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Abstract

Plastics impact our daily lives. Unfortunately, it is the disuse and disposal of these items that 

may affect us the greatest. Plastic micro- and nanosized particles, likely from bulk degradation, 

have been identified in air pollution and water sources. Recently, plastic particles have also been 

identified in consumable products. The purpose of this review is to identify the likely routes of 

human exposure, the toxicological outcomes and concerns currently reported, and to provide some 

considerations for future assessments.
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Introduction

The production of synthetic polymers over the last half century has been astronomical. 

This production, subsequent use and disposal, has directly led to an increase in plastic 

waste. Reports have indicated that 50% of plastic products are single-use items [1]. It is 

commonly acknowledged that plastic pollution is a growing environmental concern. Once 

discarded, bulk plastics will break down to smaller pieces identified as micro- and nanosized 

plastic (MNP) particles [2]. These tiny microsized particles (< 5 mm) will continue to 

degrade to billions of smaller nanoplastic particles (<1 μm or <100 nm, depending on the 

source). At these size ranges, plastic particulate can become airborne where it may be 

inhaled or deposited miles down wind, entering waterways and the food chain. Microplastic 

particles have been identified in soil samples, fresh water, aquatic animals, atmospheric 

fallout, and arctic snow [3]. Furthermore, the expansive industrial use of plastic mingled 

with the increased processing of many consumable products, has led to the identification 

of microplastic particles in bottled water and food stuffs [4-6]. A natural step in the 

understanding the of plastic particle pollution is how these particles may affect human 

health.

Micro- and Nanoplastic Exposure Routes

Human exposures occur through environmental interaction with the epithelial layers of the 

lungs, gastrointestinal tract, and skin. On rare occasions, particle-cellular interactions may 

occur through intentional plastic exposures. Therefore, evidence of MNP in the air, food 

or beverages, personal care products, or implanted devices would identify plausible human 

exposure routes including inhalation, ingestion, dermal, and implantation (Figure 1).

Inhalation

Microplastic particles have been identified and quantified in outdoor both and indoor 

air. The sources of aerosolized plastic particles include synthetic textiles (e.g., carpeting, 

furnishings, and clothing), roadway tire erosion and debris, and particle resuspension from 

waste, landfills, and emissions [7]. Wind transfer has been identified as a potential source 

for alpine and Antarctic plastic particles within snow samples and is estimated to contribute 

7% of ocean contamination [8-10]. Plastic microfibers have been identified in atmospheric 

fallout, quantified as an average concentration of 0.9 m3 110 particles/m2 per day in Paris, 

ranging from 2.1-355.4 microplastic fibers/m2 per day, and making up approximately 29% 

of all outdoor aerosolized fibers [11]. The variability of these values is attributed to rainfall 

during sampling.

While outdoor environmental exposures are of concern, greater reports of plastic particle 

concentrations have been identified in indoor air [12]. Indoor air measures have reported 

deposition rates of 1,600-11,000 microplastic fibers/m2 per day, depending on the indoor 
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environment (e.g., home or office) and lifestyle (e.g., tumble dryer vs. air dry clothing, air 

filtration of heating/cooling units) [12]. This is especially concerning given that humans 

spend an estimated 70-90% of their time indoors [13].

Inhalation of plastic particles allows for nasal and pulmonary deposition based on human 

anatomy and particle characteristics. As with other micro- and nanosized particles, smaller 

and lower density particles will be more likely to reach the lower airways and alveolar 

regions of the lung; whereas larger particles may be cleared through the mucociliary 

escalator [7,14]. Plastic fibers may be especially difficult to remove from the pulmonary 

system, due to their high surface area and high potential of penetration [15]. Pauly et al. 

[16] identified microplastic fibers, defined as a diameter ≥ 3 μm and a length of ≥ 5 μm, 

in 83% of the 81 non-neoplastic human lung samples analyzed. Interestingly, microplastic 

fibers were identified in 97% of the malignant samples evaluated. These microplastic fibers 

were not limited to specific pulmonary regions, but found to distribute throughout the lungs 

[16].

