
Benchmarking the Performance of Irregular Computations in
AutoDock-GPU Molecular Docking

Leonardo Solis-Vasqueza,d,1,*, Andreas F. Tillackb,1, Diogo Santos-Martinsb, Andreas
Kocha, Scott LeGrandc, Stefano Forlib

aEmbedded Systems and Applications Group. Technical University of Darmstadt, Darmstadt,
Germany

bDepartment of Integrative Structural and Computational Biology. The Scripps Research Institute,
La Jolla, CA, United States

cNVIDIA Corporation. Santa Clara, CA, United States

dHochschulstr. 10, D-64289, Darmstadt, Germany

Abstract

Irregular applications can be found in different scientific fields. In computer-aided drug design,

molecular docking simulations play an important role in finding promising drug candidates.

AUTODOCK is a software application widely used for predicting molecular interactions at close

distances. It is characterized by irregular computations and long execution runtimes. In recent

years, a hardware-accelerated version of AUTODOCK, called AUTODOCK-GPU, has been under

active development. This work benchmarks the recent code and algorithmic enhancements

incorporated into AUTODOCK-GPU. Particularly, we analyze the impact on execution runtime of

techniques based on early termination. These enable AUTODOCK-GPU to explore the molecular

space as necessary, while safely avoiding redundant computations. Our results indicate that it is

possible to achieve average runtime reductions of 50% by using these techniques. Furthermore,

a comprehensive literature review is also provided, where our work is compared to relevant

approaches leveraging hardware acceleration for molecular docking.

*Corresponding author solis@esa.tu-darmstadt.de (Leonardo Solis-Vasquez).
1These authors contributed equally to this work.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review
of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered
which could affect the content, and all legal disclaimers that apply to the journal pertain.

Credit author statement
Leonardo Solis-Vasquez: Investigation, Writing - Original draft preparation. Andreas F. Tillack: Software, Writing - Reviewing
and editing. Diogo Santos-Martins: Methodology. Andreas Koch: Supervision, Writing - Reviewing and editing. Scott LeGrand:
Software. Stefano Forli: Supervision, Writing - Reviewing and editing.

Declaration of interests
X The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

HHS Public Access
Author manuscript
Parallel Comput. Author manuscript; available in PMC 2023 March 01.

Published in final edited form as:
Parallel Comput. 2022 March ; 109: . doi:10.1016/j.parco.2021.102861.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Keywords

Variable execution performance; molecular docking; early termination; OpenCL; CUDA;
AUTODOCK

1. Introduction

Computational chemistry is a science domain that increasingly leverages the resources

of high-performance computing (HPC) systems. Both academic computing centers [1, 2,

3, 4, 5, 6] and cloud providers [7, 8] deploy the required specialized software at-scale.

Computer-aided drug design, which in turn is based on computational chemistry methods,

has become an important field, as it contributes to fighting against diseases such as AIDS

[9], cancer [10], and COVID-19 [11].

Molecular docking simulations are among the key methods used in computer-aided drug

design for predicting molecular interactions at close distances. Specifically, they aim to

predict the binding poses between a small molecule and a macro-molecular target, each

referred to as ligand and receptor, respectively [12]. These simulations can significantly

shorten the time-consuming task of identifying potential drug candidates. Subsequent

wet lab experiments can then be performed in an informed fashion using an already-

narrowed list of promising ligands, hence reducing the overall need for costly and slow

lab experiments in drug discovery.

According to recent reports [13, 14], more than 60 software tools for molecular docking

have been developed in the last two decades. The tool discussed in this work, AUTODOCK,

is one of the most widely-used open-source applications for simulating ligand-receptor

docking (Fig. 1). As an example of its applicability, AUTODOCK is being used as a docking

engine in FightAIDS@Home as well as in OpenPandemics: COVID-19, which are world-

wide community grid projects to combat AIDS [15] and COVID-19 [16], respectively.

In contrast to many more traditional scientific computing codes, AUTODOCK is challenging

from an algorithmic perspective, as it exhibits irregular behaviors in the form of nested

loops with variable upper bounds and highly divergent control flows. These are used to

explore multiple ligand-receptor interactions, which are quantified by score evaluations

that are typically invoked 106 times in a single simulation run. However, AUTODOCK has

traditionally been implemented as a single-threaded application. Thus, in its original form,

it was unsuitable to exploit the embarrassing parallelism inherent in the actual docking

problem using widespread computing platforms such as multi-core CPUs or GPUs. This

drawback is aggravated when larger and more complex molecular structures need to be

analyzed.

We have been actively developing an enhanced version of AUTODOCK, called AUTODOCK-

GPU, which has been parallelized and can significantly shorten time-consuming

docking simulations by employing hardware-based acceleration. AUTODOCK-GPU has been

successfully employed in challenging prediction competitions [19, 20], as well as deployed

on the Summit supercomputer with the aim to contribute against the SARS-CoV-2 virus

Solis-Vasquez et al. Page 2

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[21]. Currently, the AUTODOCK-GPU project maintains implementations in both OpenCL and

CUDA in its public open-source code repository [22].

Our prior work in [23] is based on AUTODOCK-GPU v1.2 and discusses how the OpenCL

implementation deals with the irregularity of the docking search problem. This earlier study

analyzes the impact of the molecular complexity on runtime and the quality of results

achievable using different search methods.

This current paper is based on AUTODOCK-GPU v1.3, an open-source project with significant

contributions from multiple developers at various institutions. The following is a summary

of the major milestones. The original OpenCL version (predecessor of AUTODOCK-GPU) was

implemented by L. Solis-Vasquez, A. Koch. Gradient-based optimization was implemented

in v1.1 by L. Solis-Vasquez, D. Santos-Martins. Early termination was introduced in v1.2

by A. F. Tillack. The CUDA version was ported from the OpenCL code and deterministic

gradients [24] were added by S. LeGrand. The resulting code was then successively added to

v1.3 by Jeff Larkin (NVIDIA) and A. F. Tillack.

Therefore, extending the prior results in [23], this current paper benchmarks the overall

performance as well as the runtime impact of recent algorithmic improvements added

to both the OpenCL and CUDA implementations. The algorithmic improvements in

AUTODOCK-GPU v1.3 are based on early-termination methods, so that unproductive

computations can be safely avoided. Thus, the new contributions of this paper are the

following2:

1. Discussion of code optimizations in v1.3, which relate to robustness, feature

parity, and exploitation of hardware-specific features. In addition to evaluating

such optimizations, we compare the performance of AUTODOCK-GPU v1.3

against that of v1.2.

2. Evaluation of algorithmic optimizations in v1.3, which feature the autostop and

heuristics options to terminate AUTODOCK-GPU executions early.

3. A comprehensive literature review of parallelized or hardware-accelerated

molecular docking, where we compare and contrast the different approaches with

our own solution.

In contrast to our previous work, which also examined performance on multi-core CPUs,

this work focuses on modern GPUs. Particularly, our main experiments were performed on

recent NVIDIA A100 GPUs.

This manuscript contents are organized as follows. First, Section 2 provides an overview

of AUTODOCK-GPU’s functionality. Section 3 discusses the performance and algorithmic

enhancements in v1.3. The experimental setup is described in Section 4, while the

corresponding results are analyzed in Section 5. A review of the current state of the art

is presented in Section 6. This paper concludes in Section 7, where it summarizes the

outcomes and provides some directions for future work.

2Precisely speaking, the versions of AUTODOCK-GPU referred in this paper correspond to commits 8fea425 (v1.3) and eed190f (v1.2)
in the code repository on GitHub [22].

Solis-Vasquez et al. Page 3

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2. Functionality Overview

An extensive discussion on AUTODOCK-GPU’s functionality is provided in our previous

studies [23, 25]. This section is a self-contained summary that emphasizes the factors that

contribute to the irregular executions of the program.

AUTODOCK-GPU, as other software applications for molecular docking, systematically

explores several poses of a ligand, i.e., its spatial geometrical arrangements, and aims to

find the pose that binds strongly to a given region on the receptor surface. As shown in

Fig. 2, AUTODOCK-GPU encodes such pose using the degrees of freedom (translational,

orientational, torsional) experienced by the ligand during simulation. Hence, for a ligand

with Nrot rotatable bonds, each of its poses is encoded as {x, y, z, ϕ, θ, α, ψ1, ψ2, …,

ψNrot}, where each set element is later referred to as a gene.

The pose strength is quantified with a score, which is computed via a scoring function

(SF). AUTODOCK-GPU uses as a scoring function a semi-empirical physics-based free-energy

force field (kcal/mol), which models atomic interactions such as Van der Waals, hydrogen

bonding, electrostatics, desolvation, as well as the overall entropy [26]. The score depends

on the interatomic distances, which vary when a new pose is generated. The execution

time of the score evaluation increases when number of ligand atoms (Natom) is larger. As

will be detailed shortly, scores are evaluated in the order of million times per optimization

run (Section 2.1), while the mathematical derivatives of the score are used to drive the

optimization more efficiently (Section 2.2).

2.1. Lamarckian Genetic Algorithm

The docking engine in AUTODOCK-GPU is a Lamarckian Genetic Algorithm (LGA), which

performs a systematic optimization of molecular poses. By employing an LGA, AUTODOCK-

GPU maps these pose representations into biological evolution elements, and optimizes the

latter through genetic operations.

Particularly, AUTODOCK-GPU treats each pose as an individual of a genetic population. Each

individual is represented by its genotype, which in turn is composed of a set of genes.

