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Abstract

Irregular applications can be found in different scientific fields. In computer-aided drug design, 

molecular docking simulations play an important role in finding promising drug candidates. 

AUTODOCK is a software application widely used for predicting molecular interactions at close 

distances. It is characterized by irregular computations and long execution runtimes. In recent 

years, a hardware-accelerated version of AUTODOCK, called AUTODOCK-GPU, has been under 

active development. This work benchmarks the recent code and algorithmic enhancements 

incorporated into AUTODOCK-GPU. Particularly, we analyze the impact on execution runtime of 

techniques based on early termination. These enable AUTODOCK-GPU to explore the molecular 

space as necessary, while safely avoiding redundant computations. Our results indicate that it is 

possible to achieve average runtime reductions of 50% by using these techniques. Furthermore, 

a comprehensive literature review is also provided, where our work is compared to relevant 

approaches leveraging hardware acceleration for molecular docking.
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1. Introduction

Computational chemistry is a science domain that increasingly leverages the resources 

of high-performance computing (HPC) systems. Both academic computing centers [1, 2, 

3, 4, 5, 6] and cloud providers [7, 8] deploy the required specialized software at-scale. 

Computer-aided drug design, which in turn is based on computational chemistry methods, 

has become an important field, as it contributes to fighting against diseases such as AIDS 

[9], cancer [10], and COVID-19 [11].

Molecular docking simulations are among the key methods used in computer-aided drug 

design for predicting molecular interactions at close distances. Specifically, they aim to 

predict the binding poses between a small molecule and a macro-molecular target, each 

referred to as ligand and receptor, respectively [12]. These simulations can significantly 

shorten the time-consuming task of identifying potential drug candidates. Subsequent 

wet lab experiments can then be performed in an informed fashion using an already-

narrowed list of promising ligands, hence reducing the overall need for costly and slow 

lab experiments in drug discovery.

According to recent reports [13, 14], more than 60 software tools for molecular docking 

have been developed in the last two decades. The tool discussed in this work, AUTODOCK, 

is one of the most widely-used open-source applications for simulating ligand-receptor 

docking (Fig. 1). As an example of its applicability, AUTODOCK is being used as a docking 

engine in FightAIDS@Home as well as in OpenPandemics: COVID-19, which are world-

wide community grid projects to combat AIDS [15] and COVID-19 [16], respectively.

In contrast to many more traditional scientific computing codes, AUTODOCK is challenging 

from an algorithmic perspective, as it exhibits irregular behaviors in the form of nested 

loops with variable upper bounds and highly divergent control flows. These are used to 

explore multiple ligand-receptor interactions, which are quantified by score evaluations 

that are typically invoked 106 times in a single simulation run. However, AUTODOCK has 

traditionally been implemented as a single-threaded application. Thus, in its original form, 

it was unsuitable to exploit the embarrassing parallelism inherent in the actual docking 

problem using widespread computing platforms such as multi-core CPUs or GPUs. This 

drawback is aggravated when larger and more complex molecular structures need to be 

analyzed.

We have been actively developing an enhanced version of AUTODOCK, called AUTODOCK-

GPU, which has been parallelized and can significantly shorten time-consuming 

docking simulations by employing hardware-based acceleration. AUTODOCK-GPU has been 

successfully employed in challenging prediction competitions [19, 20], as well as deployed 

on the Summit supercomputer with the aim to contribute against the SARS-CoV-2 virus 
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[21]. Currently, the AUTODOCK-GPU project maintains implementations in both OpenCL and 

CUDA in its public open-source code repository [22].

Our prior work in [23] is based on AUTODOCK-GPU v1.2 and discusses how the OpenCL 

implementation deals with the irregularity of the docking search problem. This earlier study 

analyzes the impact of the molecular complexity on runtime and the quality of results 

achievable using different search methods.

This current paper is based on AUTODOCK-GPU v1.3, an open-source project with significant 

contributions from multiple developers at various institutions. The following is a summary 

of the major milestones. The original OpenCL version (predecessor of AUTODOCK-GPU) was 

implemented by L. Solis-Vasquez, A. Koch. Gradient-based optimization was implemented 

in v1.1 by L. Solis-Vasquez, D. Santos-Martins. Early termination was introduced in v1.2 

by A. F. Tillack. The CUDA version was ported from the OpenCL code and deterministic 

gradients [24] were added by S. LeGrand. The resulting code was then successively added to 

v1.3 by Jeff Larkin (NVIDIA) and A. F. Tillack.

Therefore, extending the prior results in [23], this current paper benchmarks the overall 

performance as well as the runtime impact of recent algorithmic improvements added 

to both the OpenCL and CUDA implementations. The algorithmic improvements in 

AUTODOCK-GPU v1.3 are based on early-termination methods, so that unproductive 

computations can be safely avoided. Thus, the new contributions of this paper are the 

following2:

1. Discussion of code optimizations in v1.3, which relate to robustness, feature 

parity, and exploitation of hardware-specific features. In addition to evaluating 

such optimizations, we compare the performance of AUTODOCK-GPU v1.3 

against that of v1.2.

2. Evaluation of algorithmic optimizations in v1.3, which feature the autostop and 

heuristics options to terminate AUTODOCK-GPU executions early.

3. A comprehensive literature review of parallelized or hardware-accelerated 

molecular docking, where we compare and contrast the different approaches with 

our own solution.

In contrast to our previous work, which also examined performance on multi-core CPUs, 

this work focuses on modern GPUs. Particularly, our main experiments were performed on 

recent NVIDIA A100 GPUs.

This manuscript contents are organized as follows. First, Section 2 provides an overview 

of AUTODOCK-GPU’s functionality. Section 3 discusses the performance and algorithmic 

enhancements in v1.3. The experimental setup is described in Section 4, while the 

corresponding results are analyzed in Section 5. A review of the current state of the art 

is presented in Section 6. This paper concludes in Section 7, where it summarizes the 

outcomes and provides some directions for future work.

2Precisely speaking, the versions of AUTODOCK-GPU referred in this paper correspond to commits 8fea425 (v1.3) and eed190f (v1.2) 
in the code repository on GitHub [22].
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2. Functionality Overview

An extensive discussion on AUTODOCK-GPU’s functionality is provided in our previous 

studies [23, 25]. This section is a self-contained summary that emphasizes the factors that 

contribute to the irregular executions of the program.