Occupational studies of synthetic textile workers can illustrate the possible human 

pulmonary consequences associated with MNP inhalation. One well-documented outcome 

is identified as “Flock’s disease” or flock worker’s lung, an interstitial lung disease caused 

by exposure to small plastic fibers (i.e., nylon, polyester, polyethylene, or polypropylene) as 

they are applied to an adhesive coating to produce velvet or fleece fabrics [17-19]. Overall, 

workers in this field carry an increased cancer incidence correlated with concentration 

and years of exposure [19]. This increased cancer risk is likely associated with chronic 

pulmonary inflammation and oxidative stress due to local particle deposition [7].

Laboratory recapitulation of flock exposure in rats has yielded conflicting reports wherein 

a single intratracheal instillation exposure revealed significant pulmonary inflammation 

[20]; yet a four-week nose-only inhalation studies demonstrated rapid clearance with no 

pulmonary effects [21]. Recent laboratory studies identified more pronounced effects at the 

local molecular level in the expression of inflammatory proteins in lung tissues after 14 

days of MNP inhalation [22]. While these studies provide an initial foray into the inhalation 

toxicology of MNP particle inhalation there is much work that remains.

Ingestion

Environmental contamination and particle precipitation have been identified as likely 

sources of MNP in consumable products [23]. This connection was originally theorized 

as a risk through the consumption of marine and aquatic organisms which had ingested 

plastic particles and subsequent migration through the food chain [24,25]. It is now evident 

that processing and plastic packaging play a significant role in MNP particle migration 

into food products [5,6]. These products include less processed sources including salt, 

honey, rice, and granulated sugar, as well as highly processed canned goods [26-29]. As 

it pertains to beverages, MNP have been identified in tap and bottled water, beer, wine, 

and bagged tea [4,27,30-32]. Interestingly, bagged tea held the highest yields, estimating 

one would consume 14.7 billion MNP particles in a single cup of tea [31]. Cox et. al [5] 

reported through literature review that tap water contains 4 microparticles/L and bottled 

water contains 94 microparticles/L. This indicates that the source and pre-processing of an 
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individual’s drinking water (i.e., bottled vs tap water) will impact MNP particle consumption 

dramatically. The range of microplastics reported in bottled water is very wide, fluctuating 

from 0.33 particles/L [33] to 325.33 particles/L [4]; these variations may be attributed to 

the size detection limits of the methodologies. While it is important to recognize that MNP 

particle are entering human mouths, it is equally as important to note that microplastic 

particles are also being excreted in human stool [34]. Therefore, analyses of consumable 

food and liquid sources of MNP exposures are ongoing.

Most studies have been completed using polystyrene particles to assess intestinal 

impairment and toxicity. In vitro models of gastrointestinal particle exposure demonstrate 

nanoplastic particle (40-90 nm) uptake by Caco-2 epithelial cells and capability to cross 

the intestinal barrier [35]. The use of pristine and fluorescent nanopolystyrene particles 

in these cellular studies indicate no digestive barrier impairments or epithelial cellular 

toxicity [35,36]. However, functionalization of the particle through carboxylation (−COOH) 

or amino groups (−NH2) permitted disruption of intestinal barrier function, easier epithelial 

uptake through endocytosis, and toxicity as identified by cellular autophagic death [37]. 

Furthermore, mixtures of polystyrene nanoparticles with other environmental pollutants, 

such as metals, markedly increases cellular uptake and toxicity [36].

In vivo models demonstrate a shift in intestinal oxidative and inflammatory balance due 

to direct epithelial-particle interactions; thus disrupting the gut microbiota, immune cell 

toxicity, nutritional uptake and impairing intestinal functions [38]. These models also echo 

the capability of nanopolystyrene absorption within and migration from the digestive system 

after oral exposure [37,39].

Dermal and Implanted Devices

While skin exposure to MNP particles is likely through personal care products and exposure 

to aerosolized particles. It is notable that plastic microbeads products were recently banned 

after disposal led to environmental contamination and accumulation. While it is unlikely 

that MNP will pass the healthy dermal barrier [40,41]; if the skin is damaged by small 

tears or sunburn, plastic particle penetration may occur. Furthermore, the mechanical wear 

of medical devices implanted into the human body (e.g. polyethylene articulating spacer 

in shoulder, knee, or hip replacement, dental implants and caps, and cosmetic implants) 

has been shown to allow for MNP particle production and translocation within the system 

[42-45].

