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A T M O S P H E R I C  S C I E N C E

Ozone chemistry in western U.S. wildfire plumes
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James H. Crawford7, Joshua P. DiGangi7, Glenn S. Diskin7, Alan Fried8, Emily M. Gargulinski9, 
Jessica B. Gilman4, Georgios I. Gkatzelis4,5‡, Hongyu Guo5,6, Johnathan W. Hair7, Samuel R. Hall10, 
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L. Gregory Huey14, Jose L. Jimenez5,6, Aaron Lamplugh4,5, Young Ro Lee14, Jin Liao11,15, 
Jakob Lindaas16||, J. Andrew Neuman4,5, John B. Nowak7, Jeff Peischl4,5, David A. Peterson17, 
Felix Piel18,19,20, Dirk Richter8, Pamela S. Rickly4,5, Michael A. Robinson4,5,6, Andrew W. Rollins4, 
Thomas B. Ryerson4¶, Kanako Sekimoto21, Vanessa Selimovic22, Taylor Shingler7,  
Amber J. Soja7,9, Jason M. St. Clair11,12, David J. Tanner14, Kirk Ullmann10, Patrick R. Veres4, 
James Walega8, Carsten Warneke4, Rebecca A. Washenfelder4, Petter Weibring8, 
Armin Wisthaler18,20, Glenn M. Wolfe11,12, Caroline C. Womack4,5, Robert J. Yokelson22

Wildfires are a substantial but poorly quantified source of tropospheric ozone (O3). Here, to investigate the highly 
variable O3 chemistry in wildfire plumes, we exploit the in situ chemical characterization of western wildfires 
during the FIREX-AQ flight campaign and show that O3 production can be predicted as a function of experimen-
tally constrained OH exposure, volatile organic compound (VOC) reactivity, and the fate of peroxy radicals. The O3 
chemistry exhibits rapid transition in chemical regimes. Within a few daylight hours, the O3 formation substantially 
slows and is largely limited by the abundance of nitrogen oxides (NOx). This finding supports previous observations 
that O3 formation is enhanced when VOC-rich wildfire smoke mixes into NOx-rich urban plumes, thereby deteriorating 
urban air quality. Last, we relate O3 chemistry to the underlying fire characteristics, enabling a more accurate repre-
sentation of wildfire chemistry in atmospheric models that are used to study air quality and predict climate.

INTRODUCTION
Wildfires emit large quantities of reactive trace species to the atmo-
sphere, including primary pollutants, as well as precursors for the 
production of O3 and particulate matter (1, 2). The number and size 
of wildfires are predicted to increase as a result of historical fire sup-
pression practices and ongoing climate change (3). This threatens to 
offset some of the improvements in air quality in the United States 
over the past few decades, particularly during fire season (4).

O3 formation depends on the mix of initial emissions and the 
postemission atmospheric processing, both of which are highly 
variable (Fig. 1). As a result, O3 formation observed in previous field 
studies exhibits substantial fire-to-fire variability (5). Numerous 
studies have investigated O3 chemistry in wildfire plumes using 
atmospheric models of different dynamical and chemical complexity 

(6–11), but accurate simulation of wildfire chemistry has proved 
challenging. Several hypotheses have been proposed to explain the 
model deficiencies, such as uncertain emission inventories, inaccu-
rate description of oxidation chemistry, and difficulties in modeling 
plume dispersion. O3 production from wildfire emissions remains 
as a major uncertainty in assessing the tropospheric O3 burden (12).

The in situ observations of a suite of trace species made during 
the Fire Influence on Regional to Global Environments and Air 
Quality (FIREX-AQ) campaign (Supplementary Materials, section S1) 
enable a detailed diagnosis of key variables controlling O3 forma-
tion, including oxidant sources, volatile organic compound (VOC) 
emissions, and the chemistry of NOx and peroxy radicals (RO2; the sum 
of hydroperoxy radical and organic peroxy radical) (Fig. 1). These 
variables depend on fire conditions, undergo rapid transitions in 
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chemical regimes, and hence profoundly influence the O3 chemistry 
during smoke transport. Building upon our systematic evaluation 
of O3 chemistry, we provide a parameterization to estimate the O3 
formation from temperate wildfires.

During FIREX-AQ, the NASA DC-8 aircraft sampled fires rep-
resentative of those in the major ecosystems in the western United 
States in July and August 2019. Figure 2B shows one example flight 
track that involves multiple crosswind transects of a fire plume at 
different distances downwind. Previous analyses of aircraft-based 
observations typically studied the plume evolution in a pseudo-
Lagrangian framework. Such analysis is often complicated by the fact 
that fire conditions change over time and by aircraft navigation ar-
tifacts, such as missing the dense plume in some crosswind tran-
sects (Supplementary Materials, section S1). Here, to investigate the 
O3 chemistry in a way that mitigates some of the challenges associated 
with fluctuations in fire emissions, we apply single transect analysis 

(STA) that examines the differences in the plume composition across 
each crosswind transect. Because of the high aerosol optical extinc-
tion in the center of large smoke plumes, the center experiences 
substantially lower actinic flux and photolysis rates than the edges 
at a given altitude. This provides a different extent of photochemical 
processing and, in particular, a range of time-integrated exposure of 
emissions to hydroxyl radicals (i.e., OH exposure) between the plume 
center and edges (Fig. 2A as an example). Since a single transect 
samples smoke emitted at similar times, the assumption of stationary 
fire conditions is often better satisfied in STA than traditional pseudo-
Lagrangian analysis. Spatial variability in fire emissions and complex 
plume structure can still complicate the STA, so transects suitable 
for the STA are scrutinized by a set of stringent criteria (Supple-
mentary Materials, section S4).

The STA is combined with a conceptual model (fig. S13 and 
Supplementary Materials, section S5) to investigate the daytime 
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Fig. 2. Single transect analysis (STA) examines the differences in plume composition across individual transects of the wildfire plumes. In (B), the flight track on 
3 August 2019 is colored by OH exposure, which is lower in plume center than edges, as a result of high aerosol optical extinction in plume center. In (A), the dilution-corrected 
Ox formation (i.e., Ox/CO) is illustrated in one near-field transect.

Fig. 1. Simplified scheme to illustrate the factors influencing O3 formation in wildfire plumes. Wildfires emit oxidant precursors, NOx, and an enormous diversity of 
VOCs. In the near field, OH produced via photolysis of HONO initiates VOC oxidation, which proceeds in the presence of NOx and leads to efficient O3 formation. After a 
few hours, the HONO has been consumed and NOx has been both diluted sufficiently and converted to PANs and ​​NO​3​ −​​ such that the O3 formation slows by several orders 
of magnitude. In this simplified scheme, the width of arrows having the same color represents the relative importance of competing pathways.
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chemical closure of odd oxygen [Ox = O3 + NO2 + HNO3 + particulate 
nitrate + peroxyacylnitrates (PANs)]. Ox accounts for the inter-
conversion between O3 and other Ox species (13). The instanta-
neous production rate of Ox can be expressed by the product of 
three terms: VOC reactivity (VOCR), OH concentration, and the 
fraction of peroxy radicals that react with NO (fRO2 + NO) (i.e., Eq. 1). 
VOCR is a condensed parameter summarizing several properties of 
individual VOCs (Eq.2), including the VOC concentration ([VOCi]), 
the reaction rate coefficient of the VOC with OH (kOH + VOCi), the 
number of peroxy radicals produced from the oxidization of each 
VOCi molecule to its first-generation closed-shell products (i), and 
the alkylnitrate branching fraction of the VOCi-derived RO2 + NO 
reaction (i). More details about VOCR are described in the Supple-
mentary Materials, section S7.

Integrating Eq. 1 from the fresh (i.e., lowest OH exposure) to the 
aged portion (i.e., highest OH exposure) across each plume transect 
(i.e., Eq. 3) reflects the predicted Ox formation based on the obser-
vationally constrained VOCR, OH exposure, and RO2 chemistry. 
To account for dilution and background contributions, excess mix-
ing ratios (i.e., the difference between smoke and background air, 
denoted as  in Eq. 3) were normalized to [CO], which is a stable 
plume tracer. The predicted Ox production can be compared to the 
direct measurement of the same transect (i.e., left hand side of Eq. 3), 
providing a diagnostic of chemical closure, enabling constraints on 
the sources and sinks of Ox. This analysis is denoted as Ox chemical 
closure analysis.

	​​  d [ ​O​ x​​] ─ dt  ​  =  VOCR · [OH ] · ​f​ R​O​ 2​​+NO​​​	 (1)

	​​ VOCR  = ​ ∑ i=1​ i=n ​​ ​k​ OH+VO​C​ i​​​​ · [VO ​C​ i​​ ] · ​​ i​​ · (1 − ​​ i​​)​​	 (2)

	 ​​​​(
​​ ​ 
 [ Ox] ─ 
 [ CO]

 ​​
)

​​​ 
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​​ − ​​
(

​​ ​ 
 [ Ox] ─ 
 [ CO]

 ​​
)

​​​ 
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​​​  = ​∫fresh​ 
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 ​​ ​ 
VOC ​R​ [OH]t​​ ─ 
 ​[CO]​ [OH]t​​

 ​ · ​f​ R​O​ 2​​+NO​​ · d([OH ] t)​​

(3)

RESULTS
Variables influencing Ox formation
OH exposure
The OH exposure is estimated from the observed ratio of phenol to 
benzene (eq. S6 and Supplementary Materials, section S3), both of 
which are emitted in high yields in wildfires. Phenol reacts with OH 
∼20 times faster than benzene, so their ratio serves as a measurement 
of photochemical processing in the absence of other substantial sinks 
or sources. The OH exposure is highly correlated with the nitrous 
acid (HONO) loss. Figure 3A shows the measurements on the 
3 August 2019 flight as an example. Before 90% of HONO is lost, 
the OH exposure correlates with the lost HONO whose photolysis 
accounts for >50% of the total HOx production rate (Supplementary 
Materials, section S3). HONO photolysis is thus a critical OH source 
in wildfire plumes, consistent with a recent study by Peng et al. (14). 
After HONO is depleted, the OH exposure continues to increase 
because of the photolysis of O3 and aldehydes, albeit at a much 
slower rate, indicating lower [OH] (figs. S5 and S6).
VOC reactivity
The approximately 80 quantified VOCs are classified into seven 
structural categories. Figure 3B shows the relative contribution to 
total VOCR of each category averaged from transects included in 
the Ox chemical closure analysis. On average, oxygenated VOCs 
(OVOCs) are the largest contributor, together accounting for about 
one-third of VOCR. The OVOCs are predominantly small aldehydes, 
including formaldehyde and acetaldehyde (fig. S21). Alkanes and 
alkenes are the second largest contributors to VOCR. The historically 
overlooked furans also play an important role in wildfire plumes, 
contributing about one-fifth of VOCR, consistent with recent find-
ings from lab studies (10, 15). While oxygenated aromatics, primarily 
guaiacol, catechol, and creosols, account for only one-tenth of total 
VOCR, their oxidation contributes a much larger fraction of the 
secondary organic aerosol (SOA) formed [∼60% as found in (16, 17)].

The relative importance of each VOC category to total VOCR 
changes with OH exposure. An example transect is shown in fig. S22. 
Many of the primary emissions, including alkenes, furans, and 
oxygenated aromatics, are rapidly oxidized, and their importance 
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Fig. 3. Production and fate of OH. (A) shows that the OH exposure correlates with the amount of HONO loss [fHONO,lost = 1 − (HONO/CO)/(HONO/CO)max] for the 
3 August 2019 Williams Flats Fire. The correlation indicates that OH is produced mainly by HONO photolysis in the near field. The color represents the relative contribution 
of HONO photolysis to total HOx production rate (denoted as fjHONO). (B) shows that OVOCs, alkanes/alkenes, and furans are the major contributors to total VOCR based 
on the average of transects included in the Ox chemical closure analysis.
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decreases with increasing OH exposure. In contrast, small aldehydes 
have substantial secondary sources, and, as a result, their contribu-
tion to the total VOCR increases over time. The VOCR of longer 
lived compounds, such as CO, remains relatively constant.
RO2 chemistry
O3 is produced via the reaction of RO2 with NO. There are, howev-
er, a number of processes that can compete with this reaction. Thus, 
to understand Ox formation in wildfire plumes, knowing the RO2 
fate is critical. With direct measurements of organic hydroperoxides 
(ROOH) and hydroxynitrates (RONO2) from the OH-initiated 
oxidation of small alkenes (i.e., ethene and propene), we are able to 
provide the first experimental constraint on RO2 fate in wildfire 
plumes. We probe the competition between RO2 + NO and RO2 + 
HO2 reactions and thereby estimate the fraction of RO2 that reacts 
with NO (fRO2 + NO). Figure 4 shows the evolution of propene-
derived ROOH and RONO2 in two transects with different NO levels. 
In the transect shown in Fig. 4A, where [NO] is above 500 parts per 
trillion by volume (pptv), only RONO2 is produced, as the RO2 + 
NO reaction outruns the RO2 + HO2 reaction. In the transect shown 
in Fig. 4B, [NO] is below 500 pptv and reaches as low as 50 pptv. As 
a result of the low [NO], both ROOH and RONO2 are produced, 
suggesting that RO2 + HO2 and RO2 + NO reactions are competi-
tive. H2O2, which is a product of HO2 + HO2 reaction, shows a similar 
trend as ROOH in these two transects (fig. S24).

Measurement imprecision precludes the estimate of a pointwise 
fRO2 + NO across each transect, so we apply Eq. 4 to calculate transect-
averaged fRO2 + NO using the transect-integrated production of 
RONO2 (i.e., PRONO2; eq. S29) and ROOH (i.e., PROOH; eq. S30). 
fRO2 + NO is calculated from both ethene and propene systems, and 
they are consistent within 10% (fig. S25). Figure 5A shows the evo-
lution of fRO2 + NO for the Williams Flats Fire sampled on two different 
days. On both days, the fRO2 + NO decreases with downwind distance, 
illustrating the transition of RO2 fate from an RO2 + NO–dominated 
regime to a mixed regime with increasing importance of RO2 + HO2. 
The change rate of fRO2 + NO varies between fires. On 7 August 2019, 

the fRO2 + NO decreases from 1 to 0.7 after the smoke travels from 25 to 
100 km. On 3 August 2019, the fRO2 + NO decreases more rapidly 
with downwind distance, and it reaches ∼60% at 45 km (estimated 
transport time ∼3 hours). Such difference is likely caused by fire 
strength and fuel consumption. The fire on 7 August 2019 is the most 
intense fire sampled during FIREX-AQ, with the fire radiative power 
(FRP) up to 4.4 × 104 MW and 72.3 km2 daily area burned. The fire 
on 3 August 2019 has lower intensity (i.e., peak FRP ∼1.5 × 104 MW) and 
smaller daily burned area (43.2 km2). It takes more time for the NOx 
concentration in intense fires to decline to a level where RO2 + HO2 
reactions can become competitive. Note that over 90% of fires around 
the world have FRP <100 MW (18), so that the transition of fRO2 + NO 
can occur rapidly. More importantly, a large fraction of wildfire 
VOCs is oxidized in the mixed regime. As shown in Fig. 5B, for both 
fires, ∼70% of the VOCR remains when fRO2 + NO decreases to 0.6

	​​

​f​ R​O​ 2​​ + NO​​

​ 

= ​ 
​k​ R​O​ 2​​ + NO​​ · [NO]

  ────────────────────   ​k​ R​O​ 2​​ + NO​​ · [NO ] + ​k​ R​O​ 2​​ + H​O​ 2​​​​ · [H​O​ 2​​] ​

    ​    
​
​ 

= ​ 
​ ​P​ RON​O​ 2​​​​ _ ​​ RON​O​ 2​​​​​ ─ 

​ ​P​ RON​O​ 2​​​​ _ ​​ RON​O​ 2​​​​​ + ​ ​P​ ROOH​​ _ ​​ ROOH​​​
 ​
 ​​	  (4)

This regime transition is a result of [NOx] decrease, which is 
caused primarily by dilution with ambient air and by chemical loss 
of NOx. The major NOx oxidation products are PAN and nitrate 
(​N ​O​3​ −​​ = HNO3 + particulate nitrate). Together, they account for 
nearly all of NOx oxidation products, NOz (= NOy − NOx− HONO) 
(fig. S27). The fractions of PAN and nitrate in total reactive oxidized 
nitrogen (NOy) increase with OH exposure as a result of NOx con-
version (Fig. 6A), consistent with previous studies (6, 19, 20).

Because nitrate is a permanent NOx sink but PAN is a temporary 
NOx reservoir, the NOx loss pathways affect O3 formation in the 
long-range transport of wildfire plumes. To investigate the compe-
tition between NOx loss pathways, we use STA. PAN/CO and 
NOz/CO correlation slopes (fig. S28) give the relative fraction of 

Fig. 4. The measurements of ROOH and RONO2 from propene oxidation are used to diagnose the RO2 fate. The ROOH is not produced in the transect with high [NO] 
(A) but produced in the transect with low [NO] (B). The signals of both RONO2 and ROOH are divided by the branching ratio of the corresponding RO2 reaction (i.e., ). The 
ROOH signal is multiplied by a factor of 4 to be shown in the same scale as RONO2. The shaded area represents the 25th to 75th percentile. ppb, parts per billion.



Xu et al., Sci. Adv. 7, eabl3648 (2021)     8 December 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

5 of 10

NOx loss to PAN (denoted as fPAN) as the smoke chemically evolved 
from the photochemical condition in plume center to that in plume 
edge across individual transects. fPAN is different from PAN/NOz, 
as the latter is an accumulative property that depends on initial 
emissions and the integral of NOx loss over time. Figure 6B shows 
fPAN for each transect of several fires as a function of smoke age. 
Despite fire-to-fire variability, fPAN is 0.2 to 0.4 at a smoke age of 
0.5 hour and rapidly increases to 0.8 to 1 at 2 hours. This trend sug-
gests that the major NOx oxidation product transitions from ​N ​O​3​ −​​ 
to PAN after ∼2 hours of transport.

This transition is mainly driven by the change in [CH3CHO]/[NO2], 
which increases with smoke age (fig. S30) and reflects the fact that 
NO2 is chemically lost to other NOy species, but CH3CHO has sub-
stantial production from VOC oxidation. Larger [CH3CHO]/[NO2] 
favors the PAN formation by producing more acetyl peroxy radical 
(Supplementary Materials, section S8). Therefore, fire conditions 
that affect the [CH3CHO]/[NO2], or broadly the [VOCs]/[NOx], alter 
the partitioning between NOy species and, as a result, downwind O3 
formation. Figure S33 shows that the plateau value of PAN/NOy 
from different fires negatively correlates with the modified combustion 
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Fig. 6. The evolution of the partitioning of NOy species. (A) shows measurements of the 3 August 2019 Williams Flats Fire. As smoke ages, the NOx and HONO emitted 
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efficiency (MCE). This observation is consistent with the finding from 
STA that higher emission ratios of [CH3CHO]/[NO2] (associated 
with lower MCE; fig. S38) favors NOx loss to PAN.

Ox chemical closure analysis
We now return to the conceptual model (Eq.3) to test the chemical 
closure of Ox in wildfire plumes. The Ox production (denoted as 
POx) across each transect is predicted on the basis of the three key 
chemical variables: OH exposure, VOCR, and RO2 fate. Then, this 
prediction is compared to the measured POx calculated as a sum of 
the measured individual Ox species (Eq.3). On the basis of a set of 
stringent criteria (Supplementary Materials, section S4), 25 transects, 
for which the POx and RO2 fate can be quantified with high confi-
dence, are selected for this comparison. As shown in Fig. 7, the cor-
relation between the observed and predicted POx is quite strong (r2 = 
0.64). On average, the predicted POx is higher than the measured 
POx by 12%, well within the analysis and measurement uncertainties 
(Supplementary Materials, section S9). Overall, the use of the con-
ceptual model and the comprehensive measurements of VOCs in 
FIREX-AQ enables remarkably good prediction of Ox production. 
Such agreement suggests that the majority of VOCs contributing to 
Ox formation are quantified during FIREX-AQ, at least in the early 
stage of the wildfire plumes. This provides confidence in the char-
acterization of fire emissions during FIREX-AQ, which will serve as 
a foundation for future use in chemical transport models (CTMs). 
Furthermore, as the conceptual model solely based on gas phase 
chemistry is sufficient to account for the measured Ox production 
here, we suggest that the role of heterogeneous loss of O3 and HO2 
is likely minor in wildfire plumes, a hypothesis often invoked when 
models overpredict the measured O3 (5, 21).

Parameterization of the O3 + NO2 production
The chemistry and dynamics described in this study occur on spa-
tial scales smaller than those used in even modestly high-resolution 
CTMs. Thus, there is a need to parameterize the near-field chemistry 
to properly capture the oxidation chemistry. Here, we focus on O3 

and NO2, as they are critical air pollutants. The production of O3 
and NO2 across individual transects, which is represented by the 
difference in (O3 + NO2)/CO between aged and fresh smoke, is 
denoted as PO3 + NO2. PO3 + NO2 ranges from 0 to 0.06 and exhibits a 
positive relationship with the span of OH exposure (OH exposure) 
across individual transects (r2 = 0.47; Fig. 8A). This trend implies more 
O3 + NO2 production as plumes age in the near field, consistent with 
previous observations (5). In addition to OH exposure, the PO3 + NO2 
positively correlates with MCE (r2 = 0.23; Fig. 8B). Higher MCE 
indicates more flaming combustion, which usually leads to higher 
NOx emissions and lower VOC emissions, together leading to a higher 
NOx/VOCR (5, 22, 23). The PO3 + NO2 does increase with NOx/VOCR, 
as shown in fig. S34. Overall, the positive relationship between 
PO3 + NO2 and MCE suggests that the formation of O3 + NO2 in fresh 
wildfires in the western United States is generally NOx limited.

As the O3 + NO2 formation depends on several variables, we de-
velop a statistical model based on multivariate adaptive regression 
splines (24) to attribute such dependence (Supplementary Materials, 
section S10). We examine the relationship between PO3 + NO2 of each 
transect and a number of variables (MCE, OH exposure, VOCR, 
NOx/VOCR, and RO2 fate) using stepwise forward selection. The 
final model form is Eq. 5 [the units of PO3 + NO2 and OH exposure 
are parts per billion (ppb)/ppb and 1010 molecules cm−3 s, re-
spectively]. The model captures 56% of the measurement variance 
(Fig. 8C)

	​​
​
​ 

​P​ ​O​ 3​​ + N​O​ 2​​​​  =  a + b × max(0, MCE − c ) + d × (OH exposure)
​     ​​  a  =  0.0036 ± 0.0028; b  =  0.46 ± 0.16​   

​
​ 
c  =  0.916 ± 0.002; d  =  0.014 ± 0.0019

 ​​	 (5)

The terms a + b × max(0, MCE − c) in Eq. 5 are interpreted as 
the MCE-dependent primary emission ratio (ER) of NO2 to CO, i.e., 
ER(NO2), because O3 + NO2 is essentially all NO2 when there is no 
chemical aging of fire emissions. To examine this interpretation, we 
compare the field-derived ER(NO2) to that measured in the FIREX 
FireLab 2016 study, where fuel complexes important for western 
U.S. ecosystems were burned. Figure 8D compiles the ER(NO2) 
from lab fuel types that are relevant to FIREX-AQ fires (table 
S7). The empirical parameterization reasonably predicts the nearly 
constant ER(NO2) when MCE is <0.92 and slightly overpredicts the 
rising ER(NO2) as MCE increases above 0.92. One factor that com-
plicates this comparison is the fuel dependence of ER(NO2), which 
shows larger variability as MCE increases. In comparison to indi-
vidual fuel types (fig. S36), the empirical parameterization reason-
ably predicts the ER(NO2) of douglas fir, Engelmann spruce, and 
subalpine fir, but slightly overpredicts for fuels like ponderosa pine 
and manzanita. Among all 253 transects in FIREX-AQ, more than 
90% of transects have MCE less than 0.92 (fig. S2), a range where the 
field-derived parameterization performs accurately, and the ER(NO2) 
is largely independent of fuel type (fig. S36). Therefore, this field-derived 
parameterization is a reasonable approximation of the subgrid scale 
O3 + NO2 production for CTMs without an accurate emissions in-
ventory and fuel characteristics.

The other term in Eq. 5 (d × OH exposure) is interpreted as the 
O3 + NO2 formation during plume aging. This linear dependence of 
O3 + NO2 production on OH exposure is likely confined to the near 
field of wildfire plumes (i.e., maximum OH exposure used to con-
strain the parameterization is 2.5×1010 molecules cm−3 s, which is 
roughly 7 hours transport time) before the RO2 chemistry transitions 
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to HO2-dominated reactivity. We compile the literature values of 
O3/CO from boreal and temperate wildfires over a wide range of 
plume ages in fig. S35 and find that the aircraft-based observations 
of O3/CO in the free troposphere typically reach a maximum 
value of 0.1 at 3 to 5 days downwind, which is only about twice the 
value after 7 hours of aging observed in this study. The O3/CO is 
relatively constant afterward and even shows a decreasing trend in 
some plumes that are ∼10 days old. This observation suggests that 
the major fraction of O3 in wildfire plumes in the free troposphere 
is produced in the near field, consistent with the analysis above that 
the wildfire plumes quickly run out of NOx and then the reaction of 
HO2 with RO2 efficiently competes with NO.

DISCUSSION
Uncertainties in emissions characterization and oxidation chemistry 
are long-standing challenges in understanding Ox production in 
wildfire plumes. The agreement between the measured and predicted 
Ox production in this study indicates that the oxidation of VOCs 
has been accurately captured by the comprehensive suite of analytical 
instruments deployed here. This chemical closure provides confidence 
in diagnosing the key chemical variables influencing Ox formation. 

These variables undergo rapid transition in chemical regimes. HONO 
photolysis is the major source of OH in the near field. Once the 
primary HONO is consumed, the rate of photochemistry in the plume 
decreases quickly. Ox formation also slows because of the changing 
fate of RO2 radicals. Given the high VOC/NOx produced in the fire, 
the RO2 fate transitions within a few hours from an RO2 + NO–
dominated regime to a mixed regime with increasing importance of 
the RO2 + HO2 reaction. A large fraction of VOCs is oxidized in the 
mixed regime. The changing RO2 fate affects not only Ox formation 
but also SOA formation. To estimate SOA formation in wildfire plumes, 
previous studies have used high NOx SOA yields from chamber ex-
periments (16, 17). The SOA yields of aromatics, which are critical 
SOA precursors in wildfire plumes, are generally higher under low 
NOx condition than high NOx condition (25, 26). Therefore, the 
estimated SOA formation in some previous studies may be biased 
low if the rapid transition to low NOx chemistry is not represented 
accurately.

The O3 chemistry in temperate wildfire emissions is generally in 
the NOx-limited regime. Thus, fire conditions that influence the NOx 
emissions and sinks critically determine the O3 formation. Wildfires 
with higher MCE have higher emission ratios of HONO and NOx, 
which tend to increase O3 formation. On the other hand, higher MCE 
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is associated with lower CH3CHO/NOx, which tends to decrease the 
fraction of PAN in NOy and the downwind O3 production. Given 
that the high concentrations of VOCs are still present in the aged 
plumes, O3 formation will be enhanced when the wildfire smoke is 
provided with additional NOx, either internally from the PAN de-
composition when plumes descend to higher temperature (27) or 
externally from mixing with NOx-rich urban plumes (28) or lightning-
derived NOx (29).

The rapid transition of O3 chemistry within wildfire plumes 
highlights a known issue in CTMs, which simulate O3 formation by 
generally uniformly mixing wildfire emissions into a few large grid 
cells. This treatment introduces substantial bias in predicting O3 
formation. Representing the near-field subgrid plume evolution 
using a field-constrained parameterization such as that developed 
here and subsequently diluting the chemically processed emissions 
into a larger grid cell may be an efficient approach to improve the 
prediction accuracy of CTMs. The amount of O3 produced in these 
underresolved plumes can be substantial. For example, using a rep-
resentative value of (O3 + NO2)/CO in the near field (i.e., 0.045) 
and the estimated CO flux from wildfires averaged from 2011 to 
2015 in the western United States [i.e., 5240 ± 2240 Gg year−1 (30)], 
we estimate that O3 produced in wildfire plumes can sustain a 3-ppb 
enhancement in boundary layer O3 concentration over the western 
United States during fire season (Supplementary Materials, section 
S10). The episodic nature of wildfires can result in more severe 
impacts on the occurrence of O3 exceedances (5).

MATERIALS AND METHODS
Descriptions of the FIREX-AQ campaign and instrumentation; cal-
culation of OH exposure, VOCR, and RO2 fate; criteria of transect 
selection for STA; conceptual model to investigate Ox chemistry 
and associated uncertainty analysis; statistical model to estimate the 
Ox background level; and parameterization of the O3 + NO2 pro-
duction can be found in the Supplementary Materials.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abl3648
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