AUTODOCK-GPU, as other software applications for molecular docking, systematically 

explores several poses of a ligand, i.e., its spatial geometrical arrangements, and aims to 

find the pose that binds strongly to a given region on the receptor surface. As shown in 

Fig. 2, AUTODOCK-GPU encodes such pose using the degrees of freedom (translational, 

orientational, torsional) experienced by the ligand during simulation. Hence, for a ligand 

with Nrot rotatable bonds, each of its poses is encoded as {x, y, z, ϕ, θ, α, ψ1, ψ2, …, 

ψNrot}, where each set element is later referred to as a gene.

The pose strength is quantified with a score, which is computed via a scoring function 

(SF). AUTODOCK-GPU uses as a scoring function a semi-empirical physics-based free-energy 

force field (kcal/mol), which models atomic interactions such as Van der Waals, hydrogen 

bonding, electrostatics, desolvation, as well as the overall entropy [26]. The score depends 

on the interatomic distances, which vary when a new pose is generated. The execution 

time of the score evaluation increases when number of ligand atoms (Natom) is larger. As 

will be detailed shortly, scores are evaluated in the order of million times per optimization 

run (Section 2.1), while the mathematical derivatives of the score are used to drive the 

optimization more efficiently (Section 2.2).

2.1. Lamarckian Genetic Algorithm

The docking engine in AUTODOCK-GPU is a Lamarckian Genetic Algorithm (LGA), which 

performs a systematic optimization of molecular poses. By employing an LGA, AUTODOCK-

GPU maps these pose representations into biological evolution elements, and optimizes the 

latter through genetic operations.

Particularly, AUTODOCK-GPU treats each pose as an individual of a genetic population. Each 

individual is represented by its genotype, which in turn is composed of a set of genes. 

New individuals are generated through genetic operations from their genetic ancestors. The 

LGA in AUTODOCK-GPU couples a genetic algorithm (GA) and a local search (LS). The 

GA performs crossover, mutation, and selection operations. The poses produced by the GA 

are refined by LS, which is a local minimization procedure. More details on LS methods 

are provided in Section 2.2. AUTODOCK-GPU performs independent LGA-runs (Algorithm 

1: line 2), whose number by default is R = 100. A single LGA run terminates when 

a pre-defined maximum number of score evaluations (default: Nscore‐evals
MAX = 2’500’00) or 

generations (default: Ngens
MAX = 27’000) is reached, whichever comes first (Algorithm 1: line 

3).
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2.2. Local Search

A local-search component refines the poses generated by the GA. Several alternative 
methods have been incorporated as LS and evaluated in AUTODOCK-GPU. Among these, and 

depending on the molecular complexity, two different methods produce the best scores and 

poses: Solis-Wets and ADADELTA. Basically, both methods generate new genotypes using 

an initial one as a starting point, while aiming to minimize the score with every attempt. 

However, these two methods differ in the way they generate genotypes.

Solis-Wets [27] generates new genotypes by adding or subtracting small random delta 

changes to each gene of an initial genotype. At each iteration, the change size is either 

increased or decreased depending on whether the number of consecutive successful (i.e., 

score is minimized) or failed attempts is greater than four, respectively. Solis-Wets has 

divergent execution paths that depend on the outcome of the score comparison (Algorithm 2: 

lines 6, 12). Moreover, Solis-Wets has a runtime-defined termination (Algorithm 2: line 2), 

i.e., either when the number of LS iterations reaches the maximum (default: NLS‐iters
MAX = 300), 

or the change size reaches its minimum (default: stepMIN = 0.01).
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Instead of random deltas, ADADELTA [28] generates new genotypes by using gradients 

calculated from the score of an initial genotype. The higher computational complexity in 

ADADELTA compared to Solis-Wets is due to the gradient calculation (GC) involving 

analytic and numerical derivatives (Algorithm 3: lines 2, 7), as well as due to the update 

rule using information of past gradients (Algorithm 3: line 4). An extended mathematical 

background and impact on pose prediction of ADADELTA is provided in our previous work 

[25]. This method is also characterized by a divergent execution that depends on whether the 

score was minimized (Algorithm 3: line 5).

Performing the local search takes more than 90% of the overall execution time. In the 

original single-threaded AUTODOCK program, only 6% of the population was subjected 

to local search in order to avoid excessively long executions while achieving relatively 

good pose predictions. In AUTODOCK-GPU, as it is typically run on GPUs equipped with 

thousands of cores, the local-search rate (lsrate) was increased, with 80% being the default 

for AUTODOCK-GPU v1.3.

Solis-Vasquez et al. Page 6

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. Performance Enhancements

This section describes the overall parallelization strategy and highlights the differences 

between the OpenCL and CUDA variants. Moreover, it discusses the recent new features 

incorporated in the tool after the last publication.

3.1. Parallelization

The OpenCL implementation is based on the mapping of AUTODOCK-GPU computations 

onto OpenCL elements (Table 1). This mapping allows us to parallelize the computation in 

the structure visualized in Fig. 3.

An AUTODOCK-GPU execution performs R independent LGA runs, where runs are 

represented with indexes RunID = {0, 1, 2, …, R-1}. In every LGA run, a population 

of P individuals, with indexes IndID = {0, 1, 2, …, P-1}, are processed through GA 

and LS. Particularly, AUTODOCK-GPU processes simultaneously individuals from different 

LGA runs. Thus, R × P individuals are mapped each to an OpenCL work-group. The 

relation between their indexes is ruled as follows: WGID = RunID × P + IndID. Either 

GA or LS generate new individuals through their respective genetic or local methods 

applied on genotypes. Furthermore, GA and Solis-Wets LS involve score evaluations, while 

ADADELTA LS additionally computes gradients. The generation, scoring, and gradient 

calculations are fine-grained tasks carried out by OpenCL work-items.

The CUDA variant was developed using the OpenCL code as a starting point. This 

port was motivated by the interest of using AUTODOCK-GPU for COVID-19 research 

on the Summit supercomputer [21]. The computing nodes of Summit are composed of 

POWER9 CPUs and NVIDIA GPUs, where OpenCL is not supported. Analogously to the 

OpenCL case, AUTODOCK-GPU computations are mapped to CUDA processing elements 

at different granularities. Since both APIs as well as their underlying work-distribution 

mechanisms strongly resemble each other, the above index mapping (initially conceived 

for the OpenCL code) is also valid for the CUDA variant. Therefore, the initial approach 

of code transitioning was to replace the OpenCL processing elements (work-groups, work-

items) with their respective CUDA counterparts (thread-blocks, threads).

