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Abstract

This article is motivated by the problem of inference on interactions among chemical exposures 

impacting human health outcomes. Chemicals often co-occur in the environment or in synthetic 

mixtures and as a result exposure levels can be highly correlated. We propose a latent factor 

joint model, which includes shared factors in both the predictor and response components 

while assuming conditional independence. By including a quadratic regression in the latent 

variables in the response component, we induce flexible dimension reduction in characterizing 

main effects and interactions. We propose a Bayesian approach to inference under this Factor 

analysis for INteractions (FIN) framework. Through appropriate modifications of the factor 

modeling structure, FIN can accommodate higher order interactions. We evaluate the performance 

using a simulation study and data from the National Health and Nutrition Examination Survey 

(NHANES). Code is available on GitHub.
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1 Introduction

There is broad interest in incorporating interactions in linear regression. Extensions of 

linear regression to accommodate pairwise interactions are commonly referred to as 

quadratic regression. In moderate to high-dimensional settings, it becomes very challenging 

to implement quadratic regression since the number of parameters to be estimated 

is 2p + p
2 . Hence, classical methods such as least squares cannot be used and even 

common penalization and Bayesian methods can encounter computational hurdles. Reliable 

inferences on main effects and interactions is even more challenging when certain predictors 

are moderately to highly correlated.

A lot of effort has been focused on estimating pairwise interactions in moderate high-

dimensional and ultra high-dimensional problems. We refer to the former when the number 

of covariates is between 20 and 100 and to the latter when p > 100. When p = 100, the 

number of parameters to be estimated is greater than 5000. When p ∈ [20, 100], one-stage 

regularization methods like Bien et al. (2013) and Haris et al. (2016) can be successful. 

Some of these methods require a so-called heredity assumption (Chipman, 1996) to reduce 

dimensionality. Strong heredity means that the interaction between two variables is included 

in the model only if both main effects are. For weak heredity it suffices to have one main 
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effect in the model. Heredity reduces the number of models from 2p + p
2  to ∑i = 0

p p
i 2

i
2

or ∑i = 0
p p

i 2pi − i(i + 1) ∕ 2 for strong or weak heredity, respectively (Chipman, 1996). For 

ultra high-dimensional problems, two stage-approaches have been developed, see Hao et al. 

(2018) and Wang et al. (2019). However, these methods do not report uncertainties in model 

selection and parameter estimation, and rely on strong sparsity assumptions.

We are particularly motivated by studies of environmental health collecting data on mixtures 

of chemical exposures. These exposures can be moderately high-dimensional with high 

correlations within blocks of variables; for example, this can arise when an individual is 

exposed to a product having a mixture of chemicals and when chemical measurements 

consist of metabolites or breakdown products of a parent compound. There is a large 

public heath interest in studying E×E, E×G and G×G interactions, with E = environmental 

exposures and G = genetic factors. However, current methods for quadratic regression are 

not ideal in these applications due to the level of correlation in the predictors, the fact that 

strong sparsity assumptions are not appropriate, and the need for uncertainty quantification. 

Regarding the issue of sparsity, some exposures are breakdown products of the same 

compound, so it is unlikely that only one exposure has an effect on the outcome. Also, 

it is statistically challenging to tell apart highly correlated covariates with limited data. For 

this reason, it is appealing given the data structure to select blocks of correlated exposures 

together instead of arbitrarily selecting one chemical in a group.

To address these problems, one possibility is to use a Bayesian approach to inference in 

order to include prior information to reduce dimensionality while characterizing uncertainty 

through the posterior distribution. There is an immense literature on Bayesian methods 

for high-dimensional linear regression, including recent algorithms that can scale up to 

thousands of predictors (Bondell and Reich, 2012), (Rossell and Telesca, 2017), (Johndrow 

et al., 2017), (Nishimura and Suchard, 2018). In addition some articles have explicitly 

focused on quadratic regression and interaction detection (Zhang and Liu, 2007), (Cordell, 

2009), (Mackay, 2014). Bayes variable selection and shrinkage approaches will tend to have 

problems when predictors are highly correlated; this has motivated a literature on Bayesian 

latent factor regression (Lucas et al., 2006), (Carvalho et al., 2008).

Latent factor regression incorporates shared latent variables in the predictor and response 

components. This provides dimensionality reduction in modeling of the covariance structure 

in the predictors and characterizing the impact of correlated groups of predictors on the 

response. Such approaches are closely related to principal components regression, but it 

tends to be easier to simultaneously incorporate shrinkage and uncertainty quantification 

within the Bayesian framework. In addition, within the Bayes latent factor regression 

paradigm, typical identifiability constraints such as orthogonality are not needed (see, for 

example Bhattacharya and Dunson (2011)). The main contribution of this article is to 

generalize Bayesian latent factor regression to accommodate interactions using an approach 

inspired by Wang et al. (2019). This is accomplished by including pairwise interactions in 

the latent variables in the response component. We refer to the resulting framework as Factor 

analysis for INteractions (FIN). There is a rich literature on quadratic and non-linear latent 
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variable modeling, largely in psychometrics (refer, for example, to Arminger and Muthén 

(1998)). However, to our knowledge, such approaches have not been used for inferences on 

interactions in regression problems.

In Section 2 we describe the proposed FIN framework, including extensions for higher order 

interactions. In Section 3 we provide theory on model misspecification and consistency. 

Section 4 contains a simulation study. Section 5 illustrates the methods on NHANES data. 

Code is available at https://github.com/fedfer/factor_interactions. Proofs of Proposition 2 
and Proposition 3 are included in the Supplementary Material.

2 Model

2.1 Model and Properties

Let yi denote a continuous health response for individual i, and Xi = (xi1, ⋯ , xip)T denote 

a vector of exposure measurements. We propose a latent factor joint model, which includes 

shared factors in both the predictor and response components while assuming conditional 

independence. We include interactions among latent variables in the response component. 