New individuals are generated through genetic operations from their genetic ancestors. The

LGA in AUTODOCK-GPU couples a genetic algorithm (GA) and a local search (LS). The

GA performs crossover, mutation, and selection operations. The poses produced by the GA

are refined by LS, which is a local minimization procedure. More details on LS methods

are provided in Section 2.2. AUTODOCK-GPU performs independent LGA-runs (Algorithm

1: line 2), whose number by default is R = 100. A single LGA run terminates when

a pre-defined maximum number of score evaluations (default: Nscore‐evals
MAX = 2’500’00) or

generations (default: Ngens
MAX = 27’000) is reached, whichever comes first (Algorithm 1: line

3).

Solis-Vasquez et al. Page 4

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2.2. Local Search

A local-search component refines the poses generated by the GA. Several alternative
methods have been incorporated as LS and evaluated in AUTODOCK-GPU. Among these, and

depending on the molecular complexity, two different methods produce the best scores and

poses: Solis-Wets and ADADELTA. Basically, both methods generate new genotypes using

an initial one as a starting point, while aiming to minimize the score with every attempt.

However, these two methods differ in the way they generate genotypes.

Solis-Wets [27] generates new genotypes by adding or subtracting small random delta

changes to each gene of an initial genotype. At each iteration, the change size is either

increased or decreased depending on whether the number of consecutive successful (i.e.,

score is minimized) or failed attempts is greater than four, respectively. Solis-Wets has

divergent execution paths that depend on the outcome of the score comparison (Algorithm 2:

lines 6, 12). Moreover, Solis-Wets has a runtime-defined termination (Algorithm 2: line 2),

i.e., either when the number of LS iterations reaches the maximum (default: NLS‐iters
MAX = 300),

or the change size reaches its minimum (default: stepMIN = 0.01).

Solis-Vasquez et al. Page 5

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Instead of random deltas, ADADELTA [28] generates new genotypes by using gradients

calculated from the score of an initial genotype. The higher computational complexity in

ADADELTA compared to Solis-Wets is due to the gradient calculation (GC) involving

analytic and numerical derivatives (Algorithm 3: lines 2, 7), as well as due to the update

rule using information of past gradients (Algorithm 3: line 4). An extended mathematical

background and impact on pose prediction of ADADELTA is provided in our previous work

[25]. This method is also characterized by a divergent execution that depends on whether the

score was minimized (Algorithm 3: line 5).

Performing the local search takes more than 90% of the overall execution time. In the

original single-threaded AUTODOCK program, only 6% of the population was subjected

to local search in order to avoid excessively long executions while achieving relatively

good pose predictions. In AUTODOCK-GPU, as it is typically run on GPUs equipped with

thousands of cores, the local-search rate (lsrate) was increased, with 80% being the default

for AUTODOCK-GPU v1.3.

Solis-Vasquez et al. Page 6

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3. Performance Enhancements

This section describes the overall parallelization strategy and highlights the differences

between the OpenCL and CUDA variants. Moreover, it discusses the recent new features

incorporated in the tool after the last publication.

3.1. Parallelization

The OpenCL implementation is based on the mapping of AUTODOCK-GPU computations

onto OpenCL elements (Table 1). This mapping allows us to parallelize the computation in

the structure visualized in Fig. 3.

An AUTODOCK-GPU execution performs R independent LGA runs, where runs are

represented with indexes RunID = {0, 1, 2, …, R-1}. In every LGA run, a population

of P individuals, with indexes IndID = {0, 1, 2, …, P-1}, are processed through GA

and LS. Particularly, AUTODOCK-GPU processes simultaneously individuals from different

LGA runs. Thus, R × P individuals are mapped each to an OpenCL work-group. The

relation between their indexes is ruled as follows: WGID = RunID × P + IndID. Either

GA or LS generate new individuals through their respective genetic or local methods

applied on genotypes. Furthermore, GA and Solis-Wets LS involve score evaluations, while

ADADELTA LS additionally computes gradients. The generation, scoring, and gradient

calculations are fine-grained tasks carried out by OpenCL work-items.

The CUDA variant was developed using the OpenCL code as a starting point. This

port was motivated by the interest of using AUTODOCK-GPU for COVID-19 research

on the Summit supercomputer [21]. The computing nodes of Summit are composed of

POWER9 CPUs and NVIDIA GPUs, where OpenCL is not supported. Analogously to the

OpenCL case, AUTODOCK-GPU computations are mapped to CUDA processing elements

at different granularities. Since both APIs as well as their underlying work-distribution

mechanisms strongly resemble each other, the above index mapping (initially conceived

for the OpenCL code) is also valid for the CUDA variant. Therefore, the initial approach

of code transitioning was to replace the OpenCL processing elements (work-groups, work-

items) with their respective CUDA counterparts (thread-blocks, threads).

Prior to AUTODOCK-GPU v1.3, a number of hardware-related optimizations were applied

on top of the CUDA baseline. One of these was the enhancement of parallel reductions

Solis-Vasquez et al. Page 7

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

by explicit warp-level programming. This is based on CUDA primitives that allow a

more efficient data exchange between warp threads. Using the __shfl_sync() intrinsic, it

is possible to move a value from one thread to other active threads within a warp, without

accessing __shared__ memory, but employing registers instead [29]. In order to ensure the

correct execution of all parallel reductions, the size of CUDA blocks was required to be an

integer multiple of 32 threads. Note that this requirement does not apply to the OpenCL

variant, since OpenCL lacks low-level programming capabilities for expressing such warp-

or wavefront-level optimizations

3.2. Recent improvements

The development of AUTODOCK-GPU from v1.2 to v1.3 has significantly improved the

robustness, feature parity between the OpenCL and CUDA variants, and the use of

hardware-specific optimization. Regarding robustness, to avoid code divergence of the

OpenCL and CUDA versions, and issues such as passing different parameters to the

OpenCL and CUDA variant of a given kernel, the host code of both variants has been

carefully unified.

As a good practice for code maintenance, improvements found in one variant of the tool are

ported to the other one for feature parity (if appropriate). In particular, the OpenCL code

in AUTODOCK-GPU v1.2 included an extra set of Solis-Wets hyper-parameters, which were

introduced as additional variables (dependent of Natom and Nrot) to control the genotype

deviation at every Solis-Wets iteration (Algorithm 2). This feature was ported to the CUDA

variant during the development of AUTODOCK-GPU v1.3.

With regard to hardware-specific optimizations, a number of changes have been incorporated

into the CUDA variant. The first one is the dynamic allocation of __shared__ memory.

This contrasts with the static allocation used in the OpenCL __local memory counterpart,

where the allocation size is known at compile time. The second change is the addition of

the __launch_bounds__ qualifier to the kernel implementations. According to [29], a kernel

using fewer registers may, in turn, increase the number of threads and thread-blocks residing

on a CUDA streaming multiprocessor (for more details see Section 5). The compiler uses

heuristics to minimize the register usage, and a developer can provide hints for the heuristics

using the above qualifier. Since the optimal values for the parameters of this qualifier differ

across architectures, Listing 1 shows how the CUDA_ARCH macro is used to specify them

in a portable manner. The required parameters are two, namely, the maximum number of

threads per block (NTHREADS_BLOCK), and the desired minimum number of blocks per

streaming multiprocessor (NBLOCKS_A and NBLOCKS_B).

Solis-Vasquez et al. Page 8

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Listing 1:
Usage of the __launch_bounds__ qualifier.

Furthermore, AUTODOCK-GPU features new mechanisms to avoid unproductive searches.

These are based on the early termination of the search procedure, and consequently,

avoid spending computational resources when it is likely that, either the best poses have

been found, or their quality cannot be improved with further iterations. Although such

mechanisms were present in AUTODOCK-GPU v1.2, these were not evaluated in our previous

work [23]. Since then, improved versions of these mechanisms were incorporated in

AUTODOCK-GPU v1.3. Concretely, the autostop option allows AUTODOCK-GPU to stop the

LGA execution prematurely, i.e., before reaching Nscore‐evals
MAX score evaluations (Algorithm 1:

line 3). With this option enabled, an early termination due to already-achieved convergence

is possible if the top-scored poses above a threshold – determined by the previously-tested

top poses – exhibit score changes less than 0.15 kcal/mol over a configurable check interval.

The default interval leads to checking for optimization progress every five generations.

Complementarily, the new heuristics option is based on an adaptive termination criterion

that also prevents AUTODOCK-GPU from running unreasonably long executions. For this

purpose, heuristics utilizes instead an alternative value of Nscore‐evals
MAX (Algorithm 1: line 3).

Such alternative value depends on two terms. The first one is heurevals (Equation 1), which

depends on the number of rotatable bonds (Nrot) as well as the set of constants (a and b)

that vary according to the selected local-search method. The second term is Nscore−evals
MAX−HEURIS,

which is the maximum number of score evaluations under heuristics (default: 50’000’000).

Equation 2 shows how the alternative value of Nscore−evals
MAX is calculated. Furthermore,

the score-evals (capped) number of evaluations suggested by the heuristics option can be

finished sooner when autostop (if also enabled) detects early convergence.

heurevals = ceil (1000 × 2a × Nrot + b) (1)

Nscore−evals
MAX = ceil heurevals × Nscore−evals

MAX−HEURIS

heurevals + Nscore−evals
MAX−HEURIS (2)

Solis-Vasquez et al. Page 9

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

4. Methodology

In all our experiments, we used AUTODOCK-GPU v1.3, unless otherwise indicated. The

program execution and runtime measurements were fully automated using bash and Python

scripts. The dataset used has been publicly released and is properly documented. Details

of the archive repositories hosting the sources and data are given in Section 8. Finally, the

performance evaluation was carried out on compute systems featuring recent GPUs in both

consumer and professional versions.

From the many different protocols possible for validating docking [30], our experiments

consist of re-docking. In this approach, already-studied ligand-receptor inputs are docked

again, so that resulting ligand poses can be compared to well-known reference solutions.

4.1. Program configuration

AUTODOCK-GPU executions perform 100 LGA runs over a population of 150 individuals.