Particle Uptake and Translocation

Micro- and nanoparticle translocation from the primary site of exposure has been a theory 

of how particle exposure can modulate toxicity and impact distant systems (Figure 1). 

Particle migration has been identified after gastric or pulmonary exposure to metallic and 

carbonaceous nano-sized materials [46]. Early work focused on MNP also indicate the 

propensity for MNP translocation and deposition.
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Particle Translocation, Deposition, and Accumulation

Particle translocation from the primary site of exposure (i.e., gastric or pulmonary system) 

have been reported. Interestingly, intestinal disruption and increased cellular permeability 

was reported to be more severe after heterogeneous polystyrene oral exposure, where mice 

were exposed to both micro- (500 nm) and nanosized (50 nm) particles, allowed for greater 

intestinal accumulation and biodistribution [39]. Particle accumulation was reported in 

distant organs including the spleen, lung, kidney, brain, and reproductive system [37,39]. In 
vitro assays demonstrate nanopolystyrene particles can cross the alveolar epithelial barrier, 

an outcome influenced by particle physicochemical properties (i.e., size, density, and charge) 

[47]. We have identified nanopolystyrene accumulation in the maternal heart and spleen 

and fetal placenta, liver, lungs, heart, kidney, and brain after maternal pulmonary exposure, 

suggesting systemic translocation after pulmonary exposure in late-stage pregnancy [48]. 

These studies provide evidence of MNP migration and deposition, indicating that MNP 

toxicities may not be limited to the site of initial exposure. These outcomes coincide with 

concerns regarding cellular toxicity as evidenced by increased inflammatory and apoptotic 

markers [39]. Furthermore, how or if these plastics particles are removed from the system is 

unclear.

Secondary Exposure

Micro- and nanoplastic translocation and systemic deposition can lead to direct cell-cell 

interactions in the local environment. Studies pertaining to metallic and carbonaceous 

nanoparticles have identified secondary outcomes in the neurological, reproductive, immune, 

cardiovascular systems and their local cytotoxic outcomes (Figure 1). Few targeted MNP 

studies have been completed to date.

Neurological

Due to the capability of MNP particle translocation from the original site of exposure, there 

is the potential for neurotoxicity [49]. Initial studies evaluating this connection identify 

reduced neurotransmitter activity and neurotoxic effects with micro- and nanopolystyrene 

exposure [50]. Behavioral alterations in locomotion are reported in lower-level animal 

models but have not yet been replicated in mammalian studies [49,51]. However, more 

recent evidence has identified cognitive impairments in murine new-object recognition tests 

after nanopolystyrene IP injection exposure [51]. Interestingly, when the nanopolystyrene 

particles were mixed with zinc oxide nanoparticles, the cognitive impairment absolved [51].

Reproductive

The reproductive system is also impacted by MNP particle translocation and deposition. 

Micro- and nanopolystyrene particles have migrated to the testes, ovaries, and placenta 

from the original site of exposure [37,48,52]. An et al. identified that micropolystyrene 

uptake to the ovary reduced follicular growth and induced oxidative stress, thus promoting 

ovarian fibrosis [52]. Long term exposure was found to promote chromosomal abnormalities 

in oocytes and germ cell apoptosis, leading to transgenerational reproductive decline in 

C. elegans [53,54]. Lastly, nanopolystyrene translocation to the fetal compartment and 
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fetal tissues may permit nanoplastic particle deposition in progeny, local cytotoxicity, and 

promote the development of disease within the offspring [48].

The placenta is thought to act as a barrier between maternal and fetal system, essentially 

to protect the fetus from the maternal environment while simultaneously providing nutrition 

and removing waste. Using an isolated ex vivo perfusion technique, Grafmueller et al. 

[55] demonstrated the bidirectional transfer of MNP particles within the human placenta. 

Recently, microplastic particles were identified using Raman microspectoscopy within 

samples of discarded human placenta after real-world exposure during pregnancy [56]. 