Prior to AUTODOCK-GPU v1.3, a number of hardware-related optimizations were applied 

on top of the CUDA baseline. One of these was the enhancement of parallel reductions 
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by explicit warp-level programming. This is based on CUDA primitives that allow a 

more efficient data exchange between warp threads. Using the __shfl_sync() intrinsic, it 

is possible to move a value from one thread to other active threads within a warp, without 

accessing __shared__ memory, but employing registers instead [29]. In order to ensure the 

correct execution of all parallel reductions, the size of CUDA blocks was required to be an 

integer multiple of 32 threads. Note that this requirement does not apply to the OpenCL 

variant, since OpenCL lacks low-level programming capabilities for expressing such warp- 

or wavefront-level optimizations

3.2. Recent improvements

The development of AUTODOCK-GPU from v1.2 to v1.3 has significantly improved the 

robustness, feature parity between the OpenCL and CUDA variants, and the use of 

hardware-specific optimization. Regarding robustness, to avoid code divergence of the 

OpenCL and CUDA versions, and issues such as passing different parameters to the 

OpenCL and CUDA variant of a given kernel, the host code of both variants has been 

carefully unified.

As a good practice for code maintenance, improvements found in one variant of the tool are 

ported to the other one for feature parity (if appropriate). In particular, the OpenCL code 

in AUTODOCK-GPU v1.2 included an extra set of Solis-Wets hyper-parameters, which were 

introduced as additional variables (dependent of Natom and Nrot) to control the genotype 

deviation at every Solis-Wets iteration (Algorithm 2). This feature was ported to the CUDA 

variant during the development of AUTODOCK-GPU v1.3.

With regard to hardware-specific optimizations, a number of changes have been incorporated 

into the CUDA variant. The first one is the dynamic allocation of __shared__ memory. 

This contrasts with the static allocation used in the OpenCL __local memory counterpart, 

where the allocation size is known at compile time. The second change is the addition of 

the __launch_bounds__ qualifier to the kernel implementations. According to [29], a kernel 

using fewer registers may, in turn, increase the number of threads and thread-blocks residing 

on a CUDA streaming multiprocessor (for more details see Section 5). The compiler uses 

heuristics to minimize the register usage, and a developer can provide hints for the heuristics 

using the above qualifier. Since the optimal values for the parameters of this qualifier differ 

across architectures, Listing 1 shows how the CUDA_ARCH macro is used to specify them 

in a portable manner. The required parameters are two, namely, the maximum number of 

threads per block (NTHREADS_BLOCK), and the desired minimum number of blocks per 

streaming multiprocessor (NBLOCKS_A and NBLOCKS_B).
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Listing 1: 
Usage of the __launch_bounds__ qualifier.

Furthermore, AUTODOCK-GPU features new mechanisms to avoid unproductive searches. 

These are based on the early termination of the search procedure, and consequently, 

avoid spending computational resources when it is likely that, either the best poses have 

been found, or their quality cannot be improved with further iterations. Although such 

mechanisms were present in AUTODOCK-GPU v1.2, these were not evaluated in our previous 

work [23]. Since then, improved versions of these mechanisms were incorporated in 

AUTODOCK-GPU v1.3. Concretely, the autostop option allows AUTODOCK-GPU to stop the 

LGA execution prematurely, i.e., before reaching Nscore‐evals
MAX  score evaluations (Algorithm 1: 

line 3). With this option enabled, an early termination due to already-achieved convergence 

is possible if the top-scored poses above a threshold – determined by the previously-tested 

top poses – exhibit score changes less than 0.15 kcal/mol over a configurable check interval. 

The default interval leads to checking for optimization progress every five generations.

Complementarily, the new heuristics option is based on an adaptive termination criterion 

that also prevents AUTODOCK-GPU from running unreasonably long executions. For this 

purpose, heuristics utilizes instead an alternative value of Nscore‐evals
MAX  (Algorithm 1: line 3). 

Such alternative value depends on two terms. The first one is heurevals (Equation 1), which 

depends on the number of rotatable bonds (Nrot) as well as the set of constants (a and b) 

that vary according to the selected local-search method. The second term is Nscore−evals
MAX−HEURIS, 

which is the maximum number of score evaluations under heuristics (default: 50’000’000). 

Equation 2 shows how the alternative value of Nscore−evals
MAX  is calculated. Furthermore, 

the score-evals (capped) number of evaluations suggested by the heuristics option can be 

finished sooner when autostop (if also enabled) detects early convergence.

heurevals = ceil (1000 × 2a × Nrot + b) (1)

Nscore−evals
MAX = ceil heurevals × Nscore−evals

MAX−HEURIS

heurevals + Nscore−evals
MAX−HEURIS (2)
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4. Methodology

In all our experiments, we used AUTODOCK-GPU v1.3, unless otherwise indicated. The 

program execution and runtime measurements were fully automated using bash and Python 

scripts. The dataset used has been publicly released and is properly documented. Details 

of the archive repositories hosting the sources and data are given in Section 8. Finally, the 

performance evaluation was carried out on compute systems featuring recent GPUs in both 

consumer and professional versions.

From the many different protocols possible for validating docking [30], our experiments 

consist of re-docking. In this approach, already-studied ligand-receptor inputs are docked 

again, so that resulting ligand poses can be compared to well-known reference solutions.

4.1. Program configuration

AUTODOCK-GPU executions perform 100 LGA runs over a population of 150 individuals. 

The maximum number of score evaluations per LGA run was set to 2’500’000. The 

maximum number of generations (per LGA run) was set to 99’999, which is larger than 

the default value of 27’000. The purpose of this choice is to ensure the program termination 

happens only when the number of score evaluations reaches the aforementioned upper 

bound. In all cases, the entire population is subjected to local search (lsrate = 100%). 

Other parameters were left as default [31]. Table 2 lists program parameters and their 

configurations.

For evaluating the efficiency of the early-termination options, the corresponding defaults are 

used. Namely, when using autostop, the program was configured to automatically stop after 

reaching a deviation of stopstd = 0.15 kcal/mol compared to the best score achieved five 

generations before (asfreq = 5, unless specified otherwise). Moreover, the default number of 

score evaluations under heuristics is 50’000’000.