The maximum number of score evaluations per LGA run was set to 2’500’000. The

maximum number of generations (per LGA run) was set to 99’999, which is larger than

the default value of 27’000. The purpose of this choice is to ensure the program termination

happens only when the number of score evaluations reaches the aforementioned upper

bound. In all cases, the entire population is subjected to local search (lsrate = 100%).

Other parameters were left as default [31]. Table 2 lists program parameters and their

configurations.

For evaluating the efficiency of the early-termination options, the corresponding defaults are

used. Namely, when using autostop, the program was configured to automatically stop after

reaching a deviation of stopstd = 0.15 kcal/mol compared to the best score achieved five

generations before (asfreq = 5, unless specified otherwise). Moreover, the default number of

score evaluations under heuristics is 50’000’000.

4.2. Dataset

Similarly as in our previous experiments in [23], a set of 20 ligand-receptor inputs was

selected from well-established sets for assessing molecular docking methodologies. Our

dataset is composed of eleven entries from Astex [32] (IDs: 1u4d, 1xoz, 1yv3, 1owe, 1oyt,

1ywr, 1t46, 2bm2, 1mzc, 1r55, 1kzk), four from CASF-2013 [33] (IDs: 3s8o, 1hfs, 1jyq,

2d1o), and five from the Protein Data Bank (PDB) [34] (IDs: 5wlo, 5kao, 3drf, 4er4, 3er5).

Table 3 indicates the number of rotatable bonds and atoms for each input case. This dataset

covers up to 31 rotatable bonds, which is a large range considering that AUTODOCK-GPU,

from v1.3 onwards supports a maximum of 58 rotatable bonds (Nrot
MAX = 58).

4.3. Evaluation platforms

Table 4 lists the main technical specifications of the GPU cards used in our evaluation. Such

devices feature recent architectures, as well as provide a varied range of compute capabilities

that theoretically achieve from ~9.1 TFLOPs and 448 GB/s on the RTX 2070 SUPER, up to

~19.5 TFLOPs and 1’555 GB/s on the A100.

Solis-Vasquez et al. Page 10

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

For a fair comparison, we disregard the different host platforms holding the various GPUs.

Specifically, we include only the GPU-side kernel configuration and execution, plus all

required host-GPU data movements in our measurements. Such time components are

collectively reported as docking runtime. Host-side operations, such as file I/O and results

processing, were not included and are considered as idle time (from the GPU perspective).

5. Results and Discussion

We begin the evaluation by determining suitable configuration choices. Then, we compare

the runtimes achieved by using our current and prior baseline work. Finally, we show the

impact of the new autostop and heuristics options.

5.1. Runtime-based performance

At this point, it is important to note that an OpenCL compute unit (CU) is a hardware block

that processes a single OpenCL work-group (WG) at a time. Basically, the more CUs are

available, the more WGs can be processed in parallel. A CUDA streaming multiprocessor

(SM) corresponds to an OpenCL CU [35], thus analogously, the more SMs are available,

the more thread blocks (TB) can be processed simultaneously. Table 4 indicates that for

all chosen GPU cards, the ratio between the number of cores and OpenCL CUs is 64,

suggesting that the optimal size for a WG would be of 64 work-items.

Fig. 4 shows the docking runtimes using three input cases: 1u4d, 2bm2, and 3er5. In terms

of workload amount, 1u4d and 3er5 are the corner cases. From an algorithmic perspective,

2bm2 represents a threshold case, because for inputs with Nrot > 7, ADADELTA starts

becoming more effective than Solis-Wets at predicting molecular poses [25]. Considering

these three input cases as well as both Solis-Wets and ADADELTA methods, it can be

observed that OpenCL runtimes (Fig. 4, left) tend to be lower when using WGsize of either

64 or 128 work-items. Although there are some few exceptions, this is a general tendency

observed using our dataset, and goes in line with the aforementioned ratio of number of

cores and CUs. In the case of CUDA runtimes (Fig. 4, right), minimum values are achieved

mostly for TBsize of 32 threads. An exception to this in the CUDA version happens when

docking 3er5 using Solis-Wets. In this case, lower runtimes are achieved by using blocks

of 64 threads on all GPU cards. Based on these results, there is no single WGsize or TBsize

configuration that works best for all cases. Hence, a future optimization would be to enable

AUTODOCK-GPU to automatically choose sizes that are likely to result in faster executions

(see Section 7).

Nevertheless, similar to our previous work [23], we think 64 work-items or threads is a

reasonable choice for WGsize or TBsize, respectively. Thus, we employed this configuration

to compare the performance between all GPU cards. For that purpose, we consider the

geometric mean of runtime values corresponding to the entire dataset (Fig. 5). Despite that

the OpenCL and CUDA runtimes seem similar at first glance, slight differences can be

found. For instance, when running Solis-Wets on the RTX2070, OpenCL runtimes (12.8 s)

are in average a bit lower than those of CUDA (13.2 s). Conversely, for ADADELTA on

the RTX2070, CUDA runtimes (25.1 s) are lower than the respective OpenCL average (27.1

s). Considering only raw compute capabilities (Table 4, FP32 performance), the V100 GPU

Solis-Vasquez et al. Page 11

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

lies in the middle between the RTX2070 and the A100 GPUs. Particularly, on the V100,

for both Solis-Wets and ADADELTA, both OpenCL and CUDA variants have virtually the

same performance. Regarding the A100, the average OpenCL runtimes are lower than those

of CUDA for both Solis-Wets (4.1 s vs. 6.0 s) and ADADELTA (7.6 s vs. 10.7 s). The

maximum runtimes occur when processing the 3er5 input.

From previous experiments, it is clear that faster executions (i.e., lower runtimes) are

achieved on the A100 GPU. Using this device, we compare the performance of AUTODOCK-

GPU v1.2 (used in our previous work [23]) and AUTODOCK-GPU v1.3 (our work here). Since

[23] reported only total execution runtimes, we will also examine AUTODOCK-GPU v1.3 in

the same way. It is important to note that this is different from the other measurements in

this paper, which report only the docking runtimes, i.e., the GPU-side and data movement

times.

Fig. 6 indicates that for Solis-Wets, the average total runtime (GPU and host) of the

OpenCL code has been reduced from 6.5 s (v1.2) down to 5.2 s (v1.3) on the A100 GPU.

Interestingly, the v1.3 CUDA code is executed a bit slower on the A100 (7.0 s) than either

the v1.3 or v1.2 OpenCL codes. ADADELTA sees a significant speedup of more than 3.5×

for the OpenCL codes from the v1.2 to the v1.3 code on the A100. Similar to Solis-Wets,

the CUDA implementation of the v1.3 ADADELTA algorithm remains a bit slower than the

OpenCL code. Since both OpenCL and CUDA versions in AUTODOCK-GPU v1.3 perform

virtually identical computations, we believe such performance advantage of OpenCL over

CUDA might be caused by several factors. One of these is the implemented on-device

memory allocation, which for the OpenCL version is performed statically (in contrast to

the dynamic allocation in the CUDA version), and thus, possibly enabling the compiler

to perform more aggressive optimizations. We will investigate this, and update the code

correspondingly in future releases.

5.2. Autostop and heuristics

For these experiments, we continue using WGsize / TBsize of 64 work-items/threads on the

A100. For testing the autostop option, executions were configured with different asfreq

values. Fig. 7 depicts how the docking runtimes vary when asfreq is equal to {5, 10, 15,

20, 25}. The numbers for both LS methods (Solis-Wets, ADADELTA) and code variants

(OpenCL, CUDA) indicate two things: First, increasing the asfreq value, i.e., causing

AUTODOCK-GPU to check less often whether there is score improvement, increases the

runtime with respect to when asfreq = 5. Second, due to the earlier termination, the average

runtimes were reduced for all asfreq values so far tested. Particularly, comparing the best

autostop case (asfreq = 5) against the baseline (without autostop, Fig. 5), we achieved

runtime reductions of 24% (OpenCL) and 35% (CUDA) for Solis-Wets, and 65% (OpenCL)

and 63% (CUDA) for ADADELTA.

In order to have a broader understanding of autostop’s impact, we consider as evaluation

metrics not only the docking runtime, but also the quality, measured by the score (Section

2) and the root mean square deviation (RMSD). Scores represent binding free energies,

and thus, higher (better) scores correspond to negative values (in kcal/mol) with larger
magnitudes. The RMSD estimates the geometrical deviation (in Å) of a resulting pose with

Solis-Vasquez et al. Page 12

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

respect to a referencial one. A lower RMSD is preferred, as it indicates a better geometrical

match.

Table 5 reports the docking runtime, as well as the score and RMSD values achieved by

the resulting highest-scoring pose in a given subset of molecules. The most significant

runtime reductions due to autostop happen for the smaller molecules (e.g., 1u4d, 2bm2). In

the 1u4d case, for Solis-Wets, the runtime was reduced from 1.36 s down to 0.48 s. Such

runtime improvement was achieved with a low score degradation (from −7.27 kcal/mol to

−7.26 kcal/mol), while with a small improvement in RMSD (from 1.36 Å to 1.35 Å). For

ADADELTA, the runtime was reduced from 1.69 s down to 0.52 s, with no penalties in the

score or in RMSD. In the 2bm2 case, for Solis-Wets, there is an score improvement (from

−10.09 kcal/mol to −10.54 kcal/mol) along with a significant RMSD degradation (from 2.01

Å to 5.28 Å). The minor benefits in runtime may indicate that the docking search was

trapped in a local minimum during this execution. For ADADELTA processing the 2bm2

input, by using autostop, we required a shorter runtime (2.23 s instead of 4.89 s) to achieve

the same score value (−10.59 kcal/mol) and a slightly better RMSD (5.30 Å instead of 5.31

Å). In case of large molecules, autostop may provide few (e.g., 3er5 for Solis-Wets), or even

no advantages (e.g., 3er5 for ADADELTA). As specified in Section 3.2, the stop criterion

in autostop is based on the score improvement rather than the runtime of its non-autostop
counterpart. Therefore, for cases involving a challenging docking search (e.g., 3er5, Nrot

= 31), it is possible that AUTODOCK-GPU improves the score slowly as it progresses over

generations, while having the time overhead due to the additional score checking required

for the autostop functionality.