While it was unclear if these particles entered the maternal system through ingestion or 

inhalation routes; however, this study clearly demonstrates the capability of human exposure 

and systemic bioaccumulation.

Immune, Cytotoxicity, and Other Systems

Cellular-particle interactions occur at the local site of exposure and after systemic 

translocation and deposition. Many studies have identified modified gene expression, 

decreased cell proliferation rates, altered metabolism, increased proinflammatory cytokines, 

and oxidative stress production in hematological cells, human gastric epithelium, and 

lymphocytes after polystyrene exposure [57-61]. In vitro studies of particle interactions 

with immune cells resulted in increased oxidative stress and impaired lysosomes in RAW 

264.7 macrophages [62]. Furthermore, in vivo studies have demonstrated cardiotoxicity 

induced by oxidative stress, resulting in cardiomyocyte apoptosis and structural damage to 

the myocardium [63,64].

Understanding the cellular internalization of MNP particles is paramount to discern their 

cytotoxicity [57,65]. Liu et al. [65] identified that micro- and nanosized polystyrene 

particles are endocytosed through differing pathways; where microplastics were often 

taken up through micropinocytosis and nanoparticles were endocytosed via clathrin and 

caveolae-mediated pathways [65]. We should keep in mind that there is significant selection 

variability associated with “representative” cell lines and plastic particles utilized within 

these initial studies [59]. Functionalized groups, metals, organics or other proteins on the 

surface of the plastic producing an eco-corona can also dramatically impact particle uptake, 

internalization, and release [65] [62,66-68].

Considerations—While it is clear that human exposures to MNP are inevitable and 

early toxicity studies are underway, there are clear elements of MNP to consider in future 

studies (Figure 2). The material properties and particle standards, real-world concentrations 

in indoor/outdoor environments, bioaccumulation, and the transportation and release of 

adsorbed surface coating or embedded chemicals to a biological environment must all be 

considered.

Material Properties

One area that remains under debate when assessing human risk is the size of the particles 

examined. Microplastic particles are described as those less than 5 mm in one dimension. 

Nanoplastics, however, have been described in environmental literature as less than 1 
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μm (1000 nm) and in laboratory studies as less than 0.1 μm (100 nm) [69]. Currently, 

most assessments of environmental or consumable products cannot report nanoplastic 

concentrations at either definition due filter pore limitations. These have been reported 

as low as of 125 μm for environmental studies [70] and 11 μm for consumable products 

[27]. Openings of this size would allow the passage on nanosized plastics, thus eliminating 

these particles from assessment and quantification. While nanoplastics would fall under 

the greater “microplastic” umbrella, and it is tempting to ignore these delineations, 

classifying these terms and size ranges is crucial for biological assessments. Particles 

within these micro- and nano-size ranges have significantly different biological interactions 

and physiochemical behaviors, thus greatly impacting cellular uptake, biodistribution, 

accumulation, and cytotoxicity [69,71].

Chemical construct, particle shape, and surface charge may also play a role in cellular 

interaction, uptake, translocation, and toxicity. There are numerous polymeric compounds 

that may be described as “plastics”. Each chemical transition between these composites 

begets a new toxicological profile. For example, polystyrene, nylon, polyethylene, and 

polypropylene particles may all behave differently in a biological environment. Furthermore, 

particle shape may also impact cellular interaction. Fibrous particles may lead to frustrated 

phagocytosis, thus increasing localized oxidative stress and inflammation, whereas spherical 

particles are easily internalized. Surface charge has also been shown to affect particle 

uptake and the binding of surface proteins in environmental or biological conditions. Given 

these properties, it is crucial that studies continue to characterize the MNP identified in 

environmental contamination and laboratory exposures.