4.2. Dataset

Similarly as in our previous experiments in [23], a set of 20 ligand-receptor inputs was 

selected from well-established sets for assessing molecular docking methodologies. Our 

dataset is composed of eleven entries from Astex [32] (IDs: 1u4d, 1xoz, 1yv3, 1owe, 1oyt, 

1ywr, 1t46, 2bm2, 1mzc, 1r55, 1kzk), four from CASF-2013 [33] (IDs: 3s8o, 1hfs, 1jyq, 

2d1o), and five from the Protein Data Bank (PDB) [34] (IDs: 5wlo, 5kao, 3drf, 4er4, 3er5). 

Table 3 indicates the number of rotatable bonds and atoms for each input case. This dataset 

covers up to 31 rotatable bonds, which is a large range considering that AUTODOCK-GPU, 

from v1.3 onwards supports a maximum of 58 rotatable bonds (Nrot
MAX = 58).

4.3. Evaluation platforms

Table 4 lists the main technical specifications of the GPU cards used in our evaluation. Such 

devices feature recent architectures, as well as provide a varied range of compute capabilities 

that theoretically achieve from ~9.1 TFLOPs and 448 GB/s on the RTX 2070 SUPER, up to 

~19.5 TFLOPs and 1’555 GB/s on the A100.
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For a fair comparison, we disregard the different host platforms holding the various GPUs. 

Specifically, we include only the GPU-side kernel configuration and execution, plus all 

required host-GPU data movements in our measurements. Such time components are 

collectively reported as docking runtime. Host-side operations, such as file I/O and results 

processing, were not included and are considered as idle time (from the GPU perspective).

5. Results and Discussion

We begin the evaluation by determining suitable configuration choices. Then, we compare 

the runtimes achieved by using our current and prior baseline work. Finally, we show the 

impact of the new autostop and heuristics options.

5.1. Runtime-based performance

At this point, it is important to note that an OpenCL compute unit (CU) is a hardware block 

that processes a single OpenCL work-group (WG) at a time. Basically, the more CUs are 

available, the more WGs can be processed in parallel. A CUDA streaming multiprocessor 

(SM) corresponds to an OpenCL CU [35], thus analogously, the more SMs are available, 

the more thread blocks (TB) can be processed simultaneously. Table 4 indicates that for 

all chosen GPU cards, the ratio between the number of cores and OpenCL CUs is 64, 

suggesting that the optimal size for a WG would be of 64 work-items.

Fig. 4 shows the docking runtimes using three input cases: 1u4d, 2bm2, and 3er5. In terms 

of workload amount, 1u4d and 3er5 are the corner cases. From an algorithmic perspective, 

2bm2 represents a threshold case, because for inputs with Nrot > 7, ADADELTA starts 

becoming more effective than Solis-Wets at predicting molecular poses [25]. Considering 

these three input cases as well as both Solis-Wets and ADADELTA methods, it can be 

observed that OpenCL runtimes (Fig. 4, left) tend to be lower when using WGsize of either 

64 or 128 work-items. Although there are some few exceptions, this is a general tendency 

observed using our dataset, and goes in line with the aforementioned ratio of number of 

cores and CUs. In the case of CUDA runtimes (Fig. 4, right), minimum values are achieved 

mostly for TBsize of 32 threads. An exception to this in the CUDA version happens when 

docking 3er5 using Solis-Wets. In this case, lower runtimes are achieved by using blocks 

of 64 threads on all GPU cards. Based on these results, there is no single WGsize or TBsize 

configuration that works best for all cases. Hence, a future optimization would be to enable 

AUTODOCK-GPU to automatically choose sizes that are likely to result in faster executions 

(see Section 7).

Nevertheless, similar to our previous work [23], we think 64 work-items or threads is a 

reasonable choice for WGsize or TBsize, respectively. Thus, we employed this configuration 

to compare the performance between all GPU cards. For that purpose, we consider the 

geometric mean of runtime values corresponding to the entire dataset (Fig. 5). Despite that 

the OpenCL and CUDA runtimes seem similar at first glance, slight differences can be 

found. For instance, when running Solis-Wets on the RTX2070, OpenCL runtimes (12.8 s) 

are in average a bit lower than those of CUDA (13.2 s). Conversely, for ADADELTA on 

the RTX2070, CUDA runtimes (25.1 s) are lower than the respective OpenCL average (27.1 

s). Considering only raw compute capabilities (Table 4, FP32 performance), the V100 GPU 
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lies in the middle between the RTX2070 and the A100 GPUs. Particularly, on the V100, 

for both Solis-Wets and ADADELTA, both OpenCL and CUDA variants have virtually the 

same performance. Regarding the A100, the average OpenCL runtimes are lower than those 

of CUDA for both Solis-Wets (4.1 s vs. 6.0 s) and ADADELTA (7.6 s vs. 10.7 s). The 

maximum runtimes occur when processing the 3er5 input.

From previous experiments, it is clear that faster executions (i.e., lower runtimes) are 

achieved on the A100 GPU. Using this device, we compare the performance of AUTODOCK-

GPU v1.2 (used in our previous work [23]) and AUTODOCK-GPU v1.3 (our work here). Since 

[23] reported only total execution runtimes, we will also examine AUTODOCK-GPU v1.3 in 

the same way. It is important to note that this is different from the other measurements in 

this paper, which report only the docking runtimes, i.e., the GPU-side and data movement 

times.

Fig. 6 indicates that for Solis-Wets, the average total runtime (GPU and host) of the 

OpenCL code has been reduced from 6.5 s (v1.2) down to 5.2 s (v1.3) on the A100 GPU. 

Interestingly, the v1.3 CUDA code is executed a bit slower on the A100 (7.0 s) than either 

the v1.3 or v1.2 OpenCL codes. ADADELTA sees a significant speedup of more than 3.5× 

for the OpenCL codes from the v1.2 to the v1.3 code on the A100. Similar to Solis-Wets, 

the CUDA implementation of the v1.3 ADADELTA algorithm remains a bit slower than the 

OpenCL code. Since both OpenCL and CUDA versions in AUTODOCK-GPU v1.3 perform 

virtually identical computations, we believe such performance advantage of OpenCL over 

CUDA might be caused by several factors. One of these is the implemented on-device 

memory allocation, which for the OpenCL version is performed statically (in contrast to 

the dynamic allocation in the CUDA version), and thus, possibly enabling the compiler 

to perform more aggressive optimizations. We will investigate this, and update the code 

correspondingly in future releases.