In addition, Fig. 8 shows the impact on runtime of using the heuristics options as well as that

of the combination of autostop + heuristics. Despite not being as effective as autostop, the

heuristics option still provides performance improvements over the aforementioned baseline.

Furthermore, the combination of both options leads to average runtime reductions of 53%

(OpenCL) and 55% (CUDA) for Solis-Wets, and 73% (OpenCL) and 76% (CUDA) for

ADADELTA.

5.3. Performance comparison between GPUs and CPUs

Up until this point, the impact of the autostop and heuristics options has been evaluated only

on the A100 GPU. Here, to extend our evaluation, we report the achieved performance on a

CPU-based platform and compare it against that on the A100 GPU. For these experiments,

we have chosen an AWS c5.24xlarge instance [36] based on an Intel Xeon Platinum 8275

CPU, and consisting of a dual-socket 24-core node (i.e., a total of 48 cores). Fig. 9 compares

the average runtimes achieved, combining both autostop and heuristics options, on the A100

and the c5.24xlarge. The performance advantage provided by the GPU over the CPU is

notorious: ~28.4× (Solis-Wets) and ~25.8× (ADADELTA), which can be attributed to the

superiority of the A100 over the c5.24xlarge in terms of raw performance (19.5 TFLOPS vs.

2.3 TFLOPS).

Similarly as in the previous assessment of autostop’s impact on the docking quality (Section

5.2), Table 6 reports the docking runtime, as well as the scores and RMSDs for the resulting

highest-scoring pose in the formerly-employed subset of molecules. First, in all cases, the

Solis-Vasquez et al. Page 13

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

executions on the A100 resulted in remarkably shorter runtimes than on the c5.24xlarge.

However, based on the attained – mostly similar – score and RMSD values, there is no

definite winner between these two platforms. The reason is that, for a given molecule

and local-search method, the same algorithm was run independently from the employed

platform, and thus, high-quality scores and RMSDs can be achieved on both A100 and

c5.24xlarge. An exception can be noted for 2bm2, where the execution using ADADELTA,

resulted in a significantly smaller (i.e., better) RMSD on the A100 than on the c5.24xlarge

(1.8 Å vs. 5.3 Å). For this particular case, we believe the cause was not the employed

platform, but instead the heuristic nature of AUTODOCK-GPU. Basically, in every program

execution, the search starts from a random point in the molecular space, and thus every

execution explores a different path through that space. It could be the case that the above

execution on the c5.24xlarge was trapped in a local minimum, causing that any score

improvement (driving the search) led to no corresponding RMSD improvement.

6. Related Work

This section discusses relevant studies following a general-to-specific manner. Thus, we start

with a survey of parallelized molecular docking programs. Then, we compare the latest and

forked developments of AUTODOCK-GPU.

6.1. Parallelization of molecular docking

Several efforts on performance optimization of molecular docking leverage hardware-based

acceleration. Table 7 lists relevant studies from nearly the last two decades. The brief survey

presented here aims to provide a reasonable understanding of the state of the art, and it is

based on the more extensive discussions in [37, 38, 39], as well as our own recent literature

review. Our scope is on single compute nodes, and hence, approaches targeting systems that

range between clusters, grid, and cloud computing are not included. Studies listed in Table

7 can be grouped into the following categories: FFT/correlation, nature inspired, intrinsically

parallel, and pairwise potentials.

The first category in our list includes programs based on either Fast Fourier Transform

(FFT) or correlation. The ZDOCK program employs FFT to optimize force-field scoring

functions. Van Court et al. [40, 41] proposed an FPGA-based approach where a correlation

is implemented instead of the original FFT-based search. The core of the correlation

architecture is a three-dimensional systolic array, which enables a long pipeline of

computations as well as low-precision arithmetic. Such benefits are suitable for FPGAs,

in contrast to the floating-point operations needed in the original ZDOCK FFT. With

regard to PIPER, Sukhwani et al. [42, 43] extended the systolic-array architecture used

for ZDOCK on FPGAs (described above) in order to support large molecules, i.e., receptor-

receptor docking. The same authors developed a GPU version of PIPER [44], in which

the FFT computations were performed directly rather than through correlation as for the

FPGA counterparts. Furthermore, Ritchie et al. [45] accelerated the FFT-based interactions

in Hex using the CUDA CUFFT library to implement one- and three-dimensional FFT

computations.

Solis-Vasquez et al. Page 14

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Nature-inspired programs use search methods based on evolutionary or swarm-intelligence

algorithms. MolDock employs a scoring function that is very similar to that of AUTODOCK.

However, its search is based on Differential Evolution (DE), which uses weighted

difference of parent individuals for the genetic selection. Simonsen et al. [46] parallelized

MolDock with a CUDA-based multi-level approach similar to that of AUTODOCK-GPU,

while their OpenMP version simply distributes the multiple DE runs over CPU cores.

On the other hand, PLANTS combines a global and a local search method, namely Ant

Colony Optimization (ACO) and the Nelder and Mead algorithm (NMS), respectively.

The parallelization of PLANTS proposed by Korb et al. [47] offloads the generation

phase and score calculation to a GPU, while the overall ACO+NMS algorithm runs on a

CPU. The code was developed in OpenGL and NVIDIA Cg, both of which are intended

just for graphics computations and are far less flexible compared to the general-purpose

programming OpenCL or CUDA frameworks. Regarding the BUDE program, McIntosh-

Smith et al. [48] provided an OpenCL implementation in which each work-item processes

four molecular poses. To achieve higher performance, the authors optimized the use of

memory-access coalescing, and reduced the negative impact of thread divergence.

As already discussed in Section 2.1, the core of AUTODOCK is the LGA, and thus, it

falls into the nature-inspired category described above. Here, we describe relevant studies

addressing LGA acceleration. Kannan et al. [49] developed a CUDA version that excludes

the Solis-Wets method from the LGA. The purpose of this exclusion was to avoid the

low GPU utilization caused by the local search processing only a subset of the population

(Section 2.2). Pechan et al. [50, 51] provided versions for GPUs and FPGAs, written in

CUDA and Verilog, respectively. Both efforts by Pechan et al. served as an inspiration

for the predecessor program of AUTODOCK-GPU, developed by Solis-Vasquez et al. [52,

53]. In these latter studies, OpenCL was the main development language for both GPUs

and FPGAs. While code portability was achieved with virtually no problems, performance

portability proved to be more challenging, in the end requiring substantial platform-specific

tuning of the code base. Furthermore, Mendonça et al. [54] proposed a hybrid parallelization

utilizing OpenMP and CUDA, which also excluded the Solis-Wets method.

Intrinsically-parallel programs were designed considering their inherent parallelism right

from the beginning. Examples are AUTODOCK VINA [55] and AUTODOCKFR [56], both

belonging to the AUTODOCK suite and leveraging the multiple cores available on a CPU.

Regarding VINA, its scoring function is empirical rather than the potentially too-strict

models based on force fields used in AUTODOCK. Multi-threading in VINA is achieved

using the C++ Boost::Thread library. On the other hand, AUTODOCKFR models the

flexibility of the receptor molecule. Such flexibility results in the growth of search space,

which AUTODOCKFR deals with by employing a slightly different GA than AUTODOCK.

AUTODOCKFR is implemented in Python, and distributes each of its GA runs on a single

CPU core. For higher speedups, the scoring function of AUTODOCKFR has been ported to

C++.

The pairwise-potentials category lists studies that do not focus on complete front-to-back

programs, but instead just on certain score terms based on pairwise interactions, which could

be integrated into a more complete scoring function. Roh et al. [57] accelerated a scoring

Solis-Vasquez et al. Page 15

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

function composed of two terms: dispersion and electrostatics. The authors used a separate

GPU for each of these terms, which would be impractical for real applications. Guerrero et

al. [58] focused on the electrostatics interactions between a receptor and a ligand. In their

CUDA implementation, each thread computes the interaction between its corresponding

receptor atom and all ligand atoms. Moreover, the recent studies of Saadi et al. [59, 60]

accelerated the desolvation term in the scoring function of AUTODOCK. In their work, the

authors aimed for blind docking3 and provided both CUDA and OpenMP implementations

to target GPUs and CPUs, respectively.

6.2. AutoDock-GPU

Legrand et al. introduced the CUDA variant of AUTODOCK-GPU and benchmarked it

against an earlier version of the OpenCL code prior to AUTODOCK-GPU v1.2 [21]. This

work was intended for virtual screening in COVID-19 research, and thus, for performing

many docking runs. For this purpose, the program required the capability of streamlining

consecutive docking jobs involving, e.g., multiple ligands with a single receptor. Initially,

AUTODOCK-GPU was only capable of running a single docking job per program execution.

However, the code modifications by Legrand et al. enabled the user-specification of

multiple docking jobs, and their serial launch from a single program execution. Additional

enhancements leverage task pipelining, i.e., overlapping the execution of the following tasks

using OpenMP threading: docking launch of a current ligand-receptor system (on the GPU),

the file read of next ligand co-ordinates (on the CPU host), and the file write of the prior
resulting ligand poses (on the CPU host). Most improvements by Legrand et al. are aimed

for virtual screening, while our work here focuses on accelerating single executions of

AUTODOCK-GPU.