We also assume that, given the latent variables, the explanatory variables and the response 

are continuous and normally distributed. We assume that the data have been normalized 

prior to the analysis so that we omit the intercept. The model is as follows:

yi = ηiTω + ηiTΩηi + ϵy, i, ϵy, i ∼ N(0, σ2),
Xi = Ληi + ϵi, ϵi ∼ Np(0, Ψ),
ηi ∼ Nk(0, I),

(1)

where Ψ = diag(σ1
2, ⋯, σp2). In a Bayesian fashion, we assume a prior for the parameters Θ = 

(ω, Ω, Λ, Ψ, σ2) that will be specified in Section 2.2. Model (1) is equivalent to classical 

latent factor regression models; refer, for example, to West (2003), except for the ηiTΩηi term. 

Here, Ω is a k × k symmetric matrix inducing a quadratic latent variable regression that 

characterizes interactions among the latent variables.

The above formulation can be shown to induce a quadratic regression of y on X. To build 

intuition consider the case in which σj2 = 0 as done in West (2003) for the special case in 

which Ω = 0. The many-to-one map Xi = Ληi has multiple generalized inverses ηi = ΛTXi + 

b such that Λb = 0. If we substitute in the regression equation, we obtain

E(yi ∣ Xi) = (ΛTXi + b)Tω + (ΛTXi + b)TΩ(ΛTXi + b) =
= XiTΛω + XiTΛΩΛTXi + g(b)

The following proposition gives a similar result in the non deterministic case:

Proposition 1. Under model (1), the following are true:

i. E(yi ∣ Xi) = tr(ΩV ) + (ωTA)Xi + Xi
T (ATΩA)Xi,

ii. Cov(yi, Xi) = Λω,
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where V = (ΛTΨ−1Λ + I)−1 and A = VΛTΨ−1 = (ΛTΨ−1Λ + I)−1ΛTΨ−1.

This shows that the induced regression of y on X from model (1) is indeed a quadratic 

regression. Let us define the induced main effects as βX = ATω and the matrix containing 

the first order interactions as ΩX = ATΩA. Notice that we could define Ω as a diagonal 

matrix and we would still estimate pairwise interactions between the regressors, further 

details are given in Sections 2.3 and 2.4.

In epidemiology studies, it is of interest to include interactions between chemical exposures 

and demographic covariates. The covariates are often binary variables, like race or sex, or 

continuous variables that are non-normally distributed, like age. Hence, we do not want to 

assume a latent normal structure for the covariates. Letting Zi = (zi1, ⋯ , ziq)T be a vector 

of covariates, we modify model (1) to include a main effect for Zi and an interaction term 

between Zi and the latent factor ηi:

yi = ηiTω + ηiTΩηi + Zi
Tα + ηiTΔZi + ϵy, i, ϵy, i ∼ N(0, σ2),

Xi = Ληi + ϵi, ϵi ∼ Np(0, Ψ),
ηi ∼ Nk(0, I),

(2)

where Δ is a k × q matrix of interaction coefficients between the latent variables and the 

covariates, and α = (α1, ⋯ , αq) are main effects for the covariates. Following Proposition 1 
we have that

E(ηiTΔZi ∣ Xi, Zi) = E(ηiT ∣ Xi)ΔZi = XiT (ATΔ)Zi,

where (ATΔ) is a p × q matrix of pairwise interactions between exposures and covariates. 

In the sequel, we focus our development on model (1) for ease in exposition, but all of the 

details can be easily modified to pertain to model (2).

2.2 Priors and MCMC Algorithm

In this section we define the priors for (ω, Ω, Λ, Ψ, σ2), briefly describe the computational 

challenges given by model (1) and summarize our Markov Chain Monte Carlo sampler in 

Algorithm 1. We choose an Inverse-Gamma distribution with parameters (1
2 , 1

2 ) for σ2 and 

σj2 for j = 1, ⋯ , p. The elements of ω and Ω are given independent Gaussian priors. For 

Λ = {λi,j}, a typical choice to attain identifiability requires λi,j = 0 for j > i and λj,j > 

0 for j = 1, ⋯ , k (Geweke and Zhou, 1996). However, some Bayesian applications, like 

covariance estimation (Bhattacharya and Dunson, 2011), do not require identifiability of Λ. 

The same holds for inference on induced main effects and interactions for model (1). Notice 

that model (1) is invariant to rotations:

yi = ηiTPPTω + ηiTPPTΩPPTηi + ϵy, i, ϵy, i ∼ N(0, σ2),
Xi = ΛPPTηi + ϵi, ϵi ∼ Np(0, Ψ),

where P is a k × k orthogonal matrix P (PPT = I). However, the induced main effects satisfy
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βX = Ψ−1ΛP(PTΛTΨ−1ΛP + PTP)−1PTω = Ψ−1Λ(ΛTΨ−1Λ + I)−1ω .

The same holds for induced interactions, showing that we do not need to impose 

identifiability constraints on Λ. We choose the Dirichlet-Laplace (DL) prior of Bhattacharya 

et al. (2015) row-wise, corresponding to

λj, ℎ ∣ ϕjℎ, τj ∼ DE(ϕjℎτj) ℎ = 1, ⋯, k
ϕj ∼ Dir(a, ⋯, a) τj ∼ Gamma(ka, 1 ∕ 2),

where j = 1, ⋯ , p, ϕj = (ϕj1, ⋯ , ϕjk), DE refers to the zero mean double-exponential or 

Laplace distribution, and k is an upper bound on the number of factors, as the prior allows 

effective deletion of redundant factor loadings through row-wise shrinkage. The DL prior 

provides flexible shrinkage on the factor loadings matrix, generalizing the Bayesian Lasso 

(Park and Casella, 2008) to have a carefully chosen hierarchical structure on exposure-

specific (τj) and local (ϕjh) scales. This induces a prior with concentration at zero, to 

strongly shrink small signals, and heavy-tails, to avoid over-shrinking large signals. The DL 

prior induces near sparsity row-wise in the matrix Λ, as it is reasonable to assume that each 

variable loads on few factors.

