Ensemble approach, with a mixture of CNN, MLR, 
and DT classifiers that incorporated product weights had the 
best performing result in terms of accuracy and weighted 
F1 score. The results also showed that the CNN multi-inputs 
converged 33.00% faster than the Ensemble approach, although 
this model was 1.00% less accurate on the test dataset and 
showed less promising results when the training and validation 
loss graphs were examined. This work focuses on constructing 
a larger dataset with a broader range of primal cuts, and the 
next step is to apply the best-performing model on a more 
challenging dataset to demonstrate if the overall process can be 
used in a full-scale commercial application.
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