Motivated by the transition of computing facilities towards exascale systems,

Thavappiragasam et al. developed a miniapp called MINIAUTODOCK-GPU [61]. This has been

directly derived from the CUDA variant of AUTODOCK-GPU, and its purpose is to evaluate

the performance and portability on different computer architectures. Both AUTODOCK-GPU

and MINIAUTODOCK-GPU execute LGA runs. However, while AUTODOCK-GPU processes

user-specified ligand-receptor inputs, the miniapp uses pre-loaded ones. This design choice

avoids the inclusion of I/O when measuring the execution time for the miniapp, which

focuses only on computation time. MINIAUTODOCK-GPU has been implemented in CUDA

and Kokkos. Its evaluation was carried on a V100 GPU, where the CUDA variant

outperforms the Kokkos one by a factor of 1.8× for large- and medium-size ligands.

In addition, a port to HIP was reported to be in progress, in which porting low-level

and architecture-specific CUDA optimizations (e.g., warp-level reduction, each warp with

32 threads) to a different architecture using HIP (e.g., wavefront-level reduction, each

wavefront with 64 threads) pose significant challenges. Thavappiragasam et al. ported

only the Solis-Wets local search, and not ADADELTA. Our own efforts continue to target

OpenCL and CUDA, but always consider the full program, and not just a stripped-down

miniapp.

3Blind docking refers to the exploration over an unknown, typically large, surface of the receptor-ligand interaction.

Solis-Vasquez et al. Page 16

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Our recently published study in [25] focuses mainly on evaluating the benefits of

AUTODOCK-GPU v1.2 from an application domain perspective. Specifically, Santos-Martins

et al. introduced the E50 metric to quantify the number of score evaluations required to

achieve a 50% of success, where success means finding the global optimum of either the

score or RMSD. Resulting E50 values on a large set of 140 ligand-receptor inputs indicate

that according to the score criterion, ADADELTA executions require only ~1/23 of the

evaluations than those required when using Solis-Wets for inputs with Nrot = 20.

Furthermore, motivated by the increasing importance of energy efficiency in HPC systems,

in [62] we measured the electrical power draws (W) on V100 GPUs due to AUTODOCK-GPU

v1.0 executions. Energy efficiencies achieved on a V100 GPU were improved by ~67× and

~37× compared to those on a E5-2666 18-core CPU, when running equivalent Solis-Wets

and ADADELTA computations, respectively.

Besides multi-core CPUs and GPUs, docking acceleration has been explored on FPGAs

as well. In general, the fact that fewer studies target FPGAs is attributed to the larger

development effort compared to GPUs. Traditional development for FPGAs requires

reasoning in terms of low-level transfers between hardware registers (RTL) and synchronous

logic design. In recent years, this entry barrier for programmers has been lowered by

development tools from FPGA vendors (e.g., Xilinx Vitis [63]) and cross-industry standards

(e.g., oneAPI [64]), in which the application can be written in OpenCL or SYCL, rather

than the traditional VHDL or Verilog RTL hardware description languages. In this context,

our previous work [23] summarized our last attempts to improve the performance of an

OpenCL implementation of AUTODOCK, specifically tailored for FPGAs. While our FPGA

implementations are faster than executing software on a CPU, they are far slower than using

GPUs. Thus, FPGAs will realistically not be deployed to solve large docking problems.

However, as described in Section 7, there still exist optimization opportunities which could

potentially speed-up FPGA-based docking accelerators further.

7. Conclusions and Future Work

In this paper, we described the code and algorithmic improvements introduced in

AUTODOCK-GPU v1.3, and evaluated them against our previous work based on AUTODOCK-

GPU v1.2. Besides showing that v1.3 maintains (and sometimes exceeds) the average

performance with respect to v1.2, we showed significant benefits by utilizing the new

autostop and heuristics options introduced in v1.3. Concretely, when both options are

combined, AUTODOCK-GPU achieves average runtime reductions of 53% (Solis-Wets) and

73% (ADADELTA) on a NVIDIA A100 GPU.

Our literature review indicates that a variety of hardware devices are being used for

accelerating different docking scenarios. Of these studies, the majority target GPUs and

utilize CUDA as the main programming model. Recent ports of docking programs to

OpenCL and HIP suggest a growing interest in alternatives to the proprietary NVIDIA

CUDA. Additionally, hybrid approaches combining OpenMP and OpenCL/CUDA for

heterogeneous CPU+GPU systems, are becoming more common.

Solis-Vasquez et al. Page 17

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

As future work, besides further optimizations, we plan to exploit recent platforms and

tools. Regarding GPUs, we will equip AUTODOCK-GPU with the capability of automatically

choosing an appropriate work-group or thread-block size for higher performance, instead

of the current manual selection. Moreover, we will perform further tests on new generation

GPUs such as AMD’s MI100 device. On the FPGA side, we will explore variants of the

AUTODOCK code that attempt to reduce the irregularity of execution, which in turn might

allow more efficient FPGA execution. For the actual implementation, recently improved

FPGA design tools such as Xilinx Vitis [63] and Intel oneAPI [64] could be leveraged.

8. Appendices

Source code, input data, and auxiliary material used for our experiments is open source and

available in the links indicated below.

• AUTODOCK-GPU: https://github.com/ccsb-scripps/AutoDock-GPU

• Input data: https://gitlab.com/L30nardoSV/ad-gpu_miniset_20.git

• Scripts to reproduce experiments: https://github.com/L30nardoSV/reproduce-

parcosi-moleculardocking

Acknowledgements

This work was supported by the National Institutes of Health GM069832 (to S. Forli).

We want to thank Jeff Larkin and Aaron Scheinberg for their code contributions during the CUDA porting as well
as ORNL and NVIDIA for their impetus and support of the porting effort.

Calculations on the V100 GPU for this research were conducted on the Lichtenberg high performance computer of
TU Darmstadt.

References

[1]. Leibniz Supercomputing Centre, Scientific Application Packages. URL https://doku.lrz.de/display/
PUBLIC/Scientific+Application+Packages

[2]. Louisiana State University: High Performance Computing, Alphabetical List of Software. URL
http://www.hpc.lsu.edu/docs/guides/index.php#Chemistry

[3]. Max Planck Computing & Data Facility, HPC Application Packages. URL https://
www.mpcdf.mpg.de/services/computing/software/hpc_application_packages.html

[4]. BioWulf: High Performance Computing at the NIH, Scientific Applications on NIH HPC Systems.
URL https://hpc.nih.gov/apps

[5]. University of North Texas: High Performance Computing, Scientific Software Guide. URL https://
hpc.unt.edu/software?field_research_area_value=chem

[6]. Universität Paderborn: Paderborn Center for Parallel Computing (PC2), Software. URL https://
wikis.uni-paderborn.de/pc2doc/Software#Software_Availability

[7]. Microsoft Azure, Predicting ocean chemistry using Microsoft Azure. URL https://
www.microsoft.com/en-us/research/blog/predicting-ocean-chemistry-using-microsoft-azure

[8]. Amazon Web Services, Pharma & Biotech in the Cloud. URL https://aws.amazon.com/health/
biotech-pharma

[9]. Gu W-G, Zhang X, Yuan J-F, Anti-HIV Drug Development Through Computational Methods,
AAPS J. 16 (4) (2014) 674–680. doi:10.1208/s12248-014-9604-9. [PubMed: 24760437]

[10]. San Lucas FA, Fowler J, Chang K, Kopetz S, Vilar E, Scheet P, Cancer In Silico
Drug Discovery: A Systems Biology Tool for Identifying Candidate Drugs to Target

Solis-Vasquez et al. Page 18

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/ccsb-scripps/AutoDock-GPU
https://gitlab.com/L30nardoSV/ad-gpu_miniset_20.git
https://github.com/L30nardoSV/reproduce-parcosi-moleculardocking
https://github.com/L30nardoSV/reproduce-parcosi-moleculardocking
https://doku.lrz.de/display/PUBLIC/Scientific+Application+Packages
https://doku.lrz.de/display/PUBLIC/Scientific+Application+Packages
http://www.hpc.lsu.edu/docs/guides/index.php#Chemistry
https://www.mpcdf.mpg.de/services/computing/software/hpc_application_packages.html
https://www.mpcdf.mpg.de/services/computing/software/hpc_application_packages.html
https://hpc.nih.gov/apps
https://hpc.unt.edu/software?field_research_area_value=chem
https://hpc.unt.edu/software?field_research_area_value=chem
https://wikis.uni-paderborn.de/pc2doc/Software#Software_Availability
https://wikis.uni-paderborn.de/pc2doc/Software#Software_Availability
https://www.microsoft.com/en-us/research/blog/predicting-ocean-chemistry-using-microsoft-azure
https://www.microsoft.com/en-us/research/blog/predicting-ocean-chemistry-using-microsoft-azure
https://aws.amazon.com/health/biotech-pharma
https://aws.amazon.com/health/biotech-pharma

Specific Molecular Tumor Subtypes, J. Mol. Cancer Ther 13 (12) (2014) 3230–3240.
doi:10.1158/1535-7163.MCT-14-0260.

[11]. Casalino L, Dommer A, Gaieb Z, Barros E, Sztain T, Ahn S-H, Trifan A, Brace A, Bogetti
A, Ma H, Lee H, Turilli M, Khalid S, Chong L, Simmerling C, Hardy D, Maia J, Phillips J,
Kurth T, Stern A, Huang L, McCalpin J, Tatineni M, Gibbs T, Stone J, Jha S, Ramanathan
A, Amaro R, AI-Driven Multiscale Simulations Illuminate Mechanisms of SARS-CoV-2
Spike Dynamics, Tech. rep, Cold Spring Harbor Laboratory Press, United States (11. 2020).
doi:10.1101/2020.11.19.390187.

[12]. Halperin I, Ma B, Wolfson H, Nussinov R, Principles of docking: An overview of search
algorithms and a guide to scoring functions, Proteins: Struct., Funct., Bioinf 47 (4) (2002) 409–
443. doi:10.1002/prot.10115.