Concentrations

Currently, there is a gap in the literature identifying the MNP particle concentrations 

in indoor and outdoor air, water, and consumable products. Recently a number of well-

organized reviews have been published regarding MNP particle exposure, biological 

outcomes, and predicted human health consequences [3,7,57,68,72,73]; however, most 

laboratory exposures are not analogous to human toxicity studies. These studies utilize 

short duration, high concentration exposures while most humans are chronically exposed 

to low levels. Unfortunately, the real-world exposure paradigm of plastic particulate 

concentration and size ranges for humans in indoor or outdoor settings and urban or rural 

environments has not yet been established [74]. While literature reviews provide the basis 

for human exposure estimates [5], there is a lack of validated methods for collection, 

reference materials, and standardized analytical sampling and assessment techniques 

[57,72]. Furthermore, identifying the dosing concentrations of nanoplastic particles remains 

outside of our collective capabilities. Therefore, these experimental models provide a 

baseline start for which to build future studies. Until the environmental concentrations and 

doses are confirmed, the separation between laboratory exposures and real-world conditions 

will remain.

Bioaccumulation

Understanding MNP particle uptake, translocation, and bioaccumulation remains a barrier 

to human toxicology assessments. Few groups are applying imaging and microscopy 
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approaches to visualize particle migration from the original site of exposure. Increasing 

the sensitivity of positron emission tomography (PET) to assess in vivo pharmacokinetic 

behavior of MNP particles will be crucial to aid in our understanding of human toxicology 

[75]. The expansion of Raman and darkfield microscopy techniques will also aid in the 

identification of nanoplastic intracellular uptake and tissue deposition [48,76].

Toxicological Vector

It is important to keep in mind that suspended MNP particles are within the heterogenous 

mixture [69]. Real-world exposures to these particles are not taking place in a pristine 

vacuum, but instead in a conglomerate mixture of carbonaceous, metallic, biological 

materials, and other plastics. It has been hypothesized that MNP particles may act as 

a toxicological vector for the transfer of heavy metals, volatile chemicals, or biological 

contaminants [3,77]. Furthermore, plastics are developed with a variety of chemical 

additives or extrudation processing to produce specific commercial characteristics (i.e., 

the difference between polystyrene foam and hard solids). These “plasticizers” may not 

be covalently bound to the polymer, thus capable of leaching from the plastic material 

[69]. Much work has been done on the health effects of these chemicals leaching from 

the plastic product into consumable products (i.e., bisphenol A, phthalates, nonylphenols, 

and perfluorooctanoic acid) or being released as volatile organic compounds (VOCs) 

[3]. Outcomes of these toxicological assessments identify carcinogenic compounds and 

endocrine disruption leading to metabolic, reproductive, and developmental effects [57,73]. 

It remains unclear if bioaccumulation of MNP particles would permit continued local release 

of these chemical additives at the site of deposition.

Conclusions

Human exposure to MNP is occurring; however, the toxicological consequences of these 

exposures in unclear. Laboratory studies are underway to assess the routes of exposure, 

particle uptake mechanisms, and secondary cytotoxicities. Gleaning an understanding of 

real-world exposure concentrations and primary particle chemistry is paramount. Until these 

exposure characteristics are revealed, selection variability, as it pertains to laboratory model 

and particle properties (i.e., size, material, shape, functionalization groups, particle corona) 

will continue to persist, clouding valuable experimental outcomes and delaying regulatory 

action [72]. This variability extends to the differentiation between pristine particles, 

functionalized groups, environmental contaminants, chemical additives, and biological 

corona, each having a distinct toxicological outcome. Given the capabilities for particle 

uptake from the primary exposure site, additional studies will need to focus on the toxicities 

at the initial site, secondary systemic signaling, and local secondary perturbations associated 

with deposition and bioaccumulation. Studies in these areas may permit for the identification 

of exposure biomarkers [74].

Overall, domestic and commercial plastic utilization continues to rise. Therefore, plastic 

disposal and subsequent particle pollution remains a worldwide concern. Human exposures 

via inhalation and ingestion have been documented, yet the toxicological considerations of 

these exposures remain elusive. Focused studies to determine environmental concentrations, 
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human exposure dosage, particle physiochemical properties (i.e., material, size, shape, 

charge, and surface chemistry), mechanisms of cellular uptake, and in vivo outcomes are 

vital to determine human risk.
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Figure 1: 
Potential Fates of micro- and nanoplastic particles.
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Figure 2: 
Considerations for future assessments.
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