5.2. Autostop and heuristics

For these experiments, we continue using WGsize / TBsize of 64 work-items/threads on the 

A100. For testing the autostop option, executions were configured with different asfreq 

values. Fig. 7 depicts how the docking runtimes vary when asfreq is equal to {5, 10, 15, 

20, 25}. The numbers for both LS methods (Solis-Wets, ADADELTA) and code variants 

(OpenCL, CUDA) indicate two things: First, increasing the asfreq value, i.e., causing 

AUTODOCK-GPU to check less often whether there is score improvement, increases the 

runtime with respect to when asfreq = 5. Second, due to the earlier termination, the average 

runtimes were reduced for all asfreq values so far tested. Particularly, comparing the best 

autostop case (asfreq = 5) against the baseline (without autostop, Fig. 5), we achieved 

runtime reductions of 24% (OpenCL) and 35% (CUDA) for Solis-Wets, and 65% (OpenCL) 

and 63% (CUDA) for ADADELTA.

In order to have a broader understanding of autostop’s impact, we consider as evaluation 

metrics not only the docking runtime, but also the quality, measured by the score (Section 

2) and the root mean square deviation (RMSD). Scores represent binding free energies, 

and thus, higher (better) scores correspond to negative values (in kcal/mol) with larger 
magnitudes. The RMSD estimates the geometrical deviation (in Å) of a resulting pose with 
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respect to a referencial one. A lower RMSD is preferred, as it indicates a better geometrical 

match.

Table 5 reports the docking runtime, as well as the score and RMSD values achieved by 

the resulting highest-scoring pose in a given subset of molecules. The most significant 

runtime reductions due to autostop happen for the smaller molecules (e.g., 1u4d, 2bm2). In 

the 1u4d case, for Solis-Wets, the runtime was reduced from 1.36 s down to 0.48 s. Such 

runtime improvement was achieved with a low score degradation (from −7.27 kcal/mol to 

−7.26 kcal/mol), while with a small improvement in RMSD (from 1.36 Å to 1.35 Å). For 

ADADELTA, the runtime was reduced from 1.69 s down to 0.52 s, with no penalties in the 

score or in RMSD. In the 2bm2 case, for Solis-Wets, there is an score improvement (from 

−10.09 kcal/mol to −10.54 kcal/mol) along with a significant RMSD degradation (from 2.01 

Å to 5.28 Å). The minor benefits in runtime may indicate that the docking search was 

trapped in a local minimum during this execution. For ADADELTA processing the 2bm2 

input, by using autostop, we required a shorter runtime (2.23 s instead of 4.89 s) to achieve 

the same score value (−10.59 kcal/mol) and a slightly better RMSD (5.30 Å instead of 5.31 

Å). In case of large molecules, autostop may provide few (e.g., 3er5 for Solis-Wets), or even 

no advantages (e.g., 3er5 for ADADELTA). As specified in Section 3.2, the stop criterion 

in autostop is based on the score improvement rather than the runtime of its non-autostop 
counterpart. Therefore, for cases involving a challenging docking search (e.g., 3er5, Nrot 

= 31), it is possible that AUTODOCK-GPU improves the score slowly as it progresses over 

generations, while having the time overhead due to the additional score checking required 

for the autostop functionality.

In addition, Fig. 8 shows the impact on runtime of using the heuristics options as well as that 

of the combination of autostop + heuristics. Despite not being as effective as autostop, the 

heuristics option still provides performance improvements over the aforementioned baseline. 

Furthermore, the combination of both options leads to average runtime reductions of 53% 

(OpenCL) and 55% (CUDA) for Solis-Wets, and 73% (OpenCL) and 76% (CUDA) for 

ADADELTA.

5.3. Performance comparison between GPUs and CPUs

Up until this point, the impact of the autostop and heuristics options has been evaluated only 

on the A100 GPU. Here, to extend our evaluation, we report the achieved performance on a 

CPU-based platform and compare it against that on the A100 GPU. For these experiments, 

we have chosen an AWS c5.24xlarge instance [36] based on an Intel Xeon Platinum 8275 

CPU, and consisting of a dual-socket 24-core node (i.e., a total of 48 cores). Fig. 9 compares 

the average runtimes achieved, combining both autostop and heuristics options, on the A100 

and the c5.24xlarge. The performance advantage provided by the GPU over the CPU is 

notorious: ~28.4× (Solis-Wets) and ~25.8× (ADADELTA), which can be attributed to the 

superiority of the A100 over the c5.24xlarge in terms of raw performance (19.5 TFLOPS vs. 

2.3 TFLOPS).

Similarly as in the previous assessment of autostop’s impact on the docking quality (Section 

5.2), Table 6 reports the docking runtime, as well as the scores and RMSDs for the resulting 

highest-scoring pose in the formerly-employed subset of molecules. First, in all cases, the 
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executions on the A100 resulted in remarkably shorter runtimes than on the c5.24xlarge. 

However, based on the attained – mostly similar – score and RMSD values, there is no 

definite winner between these two platforms. The reason is that, for a given molecule 

and local-search method, the same algorithm was run independently from the employed 

platform, and thus, high-quality scores and RMSDs can be achieved on both A100 and 

c5.24xlarge. An exception can be noted for 2bm2, where the execution using ADADELTA, 

resulted in a significantly smaller (i.e., better) RMSD on the A100 than on the c5.24xlarge 

(1.8 Å vs. 5.3 Å). For this particular case, we believe the cause was not the employed 

platform, but instead the heuristic nature of AUTODOCK-GPU. Basically, in every program 

execution, the search starts from a random point in the molecular space, and thus every 

execution explores a different path through that space. It could be the case that the above 

execution on the c5.24xlarge was trapped in a local minimum, causing that any score 

improvement (driving the search) led to no corresponding RMSD improvement.

6. Related Work

This section discusses relevant studies following a general-to-specific manner. Thus, we start 

with a survey of parallelized molecular docking programs. Then, we compare the latest and 

forked developments of AUTODOCK-GPU.

6.1. Parallelization of molecular docking

Several efforts on performance optimization of molecular docking leverage hardware-based 

acceleration. Table 7 lists relevant studies from nearly the last two decades. The brief survey 

presented here aims to provide a reasonable understanding of the state of the art, and it is 

based on the more extensive discussions in [37, 38, 39], as well as our own recent literature 

review. Our scope is on single compute nodes, and hence, approaches targeting systems that 

range between clusters, grid, and cloud computing are not included. Studies listed in Table 

7 can be grouped into the following categories: FFT/correlation, nature inspired, intrinsically 

parallel, and pairwise potentials.

The first category in our list includes programs based on either Fast Fourier Transform 

(FFT) or correlation. The ZDOCK program employs FFT to optimize force-field scoring 

functions. Van Court et al. [40, 41] proposed an FPGA-based approach where a correlation 

is implemented instead of the original FFT-based search. The core of the correlation 

architecture is a three-dimensional systolic array, which enables a long pipeline of 

computations as well as low-precision arithmetic. Such benefits are suitable for FPGAs, 

in contrast to the floating-point operations needed in the original ZDOCK FFT. With 

regard to PIPER, Sukhwani et al. [42, 43] extended the systolic-array architecture used 

for ZDOCK on FPGAs (described above) in order to support large molecules, i.e., receptor-

receptor docking. The same authors developed a GPU version of PIPER [44], in which 

the FFT computations were performed directly rather than through correlation as for the 

FPGA counterparts. Furthermore, Ritchie et al. [45] accelerated the FFT-based interactions 

in Hex using the CUDA CUFFT library to implement one- and three-dimensional FFT 

computations.
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Nature-inspired programs use search methods based on evolutionary or swarm-intelligence 

algorithms. MolDock employs a scoring function that is very similar to that of AUTODOCK. 

However, its search is based on Differential Evolution (DE), which uses weighted 

difference of parent individuals for the genetic selection. Simonsen et al. [46] parallelized 

MolDock with a CUDA-based multi-level approach similar to that of AUTODOCK-GPU, 

while their OpenMP version simply distributes the multiple DE runs over CPU cores. 

On the other hand, PLANTS combines a global and a local search method, namely Ant 

Colony Optimization (ACO) and the Nelder and Mead algorithm (NMS), respectively. 

The parallelization of PLANTS proposed by Korb et al. [47] offloads the generation 

phase and score calculation to a GPU, while the overall ACO+NMS algorithm runs on a 

CPU. The code was developed in OpenGL and NVIDIA Cg, both of which are intended 

just for graphics computations and are far less flexible compared to the general-purpose 

programming OpenCL or CUDA frameworks. Regarding the BUDE program, McIntosh-

Smith et al. [48] provided an OpenCL implementation in which each work-item processes 

four molecular poses. To achieve higher performance, the authors optimized the use of 

memory-access coalescing, and reduced the negative impact of thread divergence.

As already discussed in Section 2.1, the core of AUTODOCK is the LGA, and thus, it 

falls into the nature-inspired category described above. Here, we describe relevant studies 

addressing LGA acceleration. Kannan et al. [49] developed a CUDA version that excludes 

the Solis-Wets method from the LGA. The purpose of this exclusion was to avoid the 

low GPU utilization caused by the local search processing only a subset of the population 

(Section 2.2). Pechan et al. [50, 51] provided versions for GPUs and FPGAs, written in 

CUDA and Verilog, respectively. Both efforts by Pechan et al. served as an inspiration 

for the predecessor program of AUTODOCK-GPU, developed by Solis-Vasquez et al. [52, 

53]. In these latter studies, OpenCL was the main development language for both GPUs 

and FPGAs. While code portability was achieved with virtually no problems, performance 

portability proved to be more challenging, in the end requiring substantial platform-specific 

tuning of the code base. Furthermore, Mendonça et al. [54] proposed a hybrid parallelization 

utilizing OpenMP and CUDA, which also excluded the Solis-Wets method.

Intrinsically-parallel programs were designed considering their inherent parallelism right 

from the beginning. Examples are AUTODOCK VINA [55] and AUTODOCKFR [56], both 

belonging to the AUTODOCK suite and leveraging the multiple cores available on a CPU. 

Regarding VINA, its scoring function is empirical rather than the potentially too-strict 

models based on force fields used in AUTODOCK. Multi-threading in VINA is achieved 

using the C++ Boost::Thread library. On the other hand, AUTODOCKFR models the 

flexibility of the receptor molecule. Such flexibility results in the growth of search space, 

which AUTODOCKFR deals with by employing a slightly different GA than AUTODOCK. 

AUTODOCKFR is implemented in Python, and distributes each of its GA runs on a single 

CPU core. For higher speedups, the scoring function of AUTODOCKFR has been ported to 

C++.

The pairwise-potentials category lists studies that do not focus on complete front-to-back 

programs, but instead just on certain score terms based on pairwise interactions, which could 

be integrated into a more complete scoring function. Roh et al. [57] accelerated a scoring 
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function composed of two terms: dispersion and electrostatics. The authors used a separate 

GPU for each of these terms, which would be impractical for real applications. Guerrero et 

al. [58] focused on the electrostatics interactions between a receptor and a ligand. In their 

CUDA implementation, each thread computes the interaction between its corresponding 

receptor atom and all ligand atoms. Moreover, the recent studies of Saadi et al. [59, 60] 

accelerated the desolvation term in the scoring function of AUTODOCK. In their work, the 

authors aimed for blind docking3 and provided both CUDA and OpenMP implementations 

to target GPUs and CPUs, respectively.

6.2. AutoDock-GPU

Legrand et al. introduced the CUDA variant of AUTODOCK-GPU and benchmarked it 

against an earlier version of the OpenCL code prior to AUTODOCK-GPU v1.2 [21]. This 

work was intended for virtual screening in COVID-19 research, and thus, for performing 

many docking runs. For this purpose, the program required the capability of streamlining 

consecutive docking jobs involving, e.g., multiple ligands with a single receptor. Initially, 

AUTODOCK-GPU was only capable of running a single docking job per program execution. 

However, the code modifications by Legrand et al. enabled the user-specification of 

multiple docking jobs, and their serial launch from a single program execution. Additional 

enhancements leverage task pipelining, i.e., overlapping the execution of the following tasks 

using OpenMP threading: docking launch of a current ligand-receptor system (on the GPU), 

the file read of next ligand co-ordinates (on the CPU host), and the file write of the prior 
resulting ligand poses (on the CPU host). Most improvements by Legrand et al. are aimed 

for virtual screening, while our work here focuses on accelerating single executions of 

AUTODOCK-GPU.

Motivated by the transition of computing facilities towards exascale systems, 

Thavappiragasam et al. developed a miniapp called MINIAUTODOCK-GPU [61]. This has been 

directly derived from the CUDA variant of AUTODOCK-GPU, and its purpose is to evaluate 

the performance and portability on different computer architectures. Both AUTODOCK-GPU 

and MINIAUTODOCK-GPU execute LGA runs. However, while AUTODOCK-GPU processes 

user-specified ligand-receptor inputs, the miniapp uses pre-loaded ones. This design choice 

avoids the inclusion of I/O when measuring the execution time for the miniapp, which 

focuses only on computation time. MINIAUTODOCK-GPU has been implemented in CUDA 

and Kokkos. Its evaluation was carried on a V100 GPU, where the CUDA variant 

outperforms the Kokkos one by a factor of 1.8× for large- and medium-size ligands. 

In addition, a port to HIP was reported to be in progress, in which porting low-level 

and architecture-specific CUDA optimizations (e.g., warp-level reduction, each warp with 

32 threads) to a different architecture using HIP (e.g., wavefront-level reduction, each 

wavefront with 64 threads) pose significant challenges. Thavappiragasam et al. ported 

only the Solis-Wets local search, and not ADADELTA. Our own efforts continue to target 

OpenCL and CUDA, but always consider the full program, and not just a stripped-down 

miniapp.

3Blind docking refers to the exploration over an unknown, typically large, surface of the receptor-ligand interaction.
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Our recently published study in [25] focuses mainly on evaluating the benefits of 

AUTODOCK-GPU v1.2 from an application domain perspective. Specifically, Santos-Martins 

et al. introduced the E50 metric to quantify the number of score evaluations required to 

achieve a 50% of success, where success means finding the global optimum of either the 

score or RMSD. Resulting E50 values on a large set of 140 ligand-receptor inputs indicate 

that according to the score criterion, ADADELTA executions require only ~1/23 of the 

evaluations than those required when using Solis-Wets for inputs with Nrot = 20.

Furthermore, motivated by the increasing importance of energy efficiency in HPC systems, 

in [62] we measured the electrical power draws (W) on V100 GPUs due to AUTODOCK-GPU 

v1.0 executions. Energy efficiencies achieved on a V100 GPU were improved by ~67× and 

~37× compared to those on a E5-2666 18-core CPU, when running equivalent Solis-Wets 

and ADADELTA computations, respectively.

Besides multi-core CPUs and GPUs, docking acceleration has been explored on FPGAs 

as well. In general, the fact that fewer studies target FPGAs is attributed to the larger 

development effort compared to GPUs. Traditional development for FPGAs requires 

reasoning in terms of low-level transfers between hardware registers (RTL) and synchronous 

logic design. In recent years, this entry barrier for programmers has been lowered by 

development tools from FPGA vendors (e.g., Xilinx Vitis [63]) and cross-industry standards 

(e.g., oneAPI [64]), in which the application can be written in OpenCL or SYCL, rather 

than the traditional VHDL or Verilog RTL hardware description languages. In this context, 

our previous work [23] summarized our last attempts to improve the performance of an 

OpenCL implementation of AUTODOCK, specifically tailored for FPGAs. While our FPGA 

implementations are faster than executing software on a CPU, they are far slower than using 

GPUs. Thus, FPGAs will realistically not be deployed to solve large docking problems. 

However, as described in Section 7, there still exist optimization opportunities which could 

potentially speed-up FPGA-based docking accelerators further.

7. Conclusions and Future Work

In this paper, we described the code and algorithmic improvements introduced in 

AUTODOCK-GPU v1.3, and evaluated them against our previous work based on AUTODOCK-

GPU v1.2. Besides showing that v1.3 maintains (and sometimes exceeds) the average 

performance with respect to v1.2, we showed significant benefits by utilizing the new 

autostop and heuristics options introduced in v1.3. Concretely, when both options are 

combined, AUTODOCK-GPU achieves average runtime reductions of 53% (Solis-Wets) and 

73% (ADADELTA) on a NVIDIA A100 GPU.

Our literature review indicates that a variety of hardware devices are being used for 

accelerating different docking scenarios. Of these studies, the majority target GPUs and 

utilize CUDA as the main programming model. Recent ports of docking programs to 

OpenCL and HIP suggest a growing interest in alternatives to the proprietary NVIDIA 

CUDA. Additionally, hybrid approaches combining OpenMP and OpenCL/CUDA for 

heterogeneous CPU+GPU systems, are becoming more common.
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As future work, besides further optimizations, we plan to exploit recent platforms and 

tools. Regarding GPUs, we will equip AUTODOCK-GPU with the capability of automatically 

choosing an appropriate work-group or thread-block size for higher performance, instead 

of the current manual selection. Moreover, we will perform further tests on new generation 

GPUs such as AMD’s MI100 device. On the FPGA side, we will explore variants of the 

AUTODOCK code that attempt to reduce the irregularity of execution, which in turn might 

allow more efficient FPGA execution. For the actual implementation, recently improved 

FPGA design tools such as Xilinx Vitis [63] and Intel oneAPI [64] could be leveraged.

8. Appendices

Source code, input data, and auxiliary material used for our experiments is open source and 

available in the links indicated below.

• AUTODOCK-GPU: https://github.com/ccsb-scripps/AutoDock-GPU

• Input data: https://gitlab.com/L30nardoSV/ad-gpu_miniset_20.git

• Scripts to reproduce experiments: https://github.com/L30nardoSV/reproduce-

parcosi-moleculardocking
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• Irregular docking computations in AutoDock can be effectively accelerated 

using GPUs

• Early termination of molecular searches can reduce AutoDock-GPU runtimes

• Parallelism in molecular docking can be leveraged on various hardware 

accelerators
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Figure 1: 
Binding between a ligand and a receptor of the 3ptb complex. The receptor is represented 

simultaneously as surface (surrounding the cavity) and as sticks (anywhere else). The 

binding pocket is the cavity on the surface or in the interior of the receptor that has suitable 

properties for binding a ligand [17]. This image was created with NGL viewer [18].
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Figure 2: 
Degrees of freedom of a theoretical ligand molecule. Atoms are labelled with the A, B, 

C, …, O characters, while bonds between atoms are depicted as connecting lines. Each 

rotatable bond (E–H and I–J) is associated to a torsion, namely the rotation of affected 

ligand atoms around the rotatablebond axis.
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Figure 3: 
Visualization of AUTODOCK-GPU computations being mapped onto OpenCL elements. 

Basically, a population processed by an LGA run (RunID) is decomposed into their 

individuals, and each individual (IndID) is mapped onto a work-group (WGID). Fine-grained 

tasks are processed by work-items (wi0 … wiL–1).
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Figure 4: 
Impact on docking runtime of various OpenCL work-group / CUDA thread-block sizes.
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Figure 5: 
Geometric mean and maximum values of docking runtimes.
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Figure 6: 
Geometric mean of total runtimes achieved on the A100 GPU using v1.2 (our previous work 

[23]) and v1.3 (Fig 5).
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Figure 7: 
Geometric mean of docking runtimes achieved on the A100 GPU using autostop at different 

repetition intervals (asfreq). Horizontal lines correspond to the geometric mean of docking 

runtimes achieved without autostop (Fig 5).
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Figure 8: 
Geometric mean of docking runtimes achieved on the A100 GPU using either autostop 
(asfreq = 5), heuristics, or both combined. All cases result in lower runtimes compared to the 

baseline (no autostop, no heuristics).
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Figure 9: 
Geometric mean of docking runtimes achieved combining both autostop + heuristics on the 

A100 GPU (Figure 8) and the AWS c5.24xlarge CPU.
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Table 1:

Mapping of AUTODOCK-GPU computations onto OpenCL elements. The parallelization levels are also 

indicated as comments in Algorithms 1, 2, 3.

Computations OpenCL elements Parallelization level

GA/LS generation Kernel Coarse

Individual Work-Group Medium

Scoring/Gradient Work-Item Fine
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Table 2:

Configuration of AUTODOCK-GPU parameters in our evaluation.

Parameter Value Description

R 100 Number of LGA runs

P 150 Population size

lsrate 100% Population subset undergoing LS

Nscore−evals
MAX 2’500’000 Maximum number of score evaluations

Ngens
MAX 99’999 Maximum number of generations

stopstd 0.15 [kcal/mol] Threshold of score deviation causing early termination due to autostop

asfreq 5 Number of generations used as a repetition interval for the std. deviation check in autostop

Nscore−evals
MAX−HEURIS 50’000’000 Maximum number of score evaluations under heuristics
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Table 3:

Input dataset used in our evaluation.

ID 1u4d 1xoz 1yv3 1owe 1oyt 1ywr 1t46 2bm2 1mzc 1r55

N rot 0 1 2 3 4 5 6 7 8 9

N atom 23 30 23 27 34 38 40 33 38 27

ID 5wlo 1kzk 3s8o 5kao 1hfs 1jyq 2d1o 3drf 4er4 3er5

N rot 10 11 12 15 18 20 23 26 30 31

N atom 46 45 44 44 54 60 44 63 93 108
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Table 4:

Technical characteristics of the GPU cards used in our evaluation. In all cards, the system connectivity was 

PCIe Gen3x16. The number of OpenCL compute units (CUs) was obtained with the clinfo utility.

Characteristic RTX 2070
SUPER

V100 A100

Vendor NVIDIA NVIDIA NVIDIA

Architecture Turing Volta Ampere

Frequency (boost) 1.77 GHz 1.38 GHz 1.41 GHz

# Cores 2’560 5’120 6’912

FP32 performance 9.1 TFLOPS 14.1 TFLOPS 19.5 TFLOPS

Memory subsystem GDDR6 HBM2 HBM2e

Memory bandwidth 448 GB/s 897 GB/s 1’555 GB/s

Memory capacity 8 GB 32 GB 40 GB

Driver support CUDA 11 CUDA 11 CUDA 11

# OpenCL CUs 40 80 108
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Table 5:

Docking runtimes (s), scores (kcal/mol), and RMSDs (Å) achieved using the OpenCL version, with and 

without the autostop option, on the A100 GPU. The best values within each case are colored.

LS ID Metric No autostop autostop

Solis-Wets

1u4d

Runtime 1.36 s 0.48 s

Score −7.27 kcal/mol −7.26 kcal/mol

RMSD 1.36 Å 1.35 Å

2bm2 Runtime 2.92 s 2.90 s

Score −10.09 kcal/mol −10.54 kcal/mol

RMSD 2.01 Å 5.28 Å

3er5

Runtime 21.61 s 21.58 s

Score −8.92 kcal/mol −9.56 kcal/mol

RMSD 4.92 Å 3.78 Å

ADADELTA

1u4d

Runtime 1.69 s 0.52 s

Score −7.27 kcal/mol −7.27 kcal/mol

RMSD 1.36 Å 1.36 Å

2bm2

Runtime 4.89 s 2.23 s

Score −10.59 kcal/mol −10.59 kcal/mol

RMSD 5.31 Å 5.30 Å

3er5

Runtime 52.15 s 52.25 s

Score −14.74 kcal/mol −13.93 kcal/mol

RMSD 4.57 Å 5.04 Å
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Table 6:

Docking runtimes (s), scores (kcal/mol), and RMSDs (Å) achieved using the OpenCL version, combining both 

autostop + heuristics options, on the A100 GPU and the AWS c5.24xlarge CPU. The best values within each 

case are colored.

LS ID Metric A100 c5.24xlarge

Solis-Wets

1u4d

Runtime 0.05 s 0.17 s

Score −7.25 kcal/mol −7.26 kcal/mol

RMSD 1.35 Å 1.35 Å

2bm2

Runtime 2.84 s 71.81 s

Score −10.47 kcal/mol −10.52 kcal/mol

RMSD 5.24 Å 5.33 Å

3er5

Runtime 28.78 s 1’582.57 s

Score −12.48 kcal/mol −12.82 kcal/mol

RMSD 5.33 Å 3.95 Å

ADADELTA

1u4d

Runtime 0.05 s 0.17 s

Score −7.25 kcal/mol −7.25 kcal/mol

RMSD 1.35 Å 1.33 Å

2bm2

Runtime 1.44 s 71.62 s

Score −10.04 kcal/mol −10.42 kcal/mol

RMSD 1.80 Å 5.30 Å

3er5

Runtime 52.25 s 1’258.69 s

Score −12.66 kcal/mol −13.41 kcal/mol

RMSD 4.69 Å 4.20 Å
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