[13]. Pagadala NS, Syed K, Tuszynski J, Software for molecular docking: a review, Biophys. Rev 9 (2)
(2017) 91–102. doi:10.1007/s12551-016-0247-1. [PubMed: 28510083]

[14]. Swiss Institute of Bioinformatics, Directory of computer-aided Drug Design tools. URL https://
www.click2drug.org

[15]. FightAIDS@Home. URL https://www.worldcommunitygrid.org/research/faah/overview.do

[16]. OpenPandemics: COVID-19. URL https://www.worldcommunitygrid.org/research/opn1/
overview.do

[17]. Stank A, Kokh DB, Fuller JC, Wade RC, Protein Binding Pocket Dynamics, Acc. Chem. Res 49
(5) (2016) 809–815. doi:10.1021/acs.accounts.5b00516. [PubMed: 27110726]

[18]. Rose AS, Bradley AR, Valasatava Y, Duarte JM, Prlić A, Rose PW, NGL viewer: web-based
molecular graphics for large complexes, Bioinformatics. 34 (21) (2018) 3755–3758. doi:10.1093/
bioinformatics/bty419. [PubMed: 29850778]

[19]. El Khoury L, Santos-Martins D, Sasmal S, Eberhardt J, Bianco G, Ambrosio FA, Solis-Vasquez
L, Koch A, Forli S, Mobley DL, Comparison of affinity ranking using AutoDock-GPU and
MM-GBSA scores for BACE-1 inhibitors in the D3R Grand Challenge 4, J. Comput.-Aided Mol.
Des 33 (12) (2019) 1011–1020. doi:10.1007/s10822-019-00240-w. [PubMed: 31691919]

[20]. Santos-Martins D, Eberhardt J, Bianco G, Solis-Vasquez L, Ambrosio FA, Koch A, Forli
S, D3R Grand Challenge 4: prospective pose prediction of BACE1 ligands with AutoDock-
GPU, J. Comput.-Aided Mol. Des 33 (12) (2019) 1071–1081. doi:10.1007/s10822-019-00241-9.
[PubMed: 31691920]

[21]. LeGrand S, Scheinberg A, Tillack AF, Thavappiragasam M, Vermaas JV, Agarwal R, Larkin J,
Poole D, Santos-Martins D, Solis-Vasquez L, Koch A, Forli S, Hernandez O, Smith JC, Sedova
A, GPU-Accelerated Drug Discovery with Docking on the Summit Super-computer: Porting,
Optimization, and Application to COVID-19 Research, in: Proceedings of the 11th International
Conference on Bioinformatics, Computational Biology and Health Informatics, ACM, 2020.
doi:10.1145/3388440.3412472.

[22]. AutoDock for GPUs and other accelerators. URL https://github.com/ccsb-scripps/AutoDock-
GPU

[23]. Solis-Vasquez L, Santos-Martins D, Tillack A, Andreas F Koch J Eberhardt S. Forli, Parallelizing
Irregular Computations for Molecular Docking, in: Proceedings of the 10th International
Workshop on Irregular Applications: Architectures and Algorithms (IA3), IEEE/ACM, 2020,
pp. 12–21. doi:10.1109/IA351965.2020.00008.

[24]. Le Grand S, Götz AW, Walker RC, SPFP: Speed without compromise—A mixed precision model
for GPU accelerated molecular dynamics simulations, Comput. Phys. Commun 184 (2) (2013)
374–380. doi:10.1016/j.cpc.2012.09.022.

[25]. Santos-Martins D, Solis-Vasquez L, Tillack AF, Sanner MF, Koch A, Forli S, Accelerating
AutoDock4 with GPUs and Gradient-Based Local Search, J. Chem. Theory Comput 17 (2)
(2021) 1060–1073. doi:10.1021/acs.jctc.0c01006. [PubMed: 33403848]

[26]. Huey R, Morris GM, Olson AJ, Goodsell DS, A semiempirical free energy force field with
charge-based desolvation, J. Comput. Chem 28 (6) (2007) 1145–1152. doi:10.1002/jcc.20634.
[PubMed: 17274016]

[27]. Solis FJ, Wets RJB, Minimization by Random Search Techniques, Math. Oper. Res 6 (1) (1981)
19–30. doi:10.1287/moor.6.1.19.

Solis-Vasquez et al. Page 19

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.click2drug.org
https://www.click2drug.org
https://www.worldcommunitygrid.org/research/faah/overview.do
https://www.worldcommunitygrid.org/research/opn1/overview.do
https://www.worldcommunitygrid.org/research/opn1/overview.do
https://github.com/ccsb-scripps/AutoDock-GPU
https://github.com/ccsb-scripps/AutoDock-GPU

[28]. Zeiler MD, ADADELTA: An Adaptive Learning Rate Method, arXiv.org.abs/1212.5701. URL
https://arxiv.org/abs/1212.5701

[29]. CUDA C++ Programming Guide. URL https://docs.nvidia.com/cuda/cuda-c-programming-guide/
index.html

[30]. Morris GM, Goodsell DS, Pique ME, Lindstrom WL, Huey R, Forli S, Hart WE, Halliday S,
Belew R, Olson AJ, AutoDock Version 4.2 - Automated Docking of Flexible Ligands to Flexible
Receptors. User Guide (Updated for version 4.2.6) (2014). URL http://autodock.scripps.edu/faqs-
help/manual/autodock-4-2-user-guide/AutoDock4.2.6_UserGuide.pdf

[31]. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ, AutoDock4
and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem
30 (16) (2009) 2785–2791. doi:10.1002/jcc.21256. [PubMed: 19399780]

[32]. Hartshorn MJ, Verdonk ML, Chessari G, Brewerton SC, Mooij WT, Mortenson PN, Murray CW,
Diverse, high-quality test set for the validation of protein-ligand docking performance, J. Med.
Chem 50 (4) (2007) 726–741. doi:10.1021/jm061277y. [PubMed: 17300160]

[33]. Li Y, Han L, Liu Z, Wang R, Comparative assessment of scoring functions on an updated
benchmark: 2. Evaluation methods and general results, J. Chem. Inf. Model 54 (6) (2014) 1717–
1736. doi:10.1021/ci500081m. [PubMed: 24708446]

[34]. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE,
The Protein Data Bank, Nucleic Acids Res. 28 (1) (2000) 235–242. doi:10.1093/nar/28.1.235.
[PubMed: 10592235]

[35]. OpenCL Programming Guide for the CUDA
Architecture. URL http://developer.download.nvidia.com/compute/DevZone/docs/html/
OpenCL/doc/OpenCL_Programming_Guide.pdf

[36]. Amazon Web Services, Amazon EC2 C5 Instances. URL https://aws.amazon.com/ec2/instance-
types/c5

[37]. Pechan I, Fehér B, Hardware Accelerated Molecular Docking: A Survey, in: Bioinformatics,
InTechOpen, London, United Kingdom, 2012. doi:10.5772/48125.

[38]. Dong D, Xu Z, Zhong W, Peng S, Parallelization of Molecular Docking: A Review, Curr. Top.
Med. Chem 28 (12) (2018) 1015–1028. doi:10.2174/1568026618666180821145215.

[39]. Solis-Vasquez L, Accelerating Molecular Docking by Parallelized Heterogeneous Computing -
A Case Study of Performance, Quality of Results, and Energy-Efficiency using CPUs, GPUs,
and FPGAs, Ph.D. thesis, Technical University of Darmstadt, Germany (2019). doi:10.25534/
tuprints-00009288.

[40]. Van Court T, Gu Y, Herbordt MC, FPGA acceleration of rigid molecule interactions, in:
Proceedings of the 12th Annual Symposium on Field-Programmable Custom Computing
Machines, IEEE, 2004, pp. 300–301. doi:10.1109/FCCM.2004.33.

[41]. Van Court T, Gu Y, Mundada V, Herbordt M, Rigid Molecule Docking: FPGA Reconfiguration
for Alternative Force Laws, EURASIP J. Adv. Signal Process 2006 (1) (2006) 097950.
doi:10.1155/ASP/2006/97950.

[42]. Sukhwani B, Herbordt MC, Acceleration of a production rigid molecule docking code, in:
Proceedings of the International Conference on Field Programmable Logic and Applications,
IEEE, 2008, pp. 341–346. doi:10.1109/FPL.2008.4629955.

[43]. Sukhwani B, Herbordt MC, FPGA acceleration of rigid-molecule docking codes, IET Comput.
Digit. Tech 4 (3) (2010) 184–195. doi:10.1049/iet-cdt.2009.0013. [PubMed: 21857870]

[44]. Sukhwani B, Herbordt MC, GPU Acceleration of a Production Molecular Docking Code, in:
Proceedings of the 2nd Workshop on General Purpose Processing on Graphics Processing Units,
ACM, 2009. doi:10.1145/1513895.1513898.

[45]. Ritchie DW, Venkatraman V, Ultra-fast FFT protein docking on graphics processors,
Bioinformatics. 26 (19) (2010) 2398–2405. doi:10.1093/bioinformatics/btq444. [PubMed:
20685958]

[46]. Simonsen M, Christensen MH, Thomsen R, Pedersen CNS, GPU-Accelerated High-Accuracy
Molecular Docking Using Guided Differential Evolution, Springer, 2013, pp. 349–367.
doi:10.1007/978-3-642-37959-8_16.