In Section 2.4, we describe how the above prior specification induces an appealing shrinkage 

prior on the main effects and interactions, and discuss hyperparameter choice. In practice, 

we recommend the rule of thumb that chooses k such that 
∑j = 1

k vj
∑j = 1

p vj
> 0.9, where vj is the 

jth largest singular value of the correlation matrix of X. Proposition 2 in Section 3 provides 

theoretical justification for this criterion. As an alternative to row-wise shrinkage, we could 

have instead used column-wise shrinkage as advocated in Bhattacharya et al. (2015) and 

Legramanti et al. (2019). Although such approaches can be effective in choosing the number 

of factors, we found in our simulations that they can lead to over-shrinkage of the estimated 

main effects and interactions.

The inclusion of pairwise interactions among the factors in the regression of the outcome yi 

rules out using a simple data augmentation Gibbs sampler, as in West (2003), Bhattacharya 

and Dunson (2011). The log full conditional distribution for ηi is:

− 1
2 ηiT(ωωT

σy2
+ ΛTΨ−1Λ + I − 2

ΩYi
σy2

)ηi − 2ηiT(ΛTΨ−1Xi +
ωYi
σy2

) −

− 1
2

2ηiTωηiTΩηi
σy2

+
(ηiTΩηi)2

σy2
+ C,

where C is a normalizing constant. We update the factors ηi using the Metropolis-Adjusted 

Langevin Algorithm (MALA) (Grenander and Miller, 1994), (Roberts et al., 1996). 

Sampling the factors is the main computational bottleneck of our approach since we have to 
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update n vectors, each of dimension k. The overall MCMC algorithm and the MALA step 

are summarized in Algorithm 1.

2.3 Higher Order Interactions

FIN can be generalized to allow for higher order interactions. In particular, we can obtain 

estimates for the interaction coefficients up to the Qth order with the following model:

E(yi ∣ ηi) = ∑
ℎ = 1

k
ωℎ

(1)ηiℎ + ∑
ℎ = 1

k
ωℎ

(2)ηiℎ
2 + ⋯ + ∑

ℎ = 1

k
ωℎ

(Q)ηiℎ
Q, (3)

which is a polynomial regression in the latent variables. We do not include interactions 

between the factors, so that the number of parameters to be estimated is Qk. When Q 
= 2, this model is equivalent to Ω being a diagonal matrix. Recall that ηi∣Xi ~ N(AX, 
V), where A and V are defined in Proposition 1. Since we do not include interactions 

among the factors, let us just focus on the marginal distribution of the jth factor, i.e 

ηiℎ ∣ Xi ∼ N(μℎ, σℎ
2) where μℎ = ∑j = 1

p aℎjXij and σℎ
2 = V ℎℎ. Below we provide an expression 

for E(∑q = 1
Q ωℎ

(q)ηiℎ
q ∣ X), which can be calculated using non-central moments of a Normal 

distribution, see Winkelbauer (2012) for a reference.

E( ∑
q = 1

Q
ωj

(q)ηj
q ∣ X) = ∑

f = 1

Q + 1
2

∑
q = f

Q + 1
2

ωℎ
(2q − 1)σℎ

2q − 2fbqf
o ∑

k+ = 2f − 1

2f − 1
k1⋯kp ∏

j = 1

p
(aℎjXj)kj +

∑
f = 0

Q + 1
2

∑
q = f ∨ 1

Q + 1
2

ωℎ
(2q)σℎ

2q − 2fbqf
e ∑

k+ = 2f

2f
k1⋯kp ∏

j = 1

p
(aℎjXj)kj,

where bqf
o = (2q − 1)!

(2f − 1)!(q − f)!2q − f , bqf
e = (2q)!

(2f)!(q − f)!2q − f  and k+ = ∑j = 1
p kℎ. We just need to 

sum up over the index h in (3) and we can read out the expressions for the intercept,
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Algorithm 1 MCMC algorithm for sampling the parameters of model (1)

Step 1 Sample ηi, i = 1, ⋯, n via Metropolis‐Hastings using as a proposal distribution a N (ηi +
1
2 ∇ηilog(π(ηi ∣ − )), ϵIk) .

Step 2 Sample the main effects coefficients ω from a multivariate normal distribution:

π(ω ∣ − ) ∼ N (ηTη
σ2 + In ∕ 100)−1η y − diag(ηΩη) ∕ σ2, (ηTη

σ2 + In ∕ 100)−1

where η is the matrix with rows equal to ηi .

Step 3 Sample upper triangular part of Ω, namely ΩU, from a multivariate normal distribution:

π(ΩU ∣ − ) ∼ N (η ∗ Tη∗
σ2 + p(p + 1)

2 )−1η∗ y − ηω) ∕ σ2, (η ∗ Tη∗
σ2 + I p(p + 1)

2
∕ 100)−1

where η∗ is a matrix containing the pairwise interactions of among the columns of η . Then set

Ω = Ω + ΩT
2

Step 4 Sample σ−2 from a Gamma distribution:

π(σ−2 ∣ − ) ∼ Gamma 1 + n
2 , 1

2 + 1
2(y − ηω − diag(ηΩηT))T(y − ηω − diag(ηΩηT)

Step 5 D λj the rows of Λ, for j = 1, ⋯, p . Sample p conditionally independent posteriors:

π(λj ∣ − ) ∼ N (Dj−1 + ηTη
σj2

)−1ηTσj−2X(j), (Dj−1 + ηTη
σj2

)−1

where X(j) is the jtℎ column of the matrix X, Dj = diag(τj2ψj1ϕj1
2 , ⋯, τj2ψjkϕjk

2 ) .
Step 6 Sample ψjℎ for j = 1, ⋯, p and ℎ = 1, ⋯, k from independent Inverse Gaussin distribution:

π(ψjℎ) ∼ InvGauss τjϕjℎ/ ∣ λjℎ ∣ , 1 and set ψjℎ = 1/ψjℎ
Step 7 Sample τj for j = 1, ⋯, p from independent Generalized Inverse Gaussian distributions:

π(τj ∣ − ) ∼ GInvGauss 1 − k, 1, 2 ∑
ℎ = 1

k ∣ λjℎ ∣
ϕjℎ

Step 8 In order to update ϕjℎ for j = 1, ⋯, p and ℎ = 1⋯, k, sample Tjℎ from independent Generalized
Inverse Gaussian distributions:

π(Tjℎ ∣ − ) ∼ GInvGauss a − 1, 1, 2 ∣ λjℎ ∣

Then set ϕjℎ =
Tjℎ

∑ℎ = 1
k Tjℎ

Step 9 Sample σj−2 for j = 1, ⋯, p from conditionally independent gamma distributions

π(σj−2 ∣ − ) ∼ Gamma 1 + n
2 , 1

2 + 1
2 ∑

i = 1

n
(Xij − λjTηi)

main effects and interactions up to the Qth order. In particular, we have that the intercept is 

equal to ∑ℎ = 1
k ∑

q = 1

Q − 1
2 ωℎ

(2q)V ℎℎ
2q bq0

e . When Q = 2 this reduces to ∑ℎ = 1
k ωℎ

(2)V ℎℎ
2 = tr(ΩV ), 

where Ω = diag(ω1
(2), ⋯, ωk

(2)). The expression for the main effects coefficients on Xj is 
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∑ℎ = 1
k ∑

q = 1

Q + 1
2 ωℎ

(2q − 1)V ℎℎ
2q − 1bq1

o aℎj. When Q = 2 this becomes ∑ℎ = 1
k ωℎ

(1)aℎj, hence 

βX = ATω. Similarly the expression for the interaction between Xj and Xl is equal to 

∑ℎ = 1
k ∑

q = 1

Q − 1
2 2ωℎ

(2q)V ℎℎ
2q bq1

e aℎjaℎl and when Q = 2 we have ∑ℎ = 1
k 2ωℎ

(2)aℎjaℎl which is 

equal to 2[ATΩA](j, l).

In general, if we are interested in the qth order interactions, we can find the expression on the 

top summation for f = q + 1
2  when q is odd and on the bottom summation for f = q

2  when q 

is even. Finally notice that with Qk parameters we manage to estimate ∑q = 0
Q p

q  parameters 

thanks to the low dimensional factor structure in the covariates.

2.4 Induced Priors

In this section, we show the behavior of the induced priors on the main effects and pairwise 

interaction coefficients under model (1) using simulated examples, and we show the induced 

grouping of coefficients when we have prior information on the covariance structure of X. 

We endow ω with a normal prior having zero mean and covariance equal to Ξ, where Ξ is 

a diagonal matrix. Then, conditional on Λ and Ψ, the induced prior on βX is also Normal 

with mean 0 and covariance equal to AT A. Recall from Proposition 1 that the induced main 

effect coefficients are equal to βX
T = ωT (ΛTΨ−1Λ)−1ΛTΨ−1. This expression is equivalent to 

West (2003) and we can similarly characterize the limiting case of Ψ → 0, i.e. when the 

factors explain all of the variability in the matrix of regressors Xi. Let Ψ = sI and s → 0, 

together with enforcing Λ to be orthogonal, we have that βX = Λω. It follows that βX has 

the generalised singular g-prior (or gsg-prior) distribution defined by West (2003), whose 

density is proportional to exp( − 1
2βX

T ΛTΞ−1Λβ).

Now, consider the extension presented in the previous section, where we include powers of 

the factors in the regression of yi. In Figure 1, we show the induced marginal priors for main 

effects, pairwise interactions and 3rd order interactions when p = 20 and k = 5, 10 when 

ω and Ω are given N(0, 1) priors element-wise. Increasing (or decreasing) the variance of 

the priors on ω and Ω will directly increase (or decrease) the variance of the induced main 

effects and pairwise interactions, as βX and ΩX are linear functions of ω and Ω respectively. 

For a fixed k, there is increasing shrinkage towards zero with higher orders of interaction. 

However, we avoid assuming exact sparsity corresponding to zero values of the coefficients, 

a standard assumption of other methods. Although most of the mass is concentrated around 

zero, the distributions have heavy tails. We can indeed notice that the form of the priors 

resembles a mixture of two normal distributions with different variances, and that we place 

a higher mixture weight on the normal distribution concentrated around zero as we increase 

the order of interactions. This is because higher order interactions contain products of the 

elements of A, previously defined in Proposition 1, and the elements of A are affected by 

the DL prior shrinkage, since A is a function of Λ. Also, notice that the priors have higher 

variance as we increase the number of latent factors k.
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In environmental epidemiology, it is common to have prior knowledge of groups of 

exposures that are highly correlated and it is natural to include such information in the 

specification of Λ. One possibility is to impose a block sparsity structure in which each 

group of chemicals is restricted to load on the same factor. Then, cross group dependence 

is allowed including additional factors and endowing the factor loadings with a DL prior. 

Suppose that the variables in X can be divided in l groups: S1, S2, … Sl of dimensions p1, p2, 

… , pl, where l < k and p = ∑r = 1
l pr. Letting Λ = [ΛBΛ′], where ΛB is p × l, we can assign 

a block sparsity structure to ΛB:

λp1 + 1, 1
B = … = λp, 1

B = 0

λ1, 2
B = … = λp1, 2

B = λp1 + p2 + 1, 2
B = … = λp, 2

B = 0
⋯
λ1, l

B = … = λp − pl, l
B = 0

In the Supplementary Material we show the effect of the block sparsity structure on the a 

priori induced groupings of main effects and interactions when l = k, so that Λ = ΛB.

3 Properties of the Model

In this section we prove that the posterior distribution of Θ = (ω, Ω, σ2, Λ, Ψ) is weakly 

consistent for a broad set of models. Let KL(Θ0, Θ) denote the Kullback-Leibler divergence 

between p(X, y∣Θ0) and p(X, y∣Θ), where

p(X, y ∣ ϴ0) = ∫ p(X ∣ Λ0, Ψ0, η)p(y ∣ ω0, Ω0, σ0
2, η)p(η)dη .

We will assume that p(X, y∣Θ0) represents the true data-generating model. This assumption 

is not as restrictive as it may initially seem. The model is flexible enough to always 

characterize and model quadratic regression in the response component, while accurately 

approximating any covariance structure in the predictor component. In fact it always holds 

that:

E(yi ∣ Xi) = β0Xi + XiΩ0Xi,
Xi ∼ N(0, Λ0, Λ0

T + Ψ0),

where β0 and Ω0 are functions of Θ0 as in Proposition 1, and the true number of factors is 

k0. When k0 = p, we can write any covariance matrix as Λ0Λ0
T + Ψ0. We take an “overfitted” 

factor modeling approach, related to Bhattacharya and Dunson (2011), Rousseau and 

Mengersen (2011), and choose k to correspond to an upper bound on the number of factors. 

In practice, we recommend the rule of thumb that chooses k such that 
∑j = 1

k vj
∑j = 1

p vj
> 0.9, where 

vj is the jth largest singular value of the correlation matrix of X. We have found this choice to 

have good performance in a wide variety of simulation cases. However, there is nonetheless 

a potential concern that k may be less than k0 in some cases. Proposition 2 quantifies the 
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distance in terms of Kullback-Leibler divergence between the true data generating model 

and the likelihood under model miss-specification as n approaches infinity.

Proposition 2. Fix Λ0, Ψ0 = s0Ip, k0, and assume that k < k0. As n increases the posterior 
distribution of Λ and Ψ = sIp concentrates around Λ* and Ψ*, satisfying:

KL((Λ0, Ψ0); (Λ∗, Ψ∗)) ≤ ∑
j = k + 1

k0 vj
s0

,

where vj is the jth largest singular value of Λ0Λ0
T .

Unsurprisingly, the bound of Proposition 2 resembles the Eckart-Young theorem for low-

rank approximation based on the Singular Value Decomposition of a matrix. The Eckart-

Young theorem states that the rank k approximation Ω of a matrix Ω minimizing the 

Frobenoius norm is such that ‖Ω − Ω‖F = ∑j = k + 1
p vj2. In a similar fashion as Principal 

Component Analysis and Factor Analysis, we can inspect the singular values of the 

correlation matrix of the regressors in order to choose the number of factors to include 

in the model, and thanks to Proposition 2 we know how far the posterior distribution will 

concentrate from the truth.

The next proposition provides a sufficient condition in order to achieve posterior consistency 

when k ≥ k0. Notice that we achieve posterior consistency on the induced main effects and 

pairwise interactions.

Proposition 3. Fix Θ0 = (ω0, Ω0, σ0
2, Λ0, Ψ0, k0). Whenever k ≥ k0, for any δ > 0 there exists an 

ϵ > 0 such that:

{Θ :d∞(Θ0, Θ) < δ} ⊂ {Θ :KL(Θ0, Θ) < ϵ}

where d∞ is the sup-norm.

One can easily define a prior on Θ such that it places positive probability in any small 

neighborhood of Θ0, according to d∞. The prior defined in Section 2.2 satisfies this 

condition. Consequently, the posterior distribution of Θ is weakly consistent due to Schwartz 

(1965). The proofs of Proposition 2 and Proposition 3 can be found in the Supplementary 

Material.

4 Simulation Experiments

In this section we compare the performance of our FIN method with four other approaches: 

PIE (Wang et al., 2019), RAMP (Hao et al., 2018), Family (Haris et al., 2016) and HierNet 

(Bien et al., 2013). These methods are designed for inference on interactions in moderate to 

high dimensional settings. We generate 25 and 50 covariates in three ways:
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Xi ∼ Np(0, ΛΛT + Ip), λi, j ∼ N(0, 1), (factor)

Xi ∼ Np(0, W ), [W ]i, j = 0.8 ∣ i − j ∣ , (linear)

Xi ∼ Np(0, Ip) . (indepedent)

In the factor scenario we set the true number of factors equal to 7 for p = 25 and equal to 17 

when p = 50. FIN achieved similar performance when we chose a smaller number of latent 

factors. The average absolute correlation in the covariates is between 0.25 and 0.3 for the 

factor and linear scenarios when p = 25. These two simulation scenarios are the most similar 

to the environmental epidemiology data analysis in Section 5. The complexity gains of FIN 

with respect to a Bayesian linear models with interactions is analyzed in the Supplementary 

Material.

For each scenario, we generate the continuous outcome according to a linear regression with 

pairwise interactions:

yi = XiTβ0 + XiTΩ0Xi + ϵi,

where half of the main effects are different from zero and ϵi ~ N(0, 1) for i = 1, ⋯ , 500. 

We distinguish between a sparse matrix of pairwise interactions Ω0, with only 5% non-zero 

interactions, or dense, where 20% of the elements are different from zero.

For each value of p we have six simulation scenarios: factor, linear or independent combined 

with sparse or dense pairwise interactions. We generate the non-zero main effects and 

interaction coefficients from a Uniform distribution in the interval (−1, −0.5)∪(0.5, 1) such 

that the regression equation follows the strong heredity constraint. Strong heredity allows an 

interaction between two variables to be included in the model only if the main effects are. 

This is done to favor RAMP, Family and HierNet, which assume the heredity condition. We 

repeat the simulations 50 times and evaluate the performance on a test dataset of 500 units 

computing predictive mean square error, mean square error for main effects, Frobenious 

norm (FR) for interaction effects, and percentage of true positives (TP) and true negatives 

(TN) for main effects and interactions. The percentage of TP and TN main effects is defined 

as follows:

TP(main effects) = 1
p ∑

j = 1

p
1(βj ≠ 0, β0j ≠ 0, sign(βj) = sign(β0j))

TN(main effects) = 1
2 ∑

j = 1

p
1(βj = 0, β0j = 0),

where β j is the estimated main effect for feature j and β0j is the true coefficient. FIN is 

the only method reporting uncertainty quantification and we set β j = 0 whenever zero is 

included in the 95% credible interval. We equivalently define the percentage of true positive 

and true negative interactions.
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The MCMC algorithm was run for 5000 iterations with a burn-in of 4000. We observed good 

mixing. In particular, the Effective Sample Size (ESS) was always greater than 900 across 

our simulations, both for main effects and interactions. We set the hyperparameter a of the 

Dirichlet-Laplace prior equal to 1/2. We obtained similar results for a in the interval [1/p, p]. 

The results are summarized in Table 1-2 for p = 25 and in Table 1-2 of the Supplementary 

Material for p = 50. Across all the simulations, we chose k such that 
∑j = 1

k vj
∑j = 1

p vj
> 0.9.

In the factor scenario, FIN outperforms the other methods in predictive performance and 

estimation of main effects and interactions, whereas the rate recovery of true main effects 

and interactions is comparable to HierNet and PIE with sparse Ω0 and outperforms the 

other methods when Ω0 is dense. The latter scenario is the most challenging with respect to 

selection of main effects and interactions. Most of the other methods either select or shrink 

to zero all the effects. In the linear scenario, FIN also shows the best performance together 

with PIE and Hiernet. Despite the model misspecification with independent covariates, 

FIN has a comparable predictive performance with respect to the other methods, which do 

not take into account correlation structure in the covariates. The 95% predictive intervals 

provided by FIN contained the true value of yi on average approximately 95% of the time in 

the factor scenario, 89% for the linear scenario, and 79% for the independent scenario. The 

average bias in the posterior predictive mean is negligible in each simulation scenario.

The optimization method performed by HierNet (Bien et al., 2013) tends to favor 

interactions only in presence of large component main effects, and in doing so overshrinks 

interactions estimates, especially in the dense scenario. Penalized regression techniques PIE 

(Wang et al., 2019) and RAMP (Hao et al., 2018) tend to over-shrink coefficient estimates 

and select too few predictors, particularly in the dense scenario. On the other hand, FAMILY 

(Haris et al., 2016) performs a relaxed version of the penalized algorithm by refitting an 

unpenalized least squares model, which results in a high false positive rate of main effects. 

We also considered different signal-to-noise ratios with ϵi ∼ N(0, 1
4 ) and ϵi ~ N(0, 4). The 

results are very similar to the results we have presented; hence, we omit them.

5 Environmental Epidemiology Application

The goal of our analysis is to assess the effect of ten phthalate metabolites, four 

perfluoroalkyl (pfas) metabolites and fourteen metals on body mass index (BMI). Phthalates 

are mainly used as plasticizers and can be found in toys, detergents, food packaging, and 

soaps. They have previously been associated with increased BMI (Hatch et al., 2008) and 

waist circumference (WC) (Stahlhut et al., 2007). There is a growing health concern for the 

association of phthalates (Kim and Park, 2014), (Zhang et al., 2014) and pfas metabolites 

(Braun, 2017) with childhood obesity. Metals have already been associated with an increase 

in waist circumference and BMI, see Padilla et al. (2010) and Shao et al. (2017), using data 

from the National Health and Nutrition Examination Survey (NHANES).

We also consider data from NHANES, using data from the years 2015 and 2016. We select 

a subsample of 7602 individuals for which the measurement of BMI is not missing, though 
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FIN can easily accommodate missing outcomes through adding an imputation step to the 

MCMC algorithm. Figure 3 contains a plot of the correlation between exposures. Several 

pairwise correlations are missing, as for example between pfas and most metals, because 

some chemicals are only measured within subsamples of the data. The average absolute 

correlation between the 28 exposures is around 0.28, similarly to the factor and linear 
simulation scenarios presented in Section 4. We also include in the analysis cholesterol, 

creatinine, race, sex, education and age. We apply the log10 transformation to the chemicals, 

cholesterol and creatinine. Histograms of the chemical measurements can be found in Figure 

1 of the Supplementary Material. We also apply the log10 transformation to BMI in order to 

make its distribution closer to normality, which is the assumed marginal distribution in our 

model. The log-transformation is commonly applied in environmental epidemiology in order 

to reduce the influence of outliers and has been employed in several studies using NHANES 

data (Nagelkerke et al., 2006), (Lynch et al., 2010), (Buman et al., 2013). We leave these 

transformations implicit for the remainder of the section.

We assume a latent normal structure for the chemicals, which are included in the matrix X, 

and use the other variables as covariates, which are included in the matrix Z. We estimate 

a quadratic regression according to model (2). We specify independent Gaussian priors for 

elements of α and Δ. Algorithm 1 can be easily adapted for model (2). The matrix X 
has 60% missing data and Figure 2 of the Supplementary material contains a plot of the 

missingness pattern. Since we are modeling the chemical measurements, we can simply 

add a sampling step to the MCMC algorithm to sample the missing data according to (2). 

Similarly, 0.4% of chemicals have been recorded under the limit of detection (LOD). In 

order to be coherent with our model we can sample these observations as:

Xij ∣ Xij ∈ [ − ∞, log10(LODj)] ∼ TN(ηiTλj, σj2, − ∞, log10(LODj))

where LODj is the limit of detection for exposure j and TN(μ, σ2, α, b) is a truncated normal 

distribution with mean μ, variance σ2 and support in [a, b]. We imputed the missing data 

using MICE (White et al., 2011) to compute the correlation matrix of chemicals. We noticed 

from the Eigendecomposition of the correlation matrix that the first 13 eigenvectors explain 

more than 90% of the total variability; hence we set the number of factors equal to 13.

Figure 2 on the right shows the posterior mean of the matrix of factor loadings Λ, before 

and after applying the MatchAlign algorithm of Poworoznek and Dunson (2019), which 

resolves rotational ambiguity and column label switching for the posterior samples of Λ. 

The matrix of factor loadings reflects the correlation structure of the chemicals. We can 

distinguish three families of chemicals: metals collected from urine, pfas and phathalates. 

The pfas chemicals load mostly on the 1st factor, the metals from urine on the 8th factor 

together with the phthalates, which is expected since there is high correlation between the 

two groups of chemicals. Finally, a group of highly correlated phthalates loads on the 13th 

factor.

We also estimated a regression with pairwise interactions using the methods PIE, RAMP, 

Family and HierNet introduced in Section 4. These methods do not directly deal with 
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missing data, so we imputed the missing data using MICE (White et al., 2011). Figure 3 

shows the estimated main effects of the chemicals. The signs of the coefficients are generally 

consistent across different methods.

Figure 4 shows the posterior mean of the matrix of chemical interactions and of the matrix 

ATΔ of pairwise interactions between exposures and covariates. As expected, we estimate 

a “dense” matrix of interactions. This is due to exposures being breakdown products of 

the same compound and high correlation between chemicals belonging to the same family. 

For example the correlation between the pfas metabolites is equal to 0.7, with only 1977 

observations containing complete measurements. Interactions between highly correlated pfas 

metabolites have been observed in animal studies (Wolf et al., 2014), (Ding et al., 2013). 

Linear (Henn et al., 2011), (Lin et al., 2013) and nonlinear interactions (Valeri et al., 

2017) between metals have been associated with neurodevelopment. Interactions between 

phathalates and other chemicals have been related to human semen quality (Hauser et al., 

2005). Finally, we estimate several interactions between chemicals and age, cholesterol and 

creatinine, which are usually expected in environmental epidemiology applications (Barr 

et al., 2004). The code for reproducing the analysis is available at https://github.com/fedfer/

factor_interactions.

6 Discussion

We proposed a novel method that exploits the correlation structure of the predictors 

and allows us to estimate interaction effects in high dimensional settings, assuming 

a latent factor model. Using simulated examples, we showed that our method has a 

similar performance to state-of-the-art methods for interaction estimation when dealing 

with independent covariates and outperforms the competitors when there is moderate 

to high correlation among the predictors. We provided a characterization of uncertainty 

with a Bayesian approach to inference. Our FIN approach is particularly motivated by 

epidemiology studies with correlated exposures, as illustrated using data from NHANES.

NHANES data are obtained using a complex sampling design, that includes oversampling 

of certain population subgroups, and contains sampling weights for each observation that 

are inversely proportional to the probability of begin sampled. We did not employ sampling 

weights in our analysis because our goal was to study the association between exposures 

and BMI rather than providing population estimates. One possibility to include the sampling 

weights in our method is to jointly model the outcome and the survey weights (Si et al., 

2015), without assuming that the population distribution of strata is known.

Our MCMC algorithm can be efficiently employed for n and p in the order of thousands and 

hundreds respectively, which allows us to estimate around 5000 interactions when p = 100. 

However, it is necessary to speed up the computations in order to apply our method to bigger 

p, which is common with genomics data. The computational bottleneck is the Metropolis 

Hastings step described in Section 2.2. One possibility is to include the heredity constraint 

(Chipman, 1996) while estimating the factors.
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In order to allow departures from linearity and Gaussianity, it is of interest to model the 

regression on the health outcome as a non-linear function of latent factors. Non parametric 

latent models have desirable properties in term of convergence rates (Zhou et al., 2017) 

and large support for density estimation (Kundu and Dunson, 2014). Verma and Engelhardt 

(2018) developed a dimension reduction approach with latent variables for single cell RNA-

seq data building on Gaussian process latent variable models (GP-LVM). Although attractive 

from a modeling perspective, a major challenge is efficient posterior computation. Another 

promising direction to decrease modeling assumptions is to rely on a copula factor model 

related to Murray et al. (2013).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix

Proof of Proposition 1. (i) Let us drop the i index for notation simplicity and always assume 

that we are conditioning on all the parameters. The posterior distribution of η is Normal 

with covariance V = (ΛTΨ−1Λ + I)−1 and mean AX where A = VΛTΨ−1 = (ΛTΨ−1Λ + 

I)−1ΛTΨ−1. This follows from a simple application of Bayes Theorem. Now:

E(y ∣ X) = E(E(y ∣ η) ∣ X) = E(ηTω + ηTΩη ∣ X) =
= ωTE(η ∣ X) + E(ηTΩη ∣ X)

Recall that the expectation of a quadratic form ηTΩη of a random vector η with mean μ and 

covariance matrix Σ is equal to tr(ΩΣ) + μTΩμT.

E(y ∣ X) = ωTAX + tr(ΩV n) + (AX)TΩ(AX) =
= tr(ΩV ) + (ωTA)X + XT(ATΩA)X

(ii) Recall that η ~ N(0, I), y = ηTω + ηTΩηi + ϵy and X = Λη + ϵ, from simple algebra it 

follows that

Cov(y, X) = ωTCov(η, η)ΛT + Cov(ηTΩη, Λη)

From the prior specification Cov(η, η) = I, hence let us focus on the term Cov(ηTΩη, Λη) 

and show that it is equal to 0p:
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Cov(ηTΩη, Λη) = Cov( ∑
j = 1

p
∑

l = 1

p
ωj, lηjηl, Λη) =

= ∑
j = 1

p
∑

l = 1

p
ωj, lCov(ηjηl,

λ1, 1η1 + … + λ1, kηk
…

λp, 1η1 + … + λp, kηk
) =

= ∑
j = 1

p
∑

l = 1

p
ωj, lCov(ηjηl,

λ1, jηj + λ1, lηl
…

λp, jηj + λp, lηl
) =

= ∑
j = 1

p
∑

l = 1

p
ωj, l Cov(ηjηl,

λ1, jηj
…

λp, jηj
) + Cov(ηjηl,

λ1, lηl
…

λp, lηl
)

Now Cov(ηjηl, ηj) = E(ηj2ηl) = 0. In fact when j ≠ l, we have that E(ηj2ηl) = E(ηj2)E(ηl) = 0 and 

when j = l, E(ηj
3) = 0 since ηj ~ N(0, 1).
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Figure 1: 
Induced priors on main effects, pairwise interactions and 3rd order interactions for p = 20 

and k = 5, 10. The green lines corresponds to 0.25 and 0.75 quartiles and the red lines to the 

0.05 and 0.95.
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Figure 2: 
On the left, correlation between the exposures, the colour grey indicates missing pairwise 

correlation. On the right, posterior mean of the matrix Λ of factor loadings before and after 

applying the MatchAlign algorithm.
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Figure 3: 
Estimated main effects using FIN with 95% credible intervals and estimated coefficients 

using RAMP, hierNet, Family and PIE.
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Figure 4: 
On the left, posterior mean of the matrix of chemicals interactions. On the right, posterior 

mean of the matrix ATΔ of pairwise interactions between exposures and covariates. The 

white boxes indicates that the 99% credible interval contains zero.
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Table 1:

Results from simulation study with p = 25 and dense Ω0 in the three scenarios: factor, linear and independent 

for n = 500. We computed test error, Frobenious norm, MSE for main effects, percentage of true positives and 

true negatives for main effects and interactions for Hiernet, Family, PIE, RAMP and FIN model with a = 0.5 

across 50 simulations. Test error, FR, and main MSE are presented as ratios compared to the best performing 

model.

HierNet FAMILY PIE RAMP FIN

test error 1.974 16.689 7.067 64.717 1

FR 1.361 1.013 1.418 1.620 1

factor main MSE 1.167 1.062 1.807 4.225 1

TP main 0.920 0.988 0.155 0.270 0.753

TN main 0.067 0.007 0.921 0.773 0.475

TP int 0.151 0.807 0.105 0.037 0.699

TN int 0.889 0.233 0.929 0.962 0.387

test error 1 2.662 1.688 6.309 1.565

FR 1 1.049 1.075 1.289 1.016

linear main MSE 2.421 1 1.766 4.259 1.263

TP main 1 0.996 0.177 0.301 0.572

TN main 0.002 0.005 0.904 0.805 0.718

TP int 0.532 0.818 0.280 0.028 0.635

TN int 0.849 0.278 0.887 0.968 0.570

test error 1 6.150 2.759 10.729 7.128

FR 1.175 1.548 1 2.042 1.654

independent main MSE 1 1.529 1.756 2.446 2.031

TP main 1 1 0.241 0.074 0.302

TN main 0 0.002 0.930 0.985 0.888

TP int 0.989 0.952 0.641 0.005 0.412

TN int 0.937 0.414 0.908 1.000 0.914
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Table 2:

Results from simulation study with p = 25 and sparse Ω0 in the three scenarios: factor, linear and independent 

for n = 500. We computed test error, Frobenious norm, MSE for main effects, percentage of true positives and 

true negatives for main effects and interactions for Hiernet, Family, PIE, RAMP and FIN model with a = 0.5 

across 50 simulations. Test error, FR, and main MSE are presented as ratios compared to the best performing 

model.

HierNet FAMILY PIE RAMP FIN

test error 1.284 5.274 1.206 4.225 1

FR 1.189 1.259 1 2.157 1.284

factor main MSE 3.430 1.560 1 1.590 1.312

TP main 0.667 0.823 0.698 0.583 0.812

TN main 0.445 0.259 0.863 0.834 0.716

TP int 0.514 0.839 0.562 0.031 0.448

TN int 0.959 0.580 0.974 0.965 0.941

test error 1.199 5.271 1 5.060 1.486

FR 3.889 6.859 1 7.916 5.370

linear main MSE 1 3.563 1.387 1.392 1.726

TP main 1 0.845 0.857 0.952 0.976

TN main 0.484 0.272 0.845 0.815 0.807

TP int 0.970 0.887 0.964 0.077 0.917

TN int 0.970 0.645 0.987 0.975 0.894

test error 1.425 9.685 1 12.746 3.438

FR 12.956 18.036 1 21.604 9.607

independent main MSE 1 6.082 3.056 4.326 3.055

TP main 1 0.830 0.860 0.630 0.900

TN main 0.418 0.585 0.847 0.915 0.898

TP int 1 0.852 1 0.071 0.921

TN int 0.993 0.868 0.990 0.995 0.957
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