Solis-Vasquez et al. Page 20

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arXiv.org.abs/1212.5701
https://arxiv.org/abs/1212.5701
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://autodock.scripps.edu/faqs-help/manual/autodock-4-2-user-guide/AutoDock4.2.6_UserGuide.pdf
http://autodock.scripps.edu/faqs-help/manual/autodock-4-2-user-guide/AutoDock4.2.6_UserGuide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/OpenCL/doc/OpenCL_Programming_Guide.pdf
https://aws.amazon.com/ec2/instance-types/c5
https://aws.amazon.com/ec2/instance-types/c5

[47]. Korb O, Stützle T, Exner TE, Accelerating Molecular Docking Calculations Using Graphics
Processing Units, J. Chem. Inf. Model 51 (4) (2011) 865–876. doi:10.1021/ci100459b. [PubMed:
21434638]

[48]. McIntosh-Smith S, Price J, Sessions RB, Ibarra AA, High performance in silico virtual drug
screening on many-core processors, Int. J. High Perform. Comput. Appl 29 (2) (2014) 119–134.
doi:10.1177/1094342014528252.

[49]. Kannan S, Ganji R, Porting Autodock to CUDA, in: Proceedings of the IEEE Congress on
Evolutionary Computation, IEEE, 2010, pp. 1–8. doi:10.1109/CEC.2010.5586277.

[50]. Pechan I, Fehér B, Molecular Docking on FPGA and GPU Platforms, in: Proceedings of the 21st
International Conference on Field Programmable Logic and Applications (FPL), IEEE, 2011, pp.
474–477. doi:10.1109/FPL.2011.93.

[51]. Pechan I, Fehér B, Bérces A, FPGA-based acceleration of the AutoDock molecular docking
software, in: Proceedings of the 6th Conference on Ph.D. Research in Microelectronics
Electronics, IEEE, 2010, pp. 1–4. URL https://ieeexplore.ieee.org/document/5587139

[52]. Solis-Vasquez L, Koch A, A Performance and Energy Evaluation of OpenCL-accelerated
Molecular Docking, in: Proceedings of the 5th International Workshop on OpenCL, ACM, 2017.
doi:10.1145/3078155.3078167.

[53]. Solis-Vasquez L, Koch A, A Case Study in Using OpenCL on FPGAs: Creating an Open-
Source Accelerator of the AutoDock Molecular Docking Software, in: Proceedings of the 5th
International Workshop on FPGAs for Software Programmers (FSP), VDE Verlag, 2018, pp.
1–10. URL https://ieeexplore.ieee.org/document/8470463

[54]. Mendonça E, Barreto M, Guimarães V, Santos N, Pita S, Boratto M, Accelerating
Docking Simulation Using Multicore and GPU Systems, in: Proceedings of the 17th
International Computational Science and Its Applications (ICCSA), Springer, 2017, pp. 439–451.
doi:10.1007/978-3-319-62392-4_32.

[55]. Trott O, Olson AJ, AutoDock Vina: Improving the speed and accuracy of docking with a new
scoring function, efficient optimization, and multithreading, J. Comput. Chem 31 (2) (2010)
455–461. doi:10.1002/jcc.21334. [PubMed: 19499576]

[56]. Ravindranath PA, Forli S, Goodsell DS, Olson AJ, Sanner MF, AutoDockFR: Advances in
Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility, PLoS Comput. Biol
11 (12) (2015) 1–28. doi:10.1371/journal.pcbi.1004586.

[57]. Roh Y, Lee J, Park S, Kim J-I, A molecular docking system using CUDA, in: Proceedings
of the International Conference on Hybrid Information Technology, ACM, 2009, pp. 28–33.
doi:10.1145/1644993.1644999.

[58]. Guerrero GD, Pérez-Sánchez H, Wenzel W, Cecilia JM, García JM, Effective Parallelization
of Non-bonded Interactions Kernel for Virtual Screening on GPUs, in: Proceedings of the 5th
International Conference on Practical Applications of Computational Biology & Bioinformatics
(PACBB), Springer, 2011, pp. 63–69. doi:10.1007/978-3-642-19914-1_9.

[59]. Saadi H, Nouali Taboudjemat N, Rahmoun A, Imbernón B, Pérez-Sánchez H, Cecilia JM,
Parallel Desolvation Energy Term Calculation for Blind Docking on GPU Architectures, in:
Proceedings of the 46th International Conference on Parallel Processing Workshops (ICPPW),
IEEE, 2017, pp. 16–22. doi:10.1109/ICPPW.2017.16.

[60]. Saadi H, Nouali Taboudjemat N, Rahmoun A, Imbernón B, Pérez-Sánchez H, Cecilia JM,
Efficient GPU-based parallelization of solvation calculation for the blind docking problem, J.
Supercomput 76 (3) (2019) 1980–1998. doi:10.1007/s11227-019-02834-5.

[61]. Thavappiragasam M, Scheinberg A, Elwasif W, Hernandez O, Sedova A, Performance Portability
of Molecular Docking Miniapp On Leadership Computing Platforms, in: Proceedings of the
International Workshop on Performance, Portability and Productivity in HPC (P3HPC), IEEE/
ACM, 2020, pp. 36–44. doi:10.1109/P3HPC51967.2020.00009.

[62]. Solis-Vasquez L, Santos-Martins D, Koch A, Forli S, Evaluating the Energy Efficiency of
OpenCL-accelerated AutoDock Molecular Docking, in: Proceedings of the 28th Euromicro
International Conference on Parallel, Distributed and Network-Based Processing (PDP), IEEE,
2020, pp. 162–166. doi:10.1109/PDP50117.2020.00031.

Solis-Vasquez et al. Page 21

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://ieeexplore.ieee.org/document/5587139
https://ieeexplore.ieee.org/document/8470463

[63]. Xilinx Vitis: Unified software platform for all developers. URL https://www.xilinx.com/products/
design-tools/vitis.html

[64]. The oneAPI Specification. URL https://www.oneapi.com

Solis-Vasquez et al. Page 22

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.xilinx.com/products/design-tools/vitis.html
https://www.xilinx.com/products/design-tools/vitis.html
https://www.oneapi.com

• Irregular docking computations in AutoDock can be effectively accelerated

using GPUs

• Early termination of molecular searches can reduce AutoDock-GPU runtimes

• Parallelism in molecular docking can be leveraged on various hardware

accelerators

Solis-Vasquez et al. Page 23

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1:
Binding between a ligand and a receptor of the 3ptb complex. The receptor is represented

simultaneously as surface (surrounding the cavity) and as sticks (anywhere else). The

binding pocket is the cavity on the surface or in the interior of the receptor that has suitable

properties for binding a ligand [17]. This image was created with NGL viewer [18].

Solis-Vasquez et al. Page 24

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2:
Degrees of freedom of a theoretical ligand molecule. Atoms are labelled with the A, B,

C, …, O characters, while bonds between atoms are depicted as connecting lines. Each

rotatable bond (E–H and I–J) is associated to a torsion, namely the rotation of affected

ligand atoms around the rotatablebond axis.

Solis-Vasquez et al. Page 25

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3:
Visualization of AUTODOCK-GPU computations being mapped onto OpenCL elements.

Basically, a population processed by an LGA run (RunID) is decomposed into their

individuals, and each individual (IndID) is mapped onto a work-group (WGID). Fine-grained

tasks are processed by work-items (wi0 … wiL–1).

Solis-Vasquez et al. Page 26

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4:
Impact on docking runtime of various OpenCL work-group / CUDA thread-block sizes.

Solis-Vasquez et al. Page 27

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5:
Geometric mean and maximum values of docking runtimes.

Solis-Vasquez et al. Page 28

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6:
Geometric mean of total runtimes achieved on the A100 GPU using v1.2 (our previous work

[23]) and v1.3 (Fig 5).

Solis-Vasquez et al. Page 29

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7:
Geometric mean of docking runtimes achieved on the A100 GPU using autostop at different

repetition intervals (asfreq). Horizontal lines correspond to the geometric mean of docking

runtimes achieved without autostop (Fig 5).

Solis-Vasquez et al. Page 30

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 8:
Geometric mean of docking runtimes achieved on the A100 GPU using either autostop
(asfreq = 5), heuristics, or both combined. All cases result in lower runtimes compared to the

baseline (no autostop, no heuristics).

Solis-Vasquez et al. Page 31

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 9:
Geometric mean of docking runtimes achieved combining both autostop + heuristics on the

A100 GPU (Figure 8) and the AWS c5.24xlarge CPU.

Solis-Vasquez et al. Page 32

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Solis-Vasquez et al. Page 33

Table 1:

Mapping of AUTODOCK-GPU computations onto OpenCL elements. The parallelization levels are also

indicated as comments in Algorithms 1, 2, 3.

Computations OpenCL elements Parallelization level

GA/LS generation Kernel Coarse

Individual Work-Group Medium

Scoring/Gradient Work-Item Fine

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Solis-Vasquez et al. Page 34

Table 2:

Configuration of AUTODOCK-GPU parameters in our evaluation.

Parameter Value Description

R 100 Number of LGA runs

P 150 Population size

lsrate 100% Population subset undergoing LS

Nscore−evals
MAX 2’500’000 Maximum number of score evaluations

Ngens
MAX 99’999 Maximum number of generations

stopstd 0.15 [kcal/mol] Threshold of score deviation causing early termination due to autostop

asfreq 5 Number of generations used as a repetition interval for the std. deviation check in autostop

Nscore−evals
MAX−HEURIS 50’000’000 Maximum number of score evaluations under heuristics

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Solis-Vasquez et al. Page 35

Table 3:

Input dataset used in our evaluation.

ID 1u4d 1xoz 1yv3 1owe 1oyt 1ywr 1t46 2bm2 1mzc 1r55

N rot 0 1 2 3 4 5 6 7 8 9

N atom 23 30 23 27 34 38 40 33 38 27

ID 5wlo 1kzk 3s8o 5kao 1hfs 1jyq 2d1o 3drf 4er4 3er5

N rot 10 11 12 15 18 20 23 26 30 31

N atom 46 45 44 44 54 60 44 63 93 108

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Solis-Vasquez et al. Page 36

Table 4:

Technical characteristics of the GPU cards used in our evaluation. In all cards, the system connectivity was

PCIe Gen3x16. The number of OpenCL compute units (CUs) was obtained with the clinfo utility.

Characteristic RTX 2070
SUPER

V100 A100

Vendor NVIDIA NVIDIA NVIDIA

Architecture Turing Volta Ampere

Frequency (boost) 1.77 GHz 1.38 GHz 1.41 GHz

Cores 2’560 5’120 6’912

FP32 performance 9.1 TFLOPS 14.1 TFLOPS 19.5 TFLOPS

Memory subsystem GDDR6 HBM2 HBM2e

Memory bandwidth 448 GB/s 897 GB/s 1’555 GB/s

Memory capacity 8 GB 32 GB 40 GB

Driver support CUDA 11 CUDA 11 CUDA 11

OpenCL CUs 40 80 108

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Solis-Vasquez et al. Page 37

Table 5:

Docking runtimes (s), scores (kcal/mol), and RMSDs (Å) achieved using the OpenCL version, with and

without the autostop option, on the A100 GPU. The best values within each case are colored.

LS ID Metric No autostop autostop

Solis-Wets

1u4d

Runtime 1.36 s 0.48 s

Score −7.27 kcal/mol −7.26 kcal/mol

RMSD 1.36 Å 1.35 Å

2bm2 Runtime 2.92 s 2.90 s

Score −10.09 kcal/mol −10.54 kcal/mol

RMSD 2.01 Å 5.28 Å

3er5

Runtime 21.61 s 21.58 s

Score −8.92 kcal/mol −9.56 kcal/mol

RMSD 4.92 Å 3.78 Å

ADADELTA

1u4d

Runtime 1.69 s 0.52 s

Score −7.27 kcal/mol −7.27 kcal/mol

RMSD 1.36 Å 1.36 Å

2bm2

Runtime 4.89 s 2.23 s

Score −10.59 kcal/mol −10.59 kcal/mol

RMSD 5.31 Å 5.30 Å

3er5

Runtime 52.15 s 52.25 s

Score −14.74 kcal/mol −13.93 kcal/mol

RMSD 4.57 Å 5.04 Å

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Solis-Vasquez et al. Page 38

Table 6:

Docking runtimes (s), scores (kcal/mol), and RMSDs (Å) achieved using the OpenCL version, combining both

autostop + heuristics options, on the A100 GPU and the AWS c5.24xlarge CPU. The best values within each

case are colored.

LS ID Metric A100 c5.24xlarge

Solis-Wets

1u4d

Runtime 0.05 s 0.17 s

Score −7.25 kcal/mol −7.26 kcal/mol

RMSD 1.35 Å 1.35 Å

2bm2

Runtime 2.84 s 71.81 s

Score −10.47 kcal/mol −10.52 kcal/mol

RMSD 5.24 Å 5.33 Å

3er5

Runtime 28.78 s 1’582.57 s

Score −12.48 kcal/mol −12.82 kcal/mol

RMSD 5.33 Å 3.95 Å

ADADELTA

1u4d

Runtime 0.05 s 0.17 s

Score −7.25 kcal/mol −7.25 kcal/mol

RMSD 1.35 Å 1.33 Å

2bm2

Runtime 1.44 s 71.62 s

Score −10.04 kcal/mol −10.42 kcal/mol

RMSD 1.80 Å 5.30 Å

3er5

Runtime 52.25 s 1’258.69 s

Score −12.66 kcal/mol −13.41 kcal/mol

RMSD 4.69 Å 4.20 Å

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Solis-Vasquez et al. Page 39

Ta
b

le
 7

:

Pa
ra

lle
liz

ed
 m

ol
ec

ul
ar

 d
oc

ki
ng

 p
ro

gr
am

s.
 A

bb
re

vi
at

io
ns

 o
f

se
ar

ch
 m

et
ho

ds
: D

E
 (

D
if

fe
re

nt
ia

l E
vo

lu
tio

n)
, A

C
O

 (
A

nt
 C

ol
on

y
O

pt
im

iz
at

io
n)

, N
M

S
(N

el
de

r

an
d

M
ea

d)
, G

A
 (

G
en

et
ic

 A
lg

or
ith

m
),

 S
W

 (
So

lis
-W

et
s)

, A
D

 (
A

D
A

D
E

LT
A

),
 I

L
S

(I
te

ra
te

d
L

oc
al

 S
ea

rc
h)

, B
FG

S
(B

ro
yd

en
 F

le
tc

he
r

G
ol

df
ar

b
Sh

an
no

).

C
at

eg
or

y
O

ri
gi

na
l

pr
og

ra
m

P
ar

al
le

liz
ed

ve
rs

io
n

R
el

ea
se

ye
ar

Sc
or

in
g

fu
nc

ti
on

G
lo

ba
l (

L
oc

al
)

se
ar

ch
 m

et
ho

d
Ta

rg
et

ac
ce

le
ra

to
r(

s)
D

es
cr

ip
ti

on
la

ng
ua

ge

FF
T

/c
or

r

Z
D

O
C

K
V

an
 C

ou
rt

 e
t a

l.
[4

0,
 4

1]
20

04
, 2

00
6

–
3D

 c
or

re
la

tio
n

FP
G

A
V

H
D

L

PI
PE

R
Su

kh
w

an
i e

t a
l.

[4
4]

20
09

Fo
rc

e-
fi

el
d

FF
T

G
PU

C
U

D
A

Su
kh

w
an

i e
t a

l.
[4

2,
 4

3]
20

08
, 2

01
0

Fo
rc

e-
fi

el
d

3D
 c

or
re

la
tio

n
FP

G
A

V
H

D
L

H
ex

R
itc

hi
e

et
 a

l.
[4

5]
20

10
Fo

rc
e-

fi
el

d
FF

T
G

PU
C

U
D

A

N
at

ur
e

M
ol

D
oc

k
Si

m
on

se
n

et
 a

l.
[4

6]
20

13
Fo

rc
e-

fi
el

d
D

E
G

PU
, C

PU
C

U
D

A
, O

pe
nM

P

PL
A

N
T

S
K

or
b

et
 a

l.
[4

7]
20

11
E

m
pi

ri
ca

l
A

C
O

 (
N

M
S)

G
PU

O
pe

nG
L

, N
V

ID
IA

 C
g

B
U

D
E

M
cI

nt
os

h-
Sm

ith
 e

t a
l.

[4
8]

20
14

Fo
rc

e-
fi

el
d

G
A

G
PU

, C
PU

O
pe

nC
L

A
U

T
O

D
O

C
K

K
an

na
n

et
 a

l.
[4

9]
20

10
Fo

rc
e-

fi
el

d
G

A
G

PU
C

U
D

A

Pe
ch

an
 e

t a
l.

[5
1,

 5
0]

20
10

, 2
01

1
Fo

rc
e-

fi
el

d
G

A
 (

SW
)

FP
G

A
, G

PU
V

er
ilo

g,
 C

U
D

A

M
en

do
nç

a
et

 a
l.

[5
4]

20
17

Fo
rc

e-
fi

el
d

G
A

G
PU

 +
 C

PU
C

U
D

A
, O

pe
nM

P

So
lis

-V
as

qu
ez

 e
t a

l.
[5

2,
 5

3]
20

17
, 2

01
8

Fo
rc

e-
fi

el
d

G
A

 (
SW

)
G

PU
, C

PU
, F

PG
A

O
pe

nC
L

M
IN

IA
U

T
O

D
O

C
K

-G
PU

 [
61

]
20

20
Fo

rc
e-

fi
el

d
G

A
 (

SW
)

G
PU

C
U

D
A

, K
ok

ko
s,

 H
IP

A
U

T
O

D
O

C
K

-G
PU

 [
21

, 2
3,

 2
5]

20
20

, 2
02

1
Fo

rc
e-

fi
el

d
G

A
 (

SW
/A

D
)

G
PU

, C
PU

, F
PG

A
O

pe
nC

L
, C

U
D

A

In
tr

in
si

c
A

U
T

O
D

O
C

K
 V

IN
A

T
ro

tt
et

 a
l.

[5
5]

20
09

E
m

pi
ri

ca
l

IL
S

(B
FG

S)
C

PU
C

+
+

A
U

T
O

D
O

C
K

FR
R

av
in

dr
an

at
h

et
 a

l.
[5

6]
20

15
Fo

rc
e-

fi
el

d
G

A
 (

SW
)

C
PU

Py
th

on
, C

+
+

Pa
ir

w
is

e

–
R

oh
 e

t a
l.

[5
7]

20
09

Fo
rc

e-
fi

el
d

–
G

PU
C

U
D

A

–
G

ue
rr

er
o

et
 a

l.
[5

8]
20

11
Fo

rc
e-

fi
el

d
–

G
PU

C
U

D
A

–
Sa

ad
i e

t a
l.

[5
9,

 6
0]

20
17

, 2
01

9
Fo

rc
e-

fi
el

d
–

G
PU

, C
PU

C
U

D
A

, O
pe

nM
P

Parallel Comput. Author manuscript; available in PMC 2023 March 01.

	Abstract
	Introduction
	Functionality Overview
	Lamarckian Genetic Algorithm
	Local Search

	Performance Enhancements
	Parallelization
	Recent improvements

	Listing 1:
	Methodology
	Program configuration
	Dataset
	Evaluation platforms

	Results and Discussion
	Runtime-based performance
	Autostop and heuristics
	Performance comparison between GPUs and CPUs

	Related Work
	Parallelization of molecular docking
	AutoDock-GPU

	Conclusions and Future Work
	Appendices
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Figure 8:
	Figure 9:
	Table 1:
	Table 2:
	Table 3:
	Table 4:
	Table 5:
	Table 6:
	Table 7:

