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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with poor patient 

survival. Towards understanding the underlying molecular alterations that drive PDAC 

oncogenesis, we conducted comprehensive proteogenomic analysis of 140 pancreatic cancers, 67 

normal adjacent tissues, and 9 normal pancreatic ductal tissues. Proteomic, phosphoproteomic, 

and glycoproteomic analyses were used to characterize proteins and their modifications. In 

addition, whole genome sequencing, whole exome sequencing, methylation, RNA-seq, and 

miRNA-seq were performed on the same tissues to facilitate an integrated proteogenomic analysis 

and determine the impact of genomic alterations on protein expression, signaling pathways, 

and post-translational modifications. To ensure robust, downstream analyses, tumor neoplastic 

cellularity was assessed via multiple, orthogonal strategies using molecular features, and verified 

via pathological estimation of tumor cellularity based on histological review. This integrated 

proteogenomic characterization of PDAC will serve as a valuable resource for the community, 

paving the way for early detection and identification of novel therapeutic targets.
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Introduction

With a five-year survival rate below 10%, pancreatic ductal adenocarcinoma (PDAC) is one 

of the deadliest solid malignancies, and is projected to become the second leading cause 

of cancer death in the US and in Europe by the year 2030 (Quante et al., 2016; Rahib et 

al., 2014). It has been estimated that 48,220 Americans died of PDAC in 2020 (American 

Cancer Society, 2021). Due to the lack of early signs and symptoms, as well as the dearth 

of reliable and effective methods for screening and early detection, the majority of patients 

(80%-85%) present with locally advanced or distant metastatic disease and are unresectable 

(Hruban et al., 2019; Motoi and Unno, 2020; Pereira et al., 2020; Singhi et al., 2019; 

Springfeld et al., 2019). Combination cytotoxic chemotherapy serves as first-line treatment 

of metastatic PDAC and is responsible for the modest survival improvement seen in this 

setting (Roth et al., 2020). Nevertheless, the median overall survival achieved in patients 

with metastatic disease is still less than 12 months (Vaccaro et al., 2011; Von Hoff et al., 

2013).

Over the last decade, a number of drugs, including targeted therapies, have been developed 

for the treatment of PDAC. However, results have been disappointing, and new strategies 

are desperately needed. Comprehensive characterization of well-annotated tumor specimens 

has led to a better understanding of the key genomic and transcriptomic alterations 

in PDAC, including somatic mutations in KRAS, TP53, CDKN2A, SMAD4, and to 

molecular classifications of tumors based on gene expression patterns (Thompson et al., 

2020). In addition, these studies have revealed tumor-specific therapeutic targets, such 

as poly(adenosine diphosphate–ribose) polymerase (PARP) inhibitors, for cancers with 

germline BRCA1 and BRCA2 mutations (Balachandran et al., 2019; Balsano et al., 2019; 

Elyada et al., 2019; Golan et al., 2019; Hessmann et al., 2020; Jones et al., 2008; Kaufman et 

al., 2015; Lowery et al., 2018). Unfortunately, these mutations only occur in a small number 

of pancreatic cancers, and resistance can emerge when single agents are given (Tao et al., 

2020).

Somatic KRAS activating point mutations are the predominant genetic alteration in PDAC. 

However, KRAS is considered an undruggable target except for a specific mutant form, 

G12C (Janes et al., 2018). In addition to downstream intracellular changes, it has been 

increasingly appreciated that KRAS mutations also have a broad impact on the tumor 

microenvironment, contributing to promotion and maintenance of cancer malignancy, 

responses to immunotherapy, and drug delivery. Since most pancreatic cancers are 

notoriously immunologically “cold”, molecular classifiers are needed to identify the small 

fraction of patients with relative “hot” cancers that may benefit from immunotherapy and 

reveal mechanisms driving immune exclusion in the majority of PDACs (Ho et al., 2020). 

Although genomic and transcriptomic features are needed to identify critical signaling 
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pathways active in PDAC that can be targeted and have started to unravel the importance 

of stroma and the immune environment, they alone are insufficient to fully understand this 

cancer and support advancements in precision oncology. A proteogenomic approach that 

integrates proteomics and post-translational modification (PTM) analysis provides a more 

comprehensive view of pancreatic cancer biology and supports discovery of targets for early 

detection and treatment.

Here, we performed a comprehensive proteogenomic characterization of treatment naive 

PDACs, paired normal adjacent tissues (NATs), and macro-dissected normal pancreatic 

duct tissues. We addressed the characteristic low neoplastic cellularity of pancreatic cancer 

by focusing on tumors with sufficient neoplastic cellularity as defined by several cross-

validated methods, and explored the proteogenomic features specific to neoplastic ductal 

epithelial cells by applying molecular and histological deconvolution. The use of tissue 

isolated from normal pancreatic ducts allowed us to overcome the high acinar cell content 

of normal pancreatic parenchyma, and to compare directly neoplastic ductal epithelium to 

non-neoplastic ductal epithelium, confirming clinically relevant protein markers identified 

using PDACs and NATs. Moreover, integrated proteogenomic characterization revealed 

the phenotypic effects of genomic and epigenetic perturbations on proteins and protein 

modifications, and delineated PDAC molecular subtypes and cell microenvironment 

compositions. This dataset constitutes a rich resource for future studies focused on early 

detection and tumor classification-based patient stratification to guide treatment selection.

Results

Proteogenomic Landscape of the PDAC Cohort

For proteogenomic characterization of PDAC, 140 treatment-naive pancreatic tumors (135 

PDACs and 5 pancreatic adenosquamous carcinomas), 67 paired NATs, and 9 normal 

pancreatic duct tissues were collected and homogenized via cryopulverization for genomic, 

epigenomic, transcriptomic, and proteomic analyses within the same portion of tissue. 

Clinical data, including age, sex, race, tumor site, and tumor stage, are summarized 

in Table S1. Whole-exome sequencing (WES), whole-genome sequencing (WGS), RNA 

sequencing (RNA-Seq), microRNA sequencing (miRNA-Seq), DNA methylation analysis, 

isobaric tandem mass tag (TMT) labeling based proteomics, phosphoproteomics, and 

glycoproteomics produced 8 sets of omics data (Figure 1A). RNA-Seq, miRNA-Seq, 

and methylation analysis identified 28,057 genes, 2,416 miRNAs, and 850,000 CpG 

sites, respectively. Proteomics, phosphoproteomics, and glycoproteomics analyses identified 

and quantified in total 11,662 proteins (8,781 proteins per sample on average), 51,469 

phosphosites (25,764 phosphosites per sample on average), and 34,024 glycopeptides 

(30,660 N-linked glycopeptides and 3,364 O-linked glycopeptides; 8,706 N-linked 

glycopeptides per sample on average and 866 O-linked glycopeptides per sample on 

average) (Table S1). We found high measurement reproducibility of the quality control 

samples across the TMT plexes and no observable TMT-plex effect (Figure S1A). In this 

study, the median correlation between RNA and protein is 0.35 (Figure S1B), indicating 

the consistent disparity between RNA and protein expression, which was also observed in 

other cancer types such as colon cancer (mean=0.48, Vasaikar et al., 2019), ovarian cancer 
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(median=0.45, Zhang et al., 2016), clear cell renal cell carcinoma (tumor median=0.43, 

NAT median=0.34, Clark et al., 2019), endometrial cancer (median 0.48, Dou et al., 2020), 

lung adenocarcinoma (tumor median=0.53, NAT median=0.15, Gillette et al., 2020), and 

head and neck cancer (median=0.52, Huang et al., 2021). To determine whether gene-

wise correlations of tumors and NAT were different, we performed gene-wise correlation 

separately for tumors and NATs (Figure S1B), observing a decreased median correlation 

within the NAT-only group relative to the tumor-only group (tumor median=0.36, NAT 

median=0.26). This trend was noted in other tumor types (Clark et al., 2019; Gillette et al., 

2020) potentially due to cell-type-specific translational regulation (Gonzalez et al., 2014).

A unique feature of this study is that samples were collected prospectively from 

multiple source sites worldwide, controlling for ischemia time to ensure high quality 

post-translational modification (PTM) analysis of proteins (Figure 1B). Our patient cohort 

reflected demographics of previous large-scale reports, with 75% of the resected tumors 

derived from the head of the pancreas (Becker et al., 2014; Kim et al., 2017; van Erning 

et al., 2018). As these were surgically resected cancers, the vast majority of patients were 

stage I-III with only nine stage IV patients, including 59% of patients with low stage tumors 

(Stage I or II), and 42% of patients that were alive at the time of the data freeze for the 

analysis reported in this study (Figure 1B). Several risk factors related to PDAC, including 

smoking history, chronic pancreatitis, obesity, and type II diabetes, were present in our 

cohort with rates of 37%, 22%, 11%, and 28%, respectively (Table S1). Importantly, KRAS 
alterations were detected in 97% of tumors (96% hotspot driver KRAS mutations and one 

KRAS amplification event), consistent with previous large-scale analyses (Bailey et al., 

2016; The Cancer Genome Atlas Research Network, 2017b).

A major challenge in characterizing PDAC is that neoplastic ductal cells often comprise 

a minority of the cells in pancreatic tumors, with non-neoplastic cell components, such as 

acinar cells and stroma, making up a large proportion of the resected tissue. To address 

this limitation, we identified 105 samples with sufficient neoplastic purity based on several 

criteria: a minimum KRAS variant allele fraction (VAF) greater than or equal to a cutoff 

of 0.075 (equivalent to 15% neoplastic cellularity), or significant mutation burden and copy 

number alterations (Figures 1C, 1D). Among these, we included 4 tumors that do not 

carry detectable KRAS mutations, but harbor additional genetic features associated with 

PDAC, including mutations in other significantly mutated genes (SMGs), including TP53, 

CDKN2A, and SMAD4, and relatively high numbers of somatic mutations and copy number 

alterations. We did not detect any purity-related patterns with specific KRAS hotspot amino 

acid changes (Figures 1C, 1D). In addition to these KRAS VAF-based metrics, we used 

histology-based as well as DNA methylation- and RNA-based molecular deconvolution 

methods (Onuchic et al., 2016) to estimate neoplastic cellularity using different data 

modalities. These estimates of neoplastic cellularity significantly correlated with KRAS 
VAF estimates (Figure S1C). In particular, KRAS VAF was highly correlated with DNA 

methylation-based deconvolution (Spearman r = 0.81). We herein denote the remaining 35 

tumors as “low purity” but emphasize that they do indeed contain neoplastic cells, evidenced 

by presence of other SMG alterations, low KRAS VAF, and pathology review (Figure 1C). 

When projected into principal component analysis (PCA) at RNA, protein, phosphorylation, 

and glycosylation levels, we observed that high purity tumors and NAT samples were 
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separated but low purity samples were spatially localized -between the high purity tumors 

and NAT samples, which supported our purity classification (Figure S1D). Low purity 

samples were retained for selected analyses aimed at dissecting the tumor microenvironment 

and for tumor subtyping.

Previous molecular studies of PDAC used NATs in tumor-normal comparisons, despite 

the fact that NATs are mostly composed of non-neoplastic acinar cells, thus introducing 

cell-type-specific signatures that confound the analysis. In order to address this limitation, 

we included 9 normal macrodissected ductal tissues to serve as a true ductal/epithelial 

normal, in addition to NATs.

In summary, we leveraged genomic, histological, and computational approaches to address 

low tumor cellularity and high acinar content of NATs, and annotated tumor samples with 

sufficient tumor purity to delineate unique molecular features of PDAC tumors from NATs.

Impact of Genomic Alterations on Transcriptome, Proteome, and Phosphorylation

Previous genomic characterizations have delineated the most frequent genetic alterations 

associated with PDAC, with subsequent transcriptomic analyses resulting in the 

development of transcriptomic-based subtypes of PDAC (Bailey et al., 2016; Collisson et al., 

2011; Moffitt et al., 2015; Singh et al., 2009). Despite substantial efforts, linking genomic 

alterations to the functional modules that drive the pathological phenotypes remains a 

challenge. Among 105 tissue samples with sufficient tumor cellularity, genomic alterations 

were detected in known pancreatic cancer driver genes, KRAS, TP53, CDKN2A, and 

SMAD4, at rates of 97%, 83%, 48%, and 29%, respectively (Figure 2A). These frequencies 

are comparable to previous reports, with somewhat higher percentages of CDKN2A and 

SMAD4 alterations due to the inclusion of copy number variations (CNVs) and fusions 

(Thompson et al., 2020). We found assessment and integration of CNVs to be critical, 

evidenced by the presence of more CDKN2A focal deletions than intragenic mutations in 

our cohort (Caldas et al., 1994). Hotspot KRAS mutations were largely G12D, G12V, and 

G12R (Figure 2A). Aside from these four major SMGs, we also detected ARID1A, RNF43, 

GNAS, KMT2C, KMT2D, TGFBR2, and RBM10 alterations in at least 5% of the tumors 

(Figure 2A).

We comprehensively characterized the impact of genetic alterations on RNA, protein, and 

phosphosite levels of the corresponding gene product (cis) or other interacting genes (trans) 

(Figures 2B and 2C) (STAR Methods). TP53 alterations had the most trans-effects at 

protein and phosphosite levels, with different targets identified at the RNA/protein levels 

and phosphosite levels, likely due to extensive post-translational regulation. Interestingly, 

mutations in TP53 were associated with an increase in phosphorylation of proteins involved 

in DNA damage repair pathways (e.g. MSH6, TP53, and TP53BP1), which suggests that 

these alterations play a role in maintaining genome integrity and preventing apoptosis 

(Figure 2C). In TP53 mutant tumors we also observed higher phosphorylation of MKI67, a 

marker for cellular proliferation, which implies that these mutations may lead to increased 

cell growth rates (Herr et al., 2020). We further explored the effects of TP53 missense 

mutations compared to truncating mutations. Samples carrying a frame-shift insertion or 

deletion, splice-site mutation, nonsense mutation, or CNV deletion in TP53 were included 
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in the truncation group. The missense group was composed of samples with missense 

mutations in TP53. As expected, we observed a significantly greater cis-effect with higher 

TP53 protein expression and TP53-S315 phosphosite expression in the TP53 missense 

group compared to the wild-type group (Figure S2A), while there were no significant 

TP53 protein changes in cis-effects between the truncation and wild-type groups (Figure 

S2A). Evaluation of the trans-effects of disparate TP53 genomic alteration revealed impacts 

on three phosphosites, MKI67-S1376, MSH6-S219, and TP53BP1-S321. Interestingly, 

we observed similar trans-effects by both missense and truncation groups which were 

associated with to higher phosphorylation levels of these proteins (Figure S2A). SMAD4 
mutations were associated with downregulation of SERPINE1, a known TGFβ pathway 

target (Dennler et al., 1998), at both the RNA and protein levels, as well as the up-regulation 

of MAPK3 protein expression and downstream MAPK signaling (E2F4 phosphorylation). 

These associations have been reported in vitro (Chen et al., 2002) and in other cancer 

types (Gomis et al., 2006). (Figure 2B). Additionally, we found that RBM10 mutations 

displayed a significant cis-effect leading to high expression of the cognate mRNA, protein 

and phosphoproteins (Figure 2B). RBM10 is a tumor suppressor that acts upstream of p53 

and plays a role in RNA splicing (Hernandez et al., 2016). In a prior WES study of PDAC, 

RBM10 mutations were associated with better survival in patients with aggressive disease 

(Witkiewicz et al., 2015).

We also identified several arm level and focal level copy number variations (CNVs), 

including amplifications in 9p, 11q, 18q, and 22q arms, GATA6 focal amplifications, and 

CDKN2A deletions (Figures 2D and 2E) (Caldas et al., 1994; Fu et al., 2008; Iacobuzio-

Donahue et al., 2004) that lead to significant expression changes in genes, proteins, and 

phosphoproteins (Figure S2B). Since we observed a much larger number of amplifications, 

we focused on identifying putative new CNV drivers within the amplified foci (Figure 2E, 

2F). Of 543 genes within amplification peaks, 165 showed significant correlation of copy 

number with corresponding RNA levels, including 23 that displayed concordant protein 

expression (Figure 2F). Proteins identified by this approach, are representative of potentially 

novel cis-effects of CNV events, and associated with actin filament process and cytoskeleton 

organization (Figures 2F and 2G), with reorganization of actin fibers having been previously 

implicated in tumorigenesis and metastasis (Manoli et al., 2019; Stevenson et al., 2012).

To further investigate the impact of CNV, we analyzed the expression changes in gene, 

protein, and phosphorylation associated with CNV across the entire genome, visualized as 

correlation heatmaps depicting global cis- and trans-effects of CNVs (Figure S2C, Table 

S2). Most of the proteins regulated in trans by CNVs were located within chromosomes 7, 9, 

17, and 18, while trans-effect of CNVs at the phospho-level was sporadic (Figure S2C).

We further examined any alterations associated with SMAD4 and CDKN2A loss, and 

observed lower SMAD4 and CDNK2A mRNA levels in samples with SMAD4 deletion 

and CNDK2A deletion, respectively, compared to corresponding wild-type group (Figure 

2H). Regarding trans-effects of these deletions, higher phosphorylation of HDAC1 at S406, 

S410, and S421, and of SMARCA4 at S613 were associated with SMAD4 deletions, while 

CDKN2A deletions were associated with higher phosphorylation of NPM1 at S70 and S214 

(Figure 2I). In addition, CNV loss of SMAD4 was associated with a higher phosphorylation 
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level of CREBBP-S274 and lower phosphorylation of ZFP36-S66 and -S119 (Figure 2I). 

Although the functional role of ZFP36 phosphorylation is not fully characterized, this 

protein is down-regulated in several tumor types including pancreatic cancer, suggesting a 

potential role as a tumor suppressor in PDAC (Fallahi et al., 2014; Sun et al., 2015; Wei et 

al., 2016).

To identify proteins possibly regulated by DNA methylation in tumors, we correlated RNA, 

protein, and phosphoprotein levels with promoter DNA methylation (Figure S2D). Among 

others, GSTM1 methylation resulted in downregulation of the corresponding RNA and 

protein, in agreement with reports that implicate GSTM1 in multiple cancers (Wang et al., 

2016; Zhang et al., 2017). The extent of promoter DNA methylation was lower in NATs 

than in tumors (Figure S2E–F). Tumors with KRAS G12D mutations also showed relatively 

higher DNA methylation compared to tumors with other KRAS mutations (Figure S2F). 

We applied the method for “Identification of epigenetically-silenced genes” as described by 

TCGA (The Cancer Genome Atlas Research Network, 2017b) on our methylation dataset 

and identified 86 epigenetically silenced genes, of which 22 were previously reported by 

TCGA (Table S2). Two genes (ZNF544 and THNSL2) that were epigenetically-silenced in 

more than 10% of tumors were significantly associated with patient survival (Figure S2G–I), 

and the methylation of both of these genes was confirmed in the TCGA data set (The 

Cancer Genome Atlas Research Network, 2017b). Two clusters (cluster M1 and M2) were 

identified by methylation-based subtyping (Table S2). Cluster M2 showed more extensive 

DNA hypermethylation relative to cluster M1 (Table S2). We also observed a positive 

association between tumor cellularity and methylation status in these tumors (Table S2), in 

line with the TCGA study (The Cancer Genome Atlas Research Network, 2017b).

In summary, we verified commonly mutated genes, CNVs, as well as DNA methylation 

events in PDAC, and linked these genomic and epigenetic perturbations to the functional 

modules that drive disease phenotype.

Discovery of Specific Molecular Features of Early Stage PDAC for Tumor Diagnosis and 
Prognosis

Approximately 80% of PDAC tumors are unresectable as patients are diagnosed at an 

advanced stage (Hruban et al., 2019). Thus, a panel of highly robust biomarkers for early 

detection may improve survival as treatment modalities for these patients emerge. Proteins, 

phosphorylation sites, and glycosylation sites that are dysregulated in tumors relative to 

NATs represent putative candidates for early detection/prognosis and may serve as novel 

drug targets. To identify tumor-associated proteins, we performed differential abundance 

analysis using high tumor cellularity samples (Table S3). Relative to NATs, 2,218 and 2,244 

proteins were significantly down-regulated and up-regulated, respectively, in PDACs (Figure 

3A, Wilcoxon signed rank test). As expected, proteins with high abundance in NATs (> 

2 fold) were related to normal pancreatic functions, such as organic anion transport and 

digestion, while many of those upregulated in tumors (> 2 fold) were enriched for proteins 

involved in epidermal and endodermal development.

To identify proteins associated with PDACs, we focused on 222 proteins with more than 

two-fold increase in abundance in tumors relative to NATs (Figure 3A). To account for the 
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inherent heterogeneity of pancreatic tumors, we adjusted for stromal and immune content 

using a linear mixed model. Twenty seven proteins remained significantly upregulated by 

more than two-fold in PDACs relative to NATs. We additionally found that the differential 

expression between PDACs and NATs was similar to that between PDACs and normal ductal 

tissues (Figure S3A), and 21 of 27 proteins were also up-regulated more than two-fold in 

PDACs compared to normal ductal tissues (Figure 3B, Table S3). Importantly, these proteins 

were similarly upregulated in early stage tumors (Figure 3B). In particular, 12 of these are 

secreted proteins and could serve as early detection markers in serum or pancreatic juice 

(Gonzalez-Borja et al., 2019). Among these putative biomarkers, two proteins, THBS2 

and LAMC2, were reportedly elevated in sera from patients with PDAC (Kim et al., 

2017; Kosanam et al., 2013). Expression of most of these proteins in pancreatic cancer 

is supported by immunohistochemistry (IHC) evidence in the Human Protein Atlas (Figure 

S3B). Eleven proteins are reported as elevated in the Pancreatic Cancer Database, with 

six proteins (HK2, LOXL2, COL12A1, C19orf33, TSPAN1, MDK) previously supported 

only by RNA or cell line proteomic evidence in the Pancreatic Cancer Database (Harsha 

et al., 2009; Thomas et al., 2014), with LOXL2 protein abundance associating with 

shorter overall survival (Figure 3C). Two were described elsewhere as elevated in PDAC 

(SDR16C5 and ANKRD22) (Caba et al., 2014; Chang et al., 2020), while we are the first to 

report elevated levels of GSDMB and LECT2 in PDAC. Fourteen out of twenty one tumor-

associated proteins highlighted in Figure 3B as potential protein targets for early detection or 

prognostic markers were validated by the orthogonal method of data-independent acquisition 

(DIA) mass spectrometry analysis, indicating the reliability of our reported tumor-associated 

proteins (Table S3).

Tumor-specific changes in PTMs, including phosphorylation and glycosylation, could 

provide additional options for PDAC diagnosis and prognosis. Compared to NATs, 4,908 

phosphorylation sites (30% of the quantified sites) and 1,727 N-linked glycosites showed 

significantly increased abundance in PDACs (Table S3, adjusted p < 0.01). The proteins 

containing these modifications were related to GTPase activity regulation, cytoskeleton 

organization, extracellular structure organization, and integrin-mediated signaling (Table S3) 

(Jones et al., 2008). In general, the differential abundance of PTMs was similar to the 

differential abundance at the protein level while 45 N-linked glycosylation sites and 645 

phosphosites were upregulated more than 2-fold without a corresponding increase in protein 

abundance (Figure 3D). Interestingly, some phosphosites showed highly specific regulation 

at the phosphorylation level. For example, while the protein abundance of RALGAPA2 

was decreased in PDACs (Figure S3C), two phosphosites were increased more than 2-fold 

at S486 and S696 while three others were decreased or similar to NAT (Figure S3D). 

RALGAPA2 is related to KRAS signaling in pancreatic cancer (Beel et al., 2020) and 

exploring the function of these specific sites in future studies may be warranted.

Finally, many of these PTMs, in addition to protein abundance, were associated with patient 

prognosis. Overall, the prognostic value of PTMs was similar to that of the protein (Figure 

3E, Table S3). However, a particular N-linked glycosylation on APOD was associated 

with better overall survival, while total protein abundance did not (Figure 3F). Although 

decreased expression of APOD is associated with better prognosis in other cancer types, 

little is known about the role of this glycosylation site and its effect on APOD function (Ren 
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et al., 2019). Additionally, two phosphosites on PIGR, which is involved in the epithelial-

mesenchymal transition, are associated with better prognosis, while a site on ERRFI1, an 

ERBB signaling regulator, is associated with worse survival (Figure 3E).

Together, these proteins and PTMs, including phosphorylation and N-linked glycosylation, 

provide focused targets for future investigation as possible PDAC diagnostic and prognostic 

markers.

Targeting Glycoprotein Biosynthesis for Early Detection and Therapeutic Intervention

Cell surface, membrane, and secreted proteins are more likely to be glycosylated than 

proteins derived from other cellular compartments (Zhang et al., 2003). Aberrations in 

glycoprotein expression and their glycosylation play a critical role in cancer progression 

(Clarke et al., 2005; Engle et al., 2019; Hart and Copeland, 2010; Varki, 2017). 

Most importantly, extracellularly exposed proteins are easily accessible as potential 

immunotherapy targets and can be used to detect disease (Li et al., 2005); thus, 

glycoproteins not only make up the majority of tumor markers currently approved by 

US Food and Drug Administration (FDA), but also constitute the major biochemical 

class of therapeutic targets (Sokoll et al., 2008). Glycoproteomic analysis of PDACs 

and NATs identified 75 N-linked glycoproteins upregulated more than 2-fold in tumors 

(Figure 4A, S4A–B, and Table S4). Of these, 57 were reported in the Pancreatic Cancer 

Database (Harsha et al., 2009; Thomas et al., 2014), and 18 were newly identified 

in this study. Most of up-regulated N-linked glycoproteins were secreted or membrane 

proteins (Figure S4A). Forty-eight out of seventy-five tumor-associated glycoproteins were 

further validated by DIA analysis (Table S4). Gene Set Enrichment Analysis (GSEA) 

focused on altered N-linked glycoproteins showed that epithelial mesenchymal transition 

(EMT), collagen formation, and complement and coagulation cascades are the top three 

enriched pathways among up-regulated N-linked glycoproteins, while protein processing 

in ER, translation, N-glycan biosynthesis are the top three enriched pathways among 

down-regulated N-linked glycoproteins (Figure S4B). In addition, mucin-type O-linked 

glycoproteins, including MUC1, MUC3A, MUC5AC, MUC5B, MUC 13, and MUC16 

associated with CA19-9 antigen (Akagi et al., 2001; Hollingsworth and Swanson, 2004; 

Yue et al., 2011) were significantly up-regulated in tumors, as well as early stage tumors, 

relative to NATs and/or normal duct tissues (Figure S4C). Of these, MUC1, MUC5AC, 

MUC5B, and MUC13 were further validated by DIA analysis (Table S4). We further 

discriminated tumor vs normal ductal tissue N-linked glycoprotein expression based on 

disparate hotspot KRAS mutations (G12D, G12V, G12R, Q61H) (Figure 4B). Interestingly, 

CEACAM5 and CEACAM6 were significantly upregulated in tumors with KRAS G12D, 

G12V, and Q61H, but not G12R, mutations (Figure 4B, Figure S4D). CEACAM5 and 

CEACAM6 are members of the carcinoembryonic antigen (CEA) family and are highly 

abundant cell surface glycoproteins serving as adhesion molecules in the extracellular matrix 

(ECM). CEACAM6 is a poor prognostic marker for patients with PDAC, and CEACAM6 

overexpression has been associated with low cytolytic T-cell activity in PDAC (Pandey 

et al., 2019). A focused evaluation of N-linked glycoprotein expression in low stage 

tumors revealed several candidates for early detection or treatment (Figure 4B, Table S4) 

including galectin binding protein 3 (LGALS3BP) (Figure S4E). In addition to N-linked 

Cao et al. Page 9

Cell. Author manuscript; available in PMC 2021 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



glycoprotein expression quantified from proteomic data, their glycosylated forms quantified 

from glycoproteomic data have provided unique expression patterns in tumors. Hemopexin 

(HPX) and collagen type VI alpha 1 chain (COL6A1) displayed similar expression across 

cancers, early stage cancers, NATs, and normal ductal tissues in total protein levels, 

while abundance differences of a sialylated glycan (N3H4S1) and a high mannose glycan 

(N2H8) on SWPAVGNCSSALR (HPX) and NFTAADWGQSR (COL6A1), respectively, 

was observed in PDAC tumors (Figure S4E).

Further examination of our glycoproteomic dataset revealed variable glycan modifications 

on individual N-linked glycoproteins across individual tumors. This observation presents 

an opportunity to target glycoproteins harboring specific glycan forms as complementary 

to the current mRNA and protein alterations for diagnosis or therapeutic intervention. The 

biosynthesis of N-linked glycoproteins is regulated mainly by two factors, the glycoprotein 

substrates and glycosylation enzymes for glycan synthesis and conjugation to N-linked 

glycoproteins. We investigated the role of N-linked glycoprotein substrate abundance on 

the regulation of glycosylation. We first looked at the changes in intact glycopeptide (IGP) 

expression derived from glycoproteomic data and total N-linked glycoprotein expression 

derived from global proteomic data (Figure 4C). Although the alteration patterns of IGPs 

were mainly positively correlated to the protein abundances of N-linked glycoprotein 

substrates modified by different glycans (Figure 4C), IGP and protein features were not 

consistent, as we delineated heterogeneity of IGP abundances from the same protein 

displaying distinct glycan branching patterns across the pathological tissue types. Overall, 

N-linked glycoproteins upregulated in the tumors were most modified by complex glycans 

with sialic acids and/or fucoses, and N-linked glycoproteins downregulated in tumors 

were mainly modified by high mannose glycans (Figure 4C). These data indicate that 

focusing on sialylated and/or fucosylated glycans of the N-linked glycoproteins upregulated 

in PDAC may increase the specificity of markers for cancer. We next examined the 

intrinsic mechanism of these glycosylation alterations based on the abundance levels 

of glycosylation biosynthesis enzymes, wherein we correlated the abundance of IGPs 

from each tumor and non-tumor sample with the protein abundance of the glycosylation 

enzymes that were identified and quantified from the same sample using global proteomics 

(Figure 4D). We found that the intact glycopeptides with glycosylation of sialylated or 

fucosylated glycans were positively correlated with the expression of glycosylation enzymes 

involved in glycan trimming/branching and capping such as FUT3, B4GALT1, ST3GAL1, 

MGAT5, GANAB, B4GALT4, FUT11, and MAN2C1 (Figure 4D). We then compared the 

glycosylation enzyme expression levels between tumors and NATs, revealing up-regulation 

of glycosylation enzymes including ST6GAL1, ST3GAL1, FUT3, FUT11, B4GALT1, 

B4GALT4, B3GALT5, and ST6GALNAC1 in tumors (Figure 4E). Of these, FUT3, FUT11, 

B4GALT4, and B4GALT1 were further validated by DIA analysis (Table S4). Some of these 

glycosylation enzyme changes, such as elevated ST6GAL1, ST3GAL1, and B4GALT1, 

in tumors, were not observed at the transcriptomic level (Figure S4F), highlighting the 

added value of proteomics and glycoproteomics in our multi-omic analysis. ST6GAL1 and 

ST3GAL1 regulate sialylation, while FUT3 and FUT11 are responsible for fucosylation, in 

line with our observation that PDAC up-regulated proteins are mainly modified by sialylated 

and/or fucosylated glycans. ST3GAL1 is upregulated in several cancer types including 
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thyroid cancer, lung cancer, liver cancer, pancreatic cancer, breast cancer, and ovarian cancer 

based on the transcriptomic data from TCGA studies (The Cancer Genome Atlas Research 

Network, 2011, 2012a, b, 2014a, b, 2017a, b) and has been reported to be associated 

with resistance to chemotherapy (Wu et al., 2018). Inhibition of these enzymes will likely 

attenuate increased sialylation and fucosylation glycan branching that was found on most 

tumor up-regulated glycoproteins, and serves as a potential therapeutic strategy for PDAC.

In summary, integrating global proteomic and glycoproteomic measurements identified 

proteins and glycoproteins overexpressed in PDACs, and these proteins and glycoproteins 

may find clinical utility as candidates for early detection and/or therapeutic intervention.

Kinase and Substrate Co-regulation Reveals Potential Therapeutic Targets

Since tumors with KRAS driver mutations are difficult to treat via targeted therapy, 

effective therapeutic intervention for PDAC, known to have high frequency for KRAS 
mutations, has remained elusive (Uprety and Adjei, 2020). Protein phosphorylation is 

heavily involved in various signaling pathways during pancreatic carcinogenesis (Furuse 

and Nagashima, 2017; Ruckert et al., 2019). To investigate signal transduction pathways 

downstream of activated KRAS in search of alternative therapeutic targets, we analyzed 

protein phosphorylation events regulated by kinases on their respective phosphorylation 

substrates. By analyzing differential abundance of phosphopeptides between 41 tumor/NAT 

paired tissues, we stratified five phospho-substrates (MCM2, FLNA, BAD, MAPK6, and 

STAT3) corresponding to five kinases (CDK7, AKT1, PAK1, PAK2, and SRC), for which 

inhibitors are either FDA-approved or under investigation (Wishart et al., 2018; Yeo et al., 

2016) (Figure 5A). Previous studies have shown that elevated phosphorylated substrates are 

related to S-phase entry/progression (CDK7-MCM2), and inhibition of CDK7 can result 

in cell-cycle arrest and suppress tumor progression (Clark et al., 2019; Montagnoli et al., 

2006; Sava et al., 2020). AKT1 is a kinase downstream of KRAS (Figure 5B). The elevation 

of AKT1 expression in almost all tumors is a consequence of nearly universal KRAS 
mutations, which in turn stimulate the progression of G1/S transition, with consequent 

stimulation of proliferative activity (Cai et al., 2018; Jones et al., 2008; Pelosi et al., 

2017). A class I p21-activated kinase (PAK), PAK1, showed higher expression in more 

than 70% of tumors, with its subsequent activity in PDAC tumors supported by elevated 

phosphorylation of its substrate (BAD-S134) (Figures 5A). Apoptosis induced by BAD is 

inhibited upon phosphorylation of BAD-S134 by PAK1, thus promoting cell proliferation 

and survival (Polzien et al., 2011; Ye and Field, 2012). PAK1 can be activated by direct 

interaction with RAC1 (Fan, 2020), and RAC1 was up-regulated in most tumors (Figure 

5B and 5C). PAK1 is an important effector of several receptor tyrosine kinases, such as 

MET (Rane and Minden, 2019; Zhou et al., 2014). We observed concordant up-regulation 

of MET and PAK1 (Figure 5B), and we found that MET was concordantly up-regulated 

with KRAS, RAC1, PAK1, PAK2 at both the transcription and protein levels in tumors 

as well (Figure 5C). The MET/PAK1 signaling axis drives pancreatic carcinogenesis via 

regulation of cell proliferation, motility, and regulation of cytoskeletal remodeling (Zhou et 

al., 2014). Furthermore, constitutive activation of the SRC/STAT3 signaling axis enhances 

hepatocyte growth factor (HGF) promoter activity, which in turn activates PAK1 via 

HGF/MET signaling (Aznar et al., 2001; Lee et al., 2019; Wojcik et al., 2006; Yuan et 
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al., 2015). Another member of the class I PAKs, PAK2, was also up-regulated in almost 90% 

of tumors and likely responsible for elevated phosphorylation of MAPK6-S189 (Figures 

5A–C). The phosphorylation process is critical for the formation of the MAPK6-Prak 

complex for MAPK6 signaling, suggesting an important role for PAK2 activity in regulating 

atypical MAPK signaling associated with cell motility (De la Mota-Peynado et al., 2011). 

Expanding the phosphoproteomic analysis to include the normal ductal tissues showed 

that the expression profiles of the class I PAKs and the other kinases as well as their 

substrates in PDAC tumors were substantially different from NATs and/or normal ductal 

tissues, suggesting that these proteins were PDAC-associated kinases (Figures 5D, S5A–B). 

Furthermore, the differential expression patterns of four of these kinases (PAK1, SRC, 

AKT1, and CDK7) were confirmed by DIA analysis (Table S5).

By evaluating phosphosite expression changes in tumors with different KRAS hotspot 

mutations relative to NATs (>2 fold increase with adjusted p<0.05, Figure S5C), we further 

stratified 19 kinases (Figure 5E, Table S5), including seven FDA-approved drug targets 

(Hobbs et al., 2020, Uhlen et al., 2015). These different patterns of kinase expression 

suggest alternative therapeutic targets associated with specific KRAS mutations. Given 

the importance of the class I PAKs to PDAC, combined inhibition of PAK1/2 and 

KRAS downstream pathways, such as MAPK/ERK and PI3K/AKT/mTOR, may increase 

therapeutic benefit by maximizing inhibition of tumor cell proliferation, motility, and 

signaling to the cytoskeleton (De la Mota-Peynado et al., 2011; Folkes et al., 2008; Ozkan-

Dagliyan et al., 2020; Zhou et al., 2014).

In summary, we identified over-expressed substrates and their corresponding kinases, 

uncovering multiple potential targets that can be further explored with therapeutic intent.

Immune-Cold PDACs Associated with Endothelial Cell Remodeling, Glycolysis, and Cell 
Junction Dysregulation

One limitation of molecular analyses of tumor and normal tissues is that they do not fully 

dissect the interaction between tumor-intrinsic biology and microenvironment dynamics. 

This knowledge gap is particularly consequential for PDAC, which is heavily driven by 

tumor microenvironmental features (Collisson et al., 2019). Here, we classified tumors 

based on microenvironmental cell signatures, with an emphasis on delineating the degree of 

immune infiltration, as targeting immune modulators has shown promise in the treatment of 

a variety of cancer types (Yang, 2015). Unlike other tumors, such as melanoma, PDACs are 

resistant to immune checkpoint inhibitors in general (Hilmi et al., 2018), and leveraging a 

comprehensive proteogenomic approach may provide insight into this phenomenon.

We used a transcriptomics-based deconvolution method (Aran et al., 2017) to delineate the 

cellular composition of all 140 PDAC tumors in this study (i.e., including tumors with 

low neoplastic cellularity as these more fully represent stromal components of the tumor), 

which was further validated by DNA methylation-based tumor deconvolution (Figures 6A 

and S6A–C). Samples were classified into four clusters based on tumor/stromal/immune cell 

composition (Figure 6A). Of particular interest was a small portion (Cluster D) of tumors 

with higher CD8+ T-cell infiltration accompanied by increased expression of cytotoxic 

enzymes and immune checkpoint molecules. We annotated samples in this cluster as 
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“immune hot” tumors. Histologic review of these cases confirmed prominent inflammatory 

infiltrates associated with the tumor component (Figures S6D). Nevertheless, in one case 

(C3N-00303), the immune signature was likely a result of the inclusion of a lymph node in 

the tissue harvested, highlighting the critical importance of histologic review of biosamples 

used in the study of any cancer type (Figure S6E). Samples in clusters A, B and C showed 

little immune infiltration. Because cluster A was enriched with non-neoplastic acinar and 

islet cells, as shown by the deconvolution and RNA subtyping, we considered only clusters 

B and C as true “immune cold” tumor groups (Figure S6F). Noticeably, immune hot 

tumors were also enriched with endothelial cells, and the enrichment was supported by 

an independent deconvolution tool (Becht et al., 2016) (Figure 6B). In addition, cell type 

association network analysis confirmed strong associations between endothelial cells and 

cytotoxic immune cells (Figure S6G).

Endothelial cells represent a physical connection between the circulatory system and 

tumor cells (Klein, 2018), and endothelial cell adhesion proteins are essential for immune 

cell recruitment and frequently downregulated in tumor-associated vasculature (Schaaf et 

al., 2018). Accordingly, immune cold tumors in our cohort had reduced expression of 

endothelial adhesion proteins (Figure 6C). Meanwhile, these tumors also showed elevated 

activity of VEGF and hypoxia pathways, as indicated by expression of VEGF and its 

receptor, as well as the inferred pathway activities (Schubert et al., 2018) (Figure 6D). 

Both VEGF and hypoxia pathways are integral to the remodeling of endothelial cells 

during tumorigenesis (Petrova et al., 2018). Together, these results support an association 

of endothelial cell remodeling and suppressed immune infiltration in immune cold PDACs.

To further characterize the mechanisms underlying the immune cold phenotype, we 

performed pathway analysis using RNA, protein, and phosphorylation data. Immune cold 

samples had higher levels of glycolysis (Figures 6E and S6H), including enrichment of 

enzymes responsible for the generation and secretion of lactate, a known immune suppressor 

in tumor microenvironment (de la Cruz-Lopez et al., 2019). Phosphoproteomics data also 

showed increased phosphorylation of glycolysis pathway components, such as GAPDH, 

PGAM1 and ENO1. In addition, phosphorylation-specific pathway enrichment analysis 

showed that the immune cold samples had higher phosphorylation levels of cell junction 

proteins (Figure S6I); this feature was not as robustly detected at the transcriptomic or 

proteomic levels (Figure 6F). Cell junction proteins play an important role in regulating 

endothelial cell permeability for small molecules and immune cell infiltration (Daneman and 

Prat, 2015, Radeva and Waschke, 2018). Here, our results suggest that the dysregulation 

of protein phosphorylation in the cell junction components might represent an additional 

mechanism of immune exclusion in PDAC tumors.

Together, these data suggest that endothelial cell remodeling, accompanied by elevated 

VEGF and hypoxia pathways, increased glycolysis, and cell junction dysregulation might 

collectively inhibit immune cell infiltration and function (Figure 6G). Inhibiting these 

biological processes, especially glycolysis and endothelial cell remodeling, both of which 

have been actively targeted in multiple cancer types (Annan et al., 2020; Pelicano et al., 

2006), may be therapeutically exploited to boost antitumor immunity in immune cold 

PDACs. This is supported by associating clinical outcomes with these processes. While 
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CD8+ T cell infiltration was a favorable prognostic signature, elevated VEGF and hypoxia 

pathway signaling both were associated with decreased survival (Figure 6H–I).

In summary, multi-omics integration revealed immune-hot subtype tumors that may benefit 

from immunotherapy, as well as the underlying mechanisms associated with immune-cold 

subtypes, including endothelial cell remodeling, glycolysis, and cell junction dysregulation.

Proteogenomic Subtypes with Strong Prognostic Relevance

There are three main transcriptomics-based subtyping strategies for PDAC: Collisson 

(Collisson et al., 2011), Bailey (Bailey et al., 2016), and Moffitt (Moffitt et al., 2015). 

We applied them to the entire set of tumors to explore inter-sample heterogeneity (Figure 

S7A). Consistent with a previous report (The Cancer Genome Atlas Research Network, 

2017b), some of these molecular classifications overlapped significantly, such as “ADEX” 

(Bailey) and “exocrine-like” (Collisson), “Classical (Collisson)” and “pancreatic progenitor” 

(Bailey), and “squamous” (Bailey), “quasimesenchymal” (Collisson) and “basal-like” 

(Moffitt) (p<0.0001, Fisher’s exact test). Notably, five adenosquamous carcinoma samples 

in our cohort were classified into “squamous” (Bailey), “quasimesenchymal” (Collisson), or 

“basal-like” (Moffit) groups, in line with the understanding for this histological pancreatic 

cancer subtype (Boecker et al., 2020; Lenkiewicz et al., 2020; Moffitt et al., 2015). Non-

negative matrix factorization (NMF)-based proteogenomics subtyping using CNV, mRNA 

and protein expression, and phosphosite and glycosylation site abundance data from all 140 

PDAC tumors (i.e., including tumors with low neoplastic cellularity) revealed four clusters 

with significant overlap with RNA-subtypes (Figures S7B–C, Table S7A). Both RNA-based 

and multi-omics-based subtyping results for the whole cohort were heavily confounded by 

tumor purity and cell type composition (Figures S7B–G).

In order to partially mitigate the impact of tumor purity on subtyping, we further limited 

the NMF-based proteogenomics subtyping to the 105 PDAC tumors with sufficient tumor 

neoplastic cellularity. This analysis revealed two clusters (C1 and C2, Figure 7A). The 

two clusters showed significant overlap with Moffitt classical and Moffitt basal-like 

RNA subtypes, respectively, and hereafter referred to as proteogenomic classical and 

proteogenomic basal-like subtypes. Since the Moffitt subtypes were derived by using 

a tumor-intrinsic gene signature (Moffitt et al., 2015), the difference between the two 

proteogenomic subtypes is more likely to reflect tumor-intrinsic biological signals. Pathway 

level analysis of cluster-specific features showed that the proteogenomic classical subtype 

was enriched with features associated with pancreas beta cells, bile acid metabolism, fatty 

acid metabolism, and KRAS signaling suppression, whereas the proteogenomic basal-like 

subtype was enriched with features associated with epithelial mesenchymal transition, 

DNA repair, glycolysis, hypoxia, apoptosis, reactive oxygen species pathway, and multiple 

proliferation and signaling pathways (Figure 7B).

Despite the overall concordance between proteogenomic subtypes derived from multi-omics 

data and the Moffitt subtypes derived from RNA-seq data alone, the classification of 22 

tumors was inconsistent (Figures 7A–C). Eleven Moffitt basal-like tumors were classified 

as proteogenomic classical, and eleven Moffitt classical were classified as proteogenomic 

basal-like. Interestingly, splitting the Moffitt classical or basal tumors according to the 
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proteogenomic clusters revealed a trend of distinct prognostic outcomes (Figures 7D–E). 

Concordantly, we observed that for the 97 PDAC samples with both proteogenomic and 

Moffitt assignments, the proteogenomics-dichotomized subtypes showed stronger prognostic 

separation than the Moffitt-dichotomized subtypes (CoxPH HR 3.4 vs 2.3 comparing 

favorable to adverse survival) (Figures 7F–G). We further interrogated the 392 proteins 

and 258 phosphosites with significant prognostic values (adjusted p-value <0.15, CoxPH 

regression, Tables S7E–F) and found that they were more likely to show differential 

abundance between the two proteogenomic subtypes (69% of the proteins and 78% of the 

phosphosites) than between the two Moffitt subtypes (39% of the proteins and 38% of the 

phosphosites).

Furthermore, we identified 1361/484 RNAs, 84/101 proteins, 364/217 phosphorylation sites, 

and 397/531 glycosylated peptides associated with proteogenomic subtype C1/C2 (Tables 

S7G–N). In order to examine alterations associated with C1 and C2, we focused on proteins, 

phosphorylation sites, and glycosylated peptides associated with the two subtypes (Table 

S7I–N). Among these, 37 and 47 proteins associated with C1 and C2 subtypes, respectively, 

have also been reported in the Pancreatic Cancer Database (Table S7I–J, Harsha et al., 2009; 

Thomas et al., 2014).

To perform in-depth analysis of the two subtypes, we correlated molecular markers, 

phosphorylation patterns of kinases, glycosylation enzymes, and therapeutic targets revealed 

by comprehensive proteogenomics (Figures 3–6) with C1 and C2 subtypes. The C2 

subtype was associated with higher expression (adjusted p-value <0.05) of most of kinases 

highlighted in Figure S5 (e.g., AKT1 and CDK7) as well as those involved in MAPK/ERK 

and PI3K/AKT/mTOR signaling pathways, such as MTOR, MAP3K2, MAP4K4, and MET 

(Table S7O). We also performed GSEA correlating curated gene sets of targets of approved 

drugs and kinase inhibitors (downloaded from DSigDB, Yoo et al., 2015) with C1 and C2 

subtypes (Table S7P). The analysis revealed an association of chemotherapeutic drugs with 

C1 (e.g. Docetaxel, Vinblastine, Cabazitaxel) and kinase inhibitors with C2 (e.g. PP-242 

inhibits mTOR, CP466722 targets ATM/ATR, Sunitinib inhibits PDGFR/VEGFR), which 

were further supported by elevated expression of inferred corresponding drug targets in C1 

or C2 subtypes (Figure S7H, Table S7P). For instance, elevated mTOR, AKT and ERK 

kinase expression and the enrichment of the PP-242 signature in C2 suggests that mTOR 

could be a potential therapeutic target in these patients. The glycan processing enzymes 

involving capping of elongated branches, e.g. FUT3, was upregulated in C1 subtype relative 

to C2 subtype (Table S7), suggesting potential therapeutic effects of systemic blockade of 

these capping processing of glycan synthesis in the treatment of PDAC patients belonging 

to C1 subtype. In addition, a comparative analysis of impact of genomic alterations 

on transcriptome, proteome, and phosphorylation between C1 and C2 subtypes revealed 

differences in the impact of genomic alterations (Table S7).

To investigate the association of clinical parameters with C1 and C2 subtypes, we used an 

expanded list of clinical features (Table S1). The C1 subtype correlated with longer patient 

survival and tumor free status, while C2 correlated with the presence of tumor necrosis and 

stage IV status (Figure 7C). Association of C2 with worse prognosis and tumor necrosis 

remained significant after excluding stage IV tumors.
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Our binary proteogenomics subtyping focused only on the 105 samples with sufficient 

tumor purity to better understand tumor-intrinsic biology. On the other hand, the immune/

microenvironment characterization was done using all 140 samples, as immune hot samples 

generally have low neoplastic purity (Figure S7I). When 140 samples were used for 

proteogenomic subtyping, four subtypes were observed (Figure S7B). Interestingly, eight 

out of nine immune hot samples comprised a subset of the C4 subtype (Figure S7I), 

which significantly overlapped with the Moffitt classical subtype (Figure S7B and C). By 

further comparing our microenvironment/immune profiling results to the studies focusing 

on the similar aspect of pancreatic cancer (Chan-Seng-Yue et al., 2020; Elyada et al., 

2019; Maurer et al., 2019; Moffitt et al., 2015; Puleo et al., 2018), we identified that the 

microenvironmental features of immune-hot samples were more favorable for immune cell 

infiltration (Figure S6D).

Together, these results support the association of integrated proteogenomic subtyping with 

patient outcome. Further experimental investigation of the over activated proliferative and 

signaling pathways in the poor-prognosis proteogenomic basal-like subtype (Figure 7B) may 

facilitate the development of subtype-specific therapeutic strategies.

Discussion

In this report, we describe a comprehensive proteogenomic investigation of PDAC, that 

integrates multi-omic profiles to provide insights into the impact of genomic and epigenomic 

perturbations on gene and protein expression, as well as PTMs, including phosphorylation 

and, for the first time, glycosylation. To ensure a robust comparison of PDACs with 

pair-matched NATs and normal ductal tissues, we leveraged molecular, histological, and 

computational approaches to annotate neoplastic cellularity of the tumors in our cohort 

and the high acinar content of normal tissues, with a major aim of including only high 

quality samples in our analyses (Figure 1 and 2). Identification of high tumor cellularity 

samples based on KRAS VAF, mutation burden, methylation, and copy number alterations 

addressed the low neoplastic cellularity of this cancer type, allowing us to compare tumor-

intrinsic molecular features among these tumors with disparate neoplastic cell content 

(Figure 1). The inclusion of 9 macrodissected normal ductal tissues facilitated appropriate 

cell type comparisons, enabling accurate comparisons of gene/protein expression patterns 

between ductal cancers and normal ducts, rather than normal acinar cells, yielded robust 

identification of potential targets for early detection, diagnosis, or therapeutic intervention 

(Figures 3, 4, 5, and 6). In addition, we matched these identified molecular changes and/or 

therapeutic options to our proteogenomic subtypes, suggesting potential targeted therapies 

that can be combined with first-line chemotherapies for subtype-specific therapeutic 

intervention (Figure 7).

We verified KRAS as the major driver gene in PDAC (Figure 1 and 2), in line with previous 

studies (Eser et al., 2014; The Cancer Genome Atlas Research Network, 2017b; Thompson 

et al., 2020). However, targeting the KRAS protein itself has failed due to its smooth 

surface topology and lack of a hydrophobic pocket for secure drug binding, leading to a 

dearth of approved KRAS-specific drugs, except for the compound, MRTX849, which has 

been approved for mutant KRAS G12C that is only present in <1% of PDACs (Berndt 
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et al., 2011; Christensen et al., 2020; Vatansever et al., 2020). Interestingly, comparison 

of glycoprotein expression among tumors with different hotspot KRAS mutations (G12D, 

G12V, G12R, Q61H) revealed upregulation of CEACAM5 and CEACAM6 in PDACs with 

G12D, G12V, and Q61H mutations but not with mutant G12R (Figure 4B). CEACAM5/6 

belong to the immunoglobulin superfamily, mediate cell migration, cell invasion, and cell 

adhesion via homophilic as well as heterophilic binding to other proteins, and protect 

neoplastic cells from undergoing anoikis (Beauchemin and Arabzadeh, 2013; Blumenthal 

et al., 2005b). Overexpression of CEACAM6 in pancreatic cancer has been associated with 

gemcitabine resistance as well as low cytolytic T-cell activity (Beauchemin and Arabzadeh, 

2013; Pandey et al., 2019). Although the effect of anti-CEACAM5/6 monoclonal antibodies 

(mAbs) on normal tissues remains to be determined, mAbs MN-15 and MN-3 can impede 

metastasis in preclinical studies by reducing adhesion of tumor cells to endothelial cells 

and extracellular matrix (Blumenthal et al., 2005a; Blumenthal et al., 2005b; Govindan 

et al., 2009; Strickland et al., 2009). Thus, anti-CEACAM5/6 mAb coupled to first-

line chemotherapies may benefit patients with PDACs harboring KRAS G12D, G12V, 

and/or Q61H mutations. Alternatively, inhibition of critical downstream targets and nodes 

orchestrated by constitutively activated KRAS is an attractive strategy for PDAC treatment. 

The MAPK/ERK and PI3K/AKT/mTOR pathways represent major targets for therapeutic 

intervention of PDAC, and multiple inhibitors of each of the pathways are clinically 

available (Eser et al., 2014). While drugs that block these pathways are being tested in 

the clinic, new efforts are underway to exploit previously unrecognized vulnerabilities, such 

as altered signaling networks, for novel targeted therapies (Ducreux et al., 2019; Sapalidis et 

al., 2019). Our integration of proteomic and phosphoproteomic measurements revealed that 

PAK1/PAK2 kinases were upregulated in most PDACs in our cohort (Figure 5) and these 

kinases have been reported to be critical effectors/regulators of vital signaling pathways 

that mediate cellular cytoskeletal motility, proliferation, and survival (Zhou et al., 2014). 

Positioned downstream of oncogene KRAS, inhibitors of PAK1/PAK2 have potential as new 

ways of targeting KRAS and could be coupled with inhibitors that target the canonical 

KRAS downstream MAPK/ERK and PI3K/AKT/mTOR pathways (Najahi-Missaoui et 

al., 2019; Semenova and Chernoff, 2017). Validating the therapeutic hypotheses through 

mechanistic experimentation (e.g. validating the importance of up-regulated kinases in 

PDAC patient-derived xenograft (PDX)-models using the inhibitors of these kinases) would 

be beyond the scope of this study since the tumors subjected to proteogenomic analyses 

from this study were not used to generate PDX-models. Nevertheless, the importance of 

some kinases and phosphorylation substrates identified in our study can be explored in 

the future or using publicly available datasets (Hobbs et al., 2020; Mer et al., 2019; Ozkan-

Dagliyan et al., 2020).

PDAC is characterized by a highly suppressive tumor microenvironment, and intratumoral 

infiltration by cytotoxic T cells is low for most patients (Elyada et al., 2019; Hessmann 

et al., 2020). Although immunotherapies that target cytotoxic T lymphocyte antigen-4 

(CTLA-4), programmed cell death protein-1 (PD-1), and programmed death-ligand 1 (PD-

L1) significantly benefit patients with several solid malignancies such as melanomas, they 

are ineffective in patients with PDACs except for microsatellite instability-high (MSI-H) 

tumors that account for < 2% of PDACs (Goggins et al., 1998). The determinants of 
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immune activation in PDAC are poorly understood, providing little therapeutic guidance 

(Balli et al., 2017). To dissect tumor microenvironment, we leveraged our multi-omics data 

and revealed that absence of endothelial cells associated with upregulation of VEGF and 

hypoxia pathway activities was, in turn, associated with immune cell exclusion in immune 

cold tumors (Figure 6). Modifying tumor endothelial cells into a normal endothelial cell 

phenotype could possibly be achieved by antiangiogenic therapy, such as sorafenib and 

NGR-TNF, with upregulation of leukocyte-endothelial cell adhesion molecules, and could 

possibly promote intratumoral immune cell infiltration (Allen et al., 2017; Elia et al., 2018; 

Ferrara et al., 2004). Hypoxia inducible factor-1 (HIF-1) is the main effector of the hypoxic 

microenvironment in pancreatic tumors and induces cell metabolism into glycolytic mode 

(Yuen and Diaz, 2014). Thus, therapies targeting HIF-1 activity, such as small molecules 

preventing the interactions of the HIF1-α and HIF1-β subunits, might also be beneficial for 

pancreatic immune cold tumors (Petrova et al., 2018).

We compared our microenvironment/immune profiling results to other studies. Among them, 

the study by Puleo et al., 2018 highlighted a subtype (named ‘desmoplastic’) with high 

expression of endothelial cell and immune cell marker genes. This is consistent with our 

overall characterization that the level of normal endothelial cells correlate with immune cell 

infiltration. We applied the Puleo subtyping scheme to our cohort and found that the immune 

hot samples were exclusively distributed in ‘desmoplastic’ and ‘immune classical’ subtypes, 

suggesting that our immune hot characterization was robust across different gene signatures.

The study by Moffitt et al., 2015 used NMF-based data dissection to extract tumor-intrinsic 

and stromal gene expression signatures. In our study, we have identified the Moffitt 

tumor-intrinsic subtypes (i.e. classical and basal-like) and found that they are consistent 

with our proteogenomics binary subtypes. To compare our microenvironment profiling to 

the Moffitt’s study, we further applied the Moffitt ‘normal’ and ‘activated’ stromal gene 

signature and found that the immune cold samples (i.e. xCell cluster B and C) showed 

reduced ‘normal’ stromal gene expression.

The study by Maurer et al., 2019 paired laser capture microdissection (LCM) and data 

deconvolution to understand tumor epithelial and non-epithelial events separately. We 

applied the tissue-specific gene signatures and the deconvolution method from Maurer’s 

study to our cohort. For the non-epithelial genes, we found that the immune hot samples (i.e. 

xCell cluster D) showed significantly higher expression of immune-related genes but not for 

extracellular matrix-related genes. The vast majority of PDAC tumors in our cohort display 

low CD8+ T-cell infiltration accompanied by decreased expression of cytotoxic enzymes 

and immune checkpoint molecules, in line with a predominantly immune-suppressive 

environment of PDAC revealed by single-cell RNA sequencing (Elyada et al., 2019).

These results corroborate our finding that the microenvironment of immune-hot samples (i.e. 

xCell cluster D) is more favorable for immune cell infiltration. Based on our multi-omics 

data, we further provide evidence to suggest that the lack of normal endothelial adhesion 

proteins accompanied by the activation of tumor-associated endothelial signals (e.g. VEGF 

signaling pathway) partially account for the compromised immune cell infiltration and 

function in the immune-cold samples.
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N-linked glycosylation occurs in the endoplasmic reticulum (ER) and Golgi apparatus 

and is mediated by the activity of a series of glycosidases and glycosyltransferases 

(Bieberich, 2014; Cao et al., 2018). Abnormal expressions of sialylated glycoproteins have 

been uncovered in various solid malignancies including PDAC and have been associated 

with invasiveness and metastatic potential (Hsieh et al., 2017; Suzuki, 2019; Vajaria 

et al., 2016). Here we have shown that most up-regulated N-linked glycoproteins in 

PDAC are modified by sialylated glycans, consistent with up-regulation of ST6GAL1 

and ST3GAL1 in PDACs relative to NATs (Figure 4). These tumor up-regulated N-linked 

glycoproteins were associated with vital signaling pathways involved in PDAC progression 

and metastasis, including EMT, TNFα, focal adhesion, and collagen formation (Figure 

S4B). Thus, inhibition of these sialyltransferases may attenuate PDAC cell growth, survival, 

and metastasis via abrogation of the functions of these N-linked glycoproteins (Garnham et 

al., 2019; Vajaria et al., 2016). Although administration of a sialic acid analog (3F-NeuAc) 

induced systemic blockade of sialylation in a mouse model, a deleterious “on target” effect 

was observed on liver and kidney function, suggesting the need to develop more selective 

sialyltransferase inhibitors for therapeutic use (Macauley et al., 2014).

Our proteogenomic subtyping focused on PDAC tumors with sufficient tumor neoplastic 

cellularity, revealing proteogenomic C1 and C2 subtypes that resemble Moffitt classical 

and basal-like subtypes, respectively (Figure 7). In addition, SMAD4 was more frequently 

mutated in C1 subtype and the TGF-beta signaling pathway was accordingly higher in 

C2 subtype (Figures 7B and 7C), both of which were consistent with the tumor-intrinsic 

distinctions of SMAD4 alterations and TGF-beta signaling pathway between classical 

and basal samples in previous study (Chan-Seng-Yue et al., 2020). We also correlated 

clinical parameters to our proteogenomic subtypes, and the C1 subtype correlated with 

longer survival and tumor free status relative to C2 subtype (Figure 7C), consistent 

with the observations in Moffitt classical subtype (Moffitt et al., 2015). Furthermore, 

the Moffitt classical tumors assigned to C2 had worse survival compared to those 

assigned C1, suggesting our proteogenomic subtyping may help to further stratify the 

Moffitt classification (Figure 7D and 7E). We linked our proteogenomic subtypes to 

molecular markers and/or treatment targets identified by our comprehensive proteogenomic 

characterization. Higher levels of key kinases and drug treatment features of kinase 

inhibitors were identified in C2 subtype, suggesting potential treatment benefit of 

combination of chemotherapy and kinase inhibitors for patients belonging to this subtype 

(Figure S7H, Table S4).

In total, this report exemplifies the unique and useful insights that can be gained when 

characterizing the disease state at multiple “omics” levels, enabling a deeper understanding 

of the functional consequences of genomic aberrations associated with PDAC. Integrating 

measurements of the transcriptome, proteome, phosphoproteome, and glycoproteome, and 

comparative profiling of PDACs, NATs, and normal ductal tissues enabled our detection 

of proteoforms associated with early stage PDAC, as well as identification of potential 

therapeutic targets that may find utility in the clinical setting. Overall, our study delineates 

the molecular features that drive the PDAC phenotypes, and provides a rich bioinformatic 

resource for future hypothesis-driven translational research.
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Limitations of the Study

The objectives of this study were to comprehensively characterize PDAC tumors and 

NATs using genomics, epigenomics, transcriptomics, proteomics, phosphoproteomics, and 

glycoproteomics as well as to provide proteogenomic resources to decipher the impacts of 

genomic alterations in gene expression, protein abundances, and protein modifications. For 

these purposes, tissues collected by the CPTAC program are treatment-naïve and surgically 

resected. Consequently, there are inherent limitations to this study. First, although data on 

adjuvant patient treatment and outcome was sought, the present cohort comprises treatment-

naïve samples, which limits extrapolation to metastatic disease treated with systemic 

therapy. In addition, adjuvant treatment regimens were non-standardized across multiple 

institutions participating in tissue collection, resulting in heterogeneous adjuvant therapies 

utilized for patient treatment. While treatment data from therapeutic drug clinical trials are 

needed to investigate treatment outcomes related to the observed proteogenomic subtypes, 

currently such data are limited in that clinical trials only generate transcriptomic data 

(O’Kane et al., 2020). Second, proteogenomic data provide rich resources for correlating 

different molecular alterations that are essential for hypothesis generation to decipher 

molecular functions or prediction of treatment options. However, causal effects of the 

correlations can not be determined from this study. The biological hypothesis or treatment 

prediction would need further validation using cell lines, PDX models, publicly available 

datasets, or clinical trials. Third, proteogenomic measurements of this study are deployed 

using bulk tumor and NAT tissues, where the impact of heterogeneity in cellularity and 

tumor microenvironment cannot be fully accounted for. Here, we addressed this limitation 

by selecting a subset of tissue samples with sufficient tumor cellularity for focused 

analyses. However, enrichment of tumor cellularity using laser capture microdissection or 

characterization of tissues through single cell analyses would be beneficial (Elyada et al., 

2019; Maurer et al., 2019).

STAR Methods

LEAD CONTACT AND MATERIALS AVAILABILITY

This study did not generate new unique reagents. Further information and requests for 

resources and reagents should be directed to and will be fulfilled by the lead contact, Hui 

Zhang (huizhang@jhu.edu).

DATA AND CODE AVAILABILITY

The raw proteomic data files generated during this study are available at the 

Proteomic Data Commons (PDC, https://pdc.cancer.gov/pdc/). Genomic, epigenomic, and 

transcriptomic data generated for this publication are available at the Genomic Data 

Commons (GDC, https://gdc.cancer.gov/). All processed data tables are available at PDC 

(https://pdc.cancer.gov/pdc/publications) and LinkedOmics (http://www.linkedomics.org/

data_download/CPTAC-PDAC/).

The workflow described under ‘Multi-omics clustering’ has been implemented as a module 

for PANOPLY (https://github.com/broadinstitute/PANOPLY/) running on Broad’s cloud 
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platform Terra (https://app.terra.bio/). The docker containers encapsulating the source code 

and required R-packages for NMF clustering and ssGSEA are available on Dockerhub 

(broadcptacdev/pgdac_mo_nmf:15, broadcptac/pgdac_ssgsea:5). The data evaluation tool 

has been implanted as a R package available in OmicsEV (https://github.com/bzhanglab/

OmicsEV/). The codes for genomics data processing pipelines are available in https://

github.com/ding-lab/.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects—A total of 140 cases of patients with pancreatic cancer (135 PDACs 

and 5 pancreatic adenosquamous carcinoma) were carefully evaluated histologically and 

included in this study. Institutional review boards at tissue source sites, reviewed protocols 

and consent documentation adhering to the Clinical Proteomic Tumor Analysis Consortium 

(CPTAC) guidelines for study participation.

Clinical Data Annotation—A total of 140 participants (74 males, 66 females between 

the age group of 31-85) were collected for this study by 11 different tissue source sites 

(TSS) from 7 different countries. Clinical data were obtained from tissue source sites 

and aggregated by an internal database called the CDR (Comprehensive Data Resource) 

that synchronizes with the CPTAC DCC (Data Coordinating Center). Clinical data can 

be accessed and downloaded from the DCC. Demographics, histopathologic information, 

treatment and patient outcome information were collected and reviewed for consistency 

before deposition into the Proteomic Data Commons (PDC) and Genomic Data Commons 

(GDC). All histologic and radiologic details can be accessed from The Cancer Imaging 

Archive (TCIA) Public Access portal. The genotypic, clinical, geographical and other 

associated metadata is summarized in Table S1. The cohort consists of 53% male (n=74) 

and 47% female (n=66), in line with the previous observation of a slightly higher incident 

rate in men than in women (Kim et al., 2017; The Cancer Genome Atlas Research Network, 

2017). Age distributions [31-40 (2.9%), 41-50 (9.3%), 51-60 (16.4%), 61-70 (42.9%), 71-80 

(25.7%), and 81-90 (2.9%)] and stage distributions [I (16.4%), II (42.9%), III (30.0%), and 

IV (6.4%)] of the patients reflect the general incidence of surgically resected PDAC (The 

Cancer Genome Atlas Research Network, 2017).

METHOD DETAILS

Specimen Acquisition—The tumor, normal adjacent tissue (NAT), and whole blood 

samples used in this manuscript were prospectively collected for the CPTAC project. 

Treatment naïve patients scheduled for surgical treatment for a pancreatic mass suspected 

to be pancreatic ductal adenocarcinoma were considered. Patients who underwent cancer 

treatment more than ten years prior were included if the cancer was at a site other than the 

pancreas. Only histopathologically-defined adult pancreatic ductal adenocarcinoma (135) 

and adenosquamous carcinoma (5) were considered for analysis. 67 out of the 140 had 

matched normal tissue from non-neoplastic pancreatic tissue as an acceptable normal. 

To supplement the normal cohort, 9 additional normal macrodissected main pancreatic 

ductal tissues were collected from unmatched patients who underwent surgery for benign 

neoplasms. The tumor specimen weights ranged from 150 to 1000 milligrams. The average 

tissue mass was 258 mg. For most cases, three to four tumor specimens were collected. 
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Each tissue specimen endured cold ischemia for less than 30 minutes prior to freezing 

in liquid nitrogen; the average ischemic time was 20 minutes from resection/collection to 

freezing. Specimens were flash frozen in liquid nitrogen. Histologic sections obtained from 

top and bottom portions from each case were reviewed by a board-certified pathologist and 

a disease specific expert pathologist to confirm the assigned pathology. Although there was 

no tumor nuclei cutoff, for samples to be deemed acceptable, the top and bottom sections 

had to contain an average of less than 20% necrosis as assessed histologically. Specimens 

were shipped overnight from the tissue source sites to the biospecimen core resource (BCR) 

located at Van Andel Research Institute, Grand Rapids, MI using a cryoport that maintained 

an average temperature of less than −140 °C. At the biospecimen core resource, specimens 

were confirmed for pathology qualification and prepared for genomic, transcriptomic, and 

proteomic analyses. Selected specimens were cryopulverized using a Covaris CryoPREP 

instrument and material aliquoted for subsequent molecular characterization. Genomic DNA 

and total RNA were extracted and sent to the genome sequencing centers. The whole exome 

and whole genome DNA sequencing and methylation EPIC array analyses were performed 

at the Broad Institute, Cambridge. Total RNA and miRNA sequencing were performed at the 

University of North Carolina, Chapel Hill, NC. Material for proteomic analyses were sent 

to the Proteomic Characterization Center (PCC) at the Johns Hopkins University, Baltimore, 

MD.

Genomic, Epigenomic, and Transcriptomic Sample Preparation and Data 
Acquisition

Sample Processing for Genomic DNA and Total RNA Extraction: Each primary tumor 

was obtained from a single sample from surgical resections, with a requirement of a 

minimum of 125 mg of tumor tissue and 50 mg of adjacent normal tissue. DNA and RNA 

were extracted from the tumor and normal specimens using a co-isolation protocol (Qiagen’s 

QIAsymphony DNA Mini Kit and QIAsymphony RNA Kit). Genomic DNA was also 

isolated from peripheral blood (3-5 mL) to serve as matched normal reference material. The 

Qubit™ dsDNA BR Assay Kit was used with the Qubit® 2.0 Fluorometer to determine the 

concentration of dsDNA in an aqueous solution. Only samples with enough DNA yield that 

passed quality control were sent for genomic characterization. RNA quality was quantified 

using the NanoDrop 8000 and had its quality assessed using Agilent Bioanalyzer. Only 

samples that passed RNA quality control and had a minimum RIN (RNA integrity number) 

score of 7 underwent RNA sequencing. Identity matching for germline, normal adjacent 

tissue, and tumor tissue was assayed at the BCR using the Illumina Infinium QC array.

Whole Exome Sequencing

Library Construction.: Library construction was performed as described in (Fisher et 

al., 2011), with the following modifications: the initial genomic DNA input shearing was 

reduced from 3 μg to 20-250 ng in 50 μL of solution. For adapter ligation, Illumina paired-

end adapters were replaced with palindromic forked adapters, purchased from IDT, with 

unique dual-indexed molecular barcode sequences to facilitate downstream pooling. Kapa 

HyperPrep reagents in 96-reaction kit format were used for end repair/A-tailing, adapter 

ligation, and library enrichment PCR. During post-enrichment SPRI cleanup, elution volume 
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was reduced to 30 μL to maximize library concentration and a vortexing step was added to 

maximize the amount of template eluted.

In-solution Hybrid Selection.: Libraries were pooled into groups of up to 96 samples. 

Hybridization and capture were performed using the relevant components of Illumina’s 

Nextera Exome Kit, following the manufacturer’s suggested protocol, except for a few 

modifications. The following modifications were made: all libraries within a library 

construction plate were pooled prior to hybridization, the Midi plate from Illumina’s 

Nextera Exome Kit was replaced with a skirted PCR plate to facilitate automation, and 

all hybridization and capture steps were automated on the Agilent Bravo liquid handling 

system.

Preparation of Libraries for Cluster Amplification and Sequencing.: After post-capture 

enrichment, library pools were quantified using qPCR (automated assay on the Agilent 

Bravo) using a kit purchased from KAPA Biosystems with probes specific to the ends of the 

adapters. Based on qPCR quantification, libraries were normalized to 2 nM.

Cluster Amplification and Sequencing.: Cluster amplification of DNA libraries was 

performed according to the manufacturer’s protocol (Illumina) using exclusion amplification 

chemistry and flowcells. Flowcells were sequenced utilizing sequencing-by-synthesis 

chemistry. Flowcells were then analyzed using RTA v.2.7.3 or later. Each pool of whole 

exome libraries was sequenced on paired 76 cycle runs with two 8 cycle index reads across 

the number of lanes needed to meet coverage for all libraries in the pool. Pooled libraries 

were then run on HiSeq 4000 paired-end runs targeting a depth of coverage of 300x for 122 

tumor sample libraries and 150x for the remaining 18 tumor sample libraries and the NAT 

and blood normal sample libraries. The raw Illumina sequence data were demultiplexed and 

converted to fastq files with adapter and low-quality sequences trimmed out.

PCR-Free Whole Genome Sequencing

Preparation of Libraries for Cluster Amplification and Sequencing.: An aliquot of 

genomic DNA (350 ng in 50 μL) was used as the input into DNA fragmentation. 

Shearing was performed acoustically using a Covaris focused-ultrasonicator, targeting 

385bp fragments. Following fragmentation, additional size selection was performed using 

a SPRI cleanup. Library preparation was performed using akit from KAPA Biosystems 

(KAPA Hyper Prep without the amplification module) and with palindromic forked adapters 

with unique 8-base index sequences embedded within the adapter (purchased from IDT). 

Following sample preparation, libraries were quantified using qPCR (KAPA Biosystems) 

with probes specific to adapter ends. This assay was automated using Agilent’s Bravo liquid 

handling platform. Based on qPCR quantification, libraries were normalized to 1.7 nM and 

pooled into 24-plexes.

Cluster Amplification and Sequencing (HiSeq X).: Sample pools were combined with 

HiSeq X Cluster Amp Reagents EPX1, EPX2, and EPX3 into single wells on a strip tube 

using the Hamilton Starlet Liquid Handling system. Cluster amplification of the templates 

was performed according to the manufacturer’s protocol (Illumina) with the Illumina 
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cBot. Flowcells were sequenced with a target of 15x to 30x depth on HiSeq X utilizing 

sequencing-by-synthesis kits to produce 151bp paired-end reads.

Illumina Infinium Methylation EPIC Bead Chip Array: The MethylationEPIC array 

uses an 8-sample version of the Illumina Beadchip capturing > 850,000 DNA methylation 

sites per sample. 250 ng of DNA was used for the bisulfite conversation using the 

Infinium MethylationEPIC BeadChip Kit. The EPIC array includes sample plating, bisulfite 

conversion, and methylation array processing. After scanning, the data was processed 

through an automated genotype calling pipeline.

RNA Sequencing

Quality Assurance and Quality Control of RNA Analytes.: All RNA analytes were assayed 

for RNA integrity, concentration, and fragment size. Samples for total RNA-seq were 

quantified on a TapeStation system (Agilent, Inc. Santa Clara, CA). Samples with RINs 

> 8.0 were considered high quality.

Total RNA-seq Library Construction.: Total RNA-seq library construction was performed 

from the RNA samples using the TruSeq Stranded RNA Sample Preparation Kit and bar-

coded with individual tags following the manufacturer’s instructions (Illumina). Libraries 

were prepared on an Agilent Bravo Automated Liquid Handling System. Quality control was 

performed at every step and the libraries were quantified using the TapeStation system.

Total RNA Sequencing.: Indexed libraries were prepared and run on HiSeq 4000 paired 

end 75 base pairs to generate a minimum of 120 million reads per sample library with a 

target of greater than 90% mapped reads, typically with four-sample pools. The raw Illumina 

sequence data were then demultiplexed and converted to FASTQ files, and adapter and 

low-quality sequences were quantified. Reads were mapped to the hg38 human genome 

reference and underwent significant QC steps: estimating the total number of reads that 

mapped, amount of RNA mapping to coding regions, amount of rRNA in sample, number 

of genes expressed, and relative expression of housekeeping genes. Samples passing this 

QA/QC were then clustered with other expression data from similar and distinct tumor types 

to confirm expected expression patterns. Atypical samples were then SNP typed from the 

RNA data to confirm source analyte.

miRNA-seq Library Construction.: miRNA-seq library construction was performed from 

the RNA samples using the NEXTflex Small RNA-Seq Kit (v3, PerkinElmer) and bar-coded 

with individual tags following the manufacturer’s instructions. Libraries were prepared on 

the Sciclone Liquid Handling Workstation and quality control checks were performed at 

every step. Libraries were quantified using a TapeStation system and an Agilent Bioanalyzer 

using the Small RNA analysis kit. Pooled libraries were then size selected according to 

NEXTflex Kit specifications using a Pippin Prep system (Sage Science).

miRNA Sequencing.: Indexed libraries were loaded on the Hiseq 4000 to generate a 

minimum of 10 million reads per library with a minimum of 90% reads mapped. The raw 

Illumina sequence data were demultiplexed and converted to FASTQ files for downstream 

Cao et al. Page 24

Cell. Author manuscript; available in PMC 2021 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



analysis. Samples were assessed for the number of miRNAs called, species diversity, and 

total abundance.

Genomic, Epigenomic, and Transcriptomic Data Processing

Genome alignment: WGS, WES, and RNA-Seq data were harmonized by NCI Genomic 

Data Commons (GDC) https://gdc.cancer.gov/about-data/gdc-data-harmonization, to the 

hg38 human reference genome, version GRCh38.d1.vd1.

Whole-genome copy number variation: Copy number variation (CNV) was detected using 

BIC-Seq2 (module versions NBICseq-seg v0.7.2 and NBICseq-norm v0.2.4) (Xi et al., 

2016) from WGS tumor and normal paired BAMs. A bin size of 100bp and a lambda 

of 3 for segmentation smoothing was used. We used the mean of overlapping segment 

data to further summarize the CNV data into gene-level copy number changes. We also 

used GISTIC2 v2.0.22 (Mermel et al., 2011) to integrate results from individual patients 

and identify focal genomic regions recurrently amplified or deleted in our samples. The 

threshold for gene or arm-level CNV status was 0.4 for copy number gains and −0.4 for 

losses.

Somatic Variant Calling: Somatic variants were called from WES tumor and normal paired 

BAMs using SomaticWrapper v1.6. SomaticWrapper merges and filters variant calls from 

four callers: Strelka v2.9.2 (Kim et al., 2018), VarScan v2.3.8 (Koboldt et al., 2012), Pindel 

v0.2.5 (Ye et al., 2009), and MuTect v1.1.7 (Cibulskis et al., 2013). SNV calls were obtained 

from Strelka, Varscan, and Mutect. Indel calls were obtained from Stralka2, Varscan, and 

Pindel. The following filters were applied to get variant calls of high confidence:

• Normal VAF ≤ 0.02 and tumor VAF ≥ 0.01. The tumor VAF cutoff is set lower to 

account for the unique low neoplastic cellularity in PDAC.

• Read depth in tumor ≥ 14 and normal ≥ 8

• Indel length < 100 bp

• All variants must be called by 2 or more callers

• All variants must be exonic

• Exclude variants in dbSNP but not in COSMIC

Germline Variant Calling: Germline variant calling was performed using the 

GermlineWrapper v1.1 pipeline, which implements multiple tools for the detection of 

germline INDELs and SNVs. Germline SNVs were identified using VarScan v2.3.8 (with 

parameters: --min-var-freq 0.10 --p-value 0.10, --min-coverage 3 --strand-filter 1) operating 

on a mpileup stream produced by samtools v1.2 (with parameters: -q 1 -Q 13) and 

GATK v4.0.0.0 (McKenna et al., 2010) using its haplotype caller in single-sample mode 

with duplicate and unmapped reads removed and retaining calls with a minimum quality 

threshold of 10. All resulting variants were limited to the coding region of the full-length 

transcripts obtained from Ensembl release 95 plus additional two base pairs flanking each 

exon to cover splice donor/acceptor sites. We required variants to have allelic depth ≥ 5 

reads for the alternative allele in both tumor and normal samples. We used bam-readcount 
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v0.8 for reference and alternative alleles quantification (with parameters: -q 10 -b 15) in both 

normal and tumor samples. Additionally, we filtered all variants with ≥ 0.05% frequency 

in gnomAD v2.1 (Karczewski et al., 2020) and The 1000 Genomes Project (Auton et al., 

2015).

Pathogenic Germline Variant Classification: To predict the pathogenicity of germline 

variants, we annotate each variant with Variant Effect Predictor (VEP) and process them 

using the CharGer pipeline with the parameters from a previous pan-cancer TCGA study 

(Huang et al., 2018; Scott et al., 2019). Briefly, the CharGer pipeline considers pathogenic 

peptide changes from ClinVar, hotspot variants, minor allele frequency from ExAC, and 

several in silico analyses (such as Sift and Polyphen). Each predicted pathogenic variant was 

then manually reviewed.

DNA Methylation Microarray Processing: Raw methylation idat files were downloaded 

from CPTAC DCC and GDC. Beta values of CpG loci were reported after functional 

normalization, quality check, common SNP filtering, and probe annotation using Li Ding 

Lab’s methylation pipeline v1.1 (https://github.com/ding-lab/cptac_methylation). To derive 

the gene-level methylation, we focused on the probes located in the promoter region and 

simultaneously located in annotated CpG island and aggregate their levels by median (Clark 

et al., 2019). Resulting beta values of methylation were used for downstream analysis.

mRNA and Circular RNA Quantification: The hg38 reference genome and RefSeq 

annotations were used for the RNAseq data analysis and were downloaded from the UCSC 

table browser. First, CIRI (v2.0.6) was used to call circular RNA with default parameters 

and BWA (version 0.7.17-r1188) was used as the mapping tool. The cutoff of supporting 

reads for circRNAs was set to 10. Then we used a pseudo-linear transcript strategy to 

quantify gene and circular RNA expression (Li et al., 2017). In brief, for each sample, 

linear transcripts of circular RNAs were extracted and 75bp (read length) from the 3’ end 

was copied to the 5’ end. The modified transcripts were called pseudo-linear transcripts. 

Transcripts of linear genes were also extracted and mixed with pseudo-linear transcripts. 

RSEM (version 1.3.1) with Bowtie2 (version 2.3.3) as the mapping tool was used to quantify 

gene and circular RNA expression based on the mixed transcripts. After quantification, 

the upper quantile method was applied for normalization. The normalized matrix was log2-

transformed and separated into gene and circular RNA expression matrices.

Gene Fusion Detection: We used three callers, STAR-Fusion v1.5.0 (Haas et al., 2019), 

INTEGRATE v0.2.6 (Zhang et al., 2016), and EricScript v0.5.5 (Benelli et al., 2012), to 

call consensus fusion/chimeric events in our samples. Calls by each tool using tumor and 

normal RNA-Seq data were then merged into a single file and extensive filtering is done. 

As STAR-Fusion has higher sensitivity, calls made by this tool with higher supporting 

evidence (defined by fusion fragments per million total reads, or FFPM > 0.1) were 

required, or a given fusion must be reported by at least 2 callers. We then removed fusions 

present in our panel of blacklisted or normal fusions, which included uncharacterized genes, 

immunoglobulin genes, mitochondrial genes, and others, as well as fusions from the same 

gene or paralog genes and fusions reported in TCGA normal samples (Gao et al., 2018), 
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GTEx tissues (reported in STAR-Fusion output), and non-cancer cell studies (Babiceanu et 

al., 2016).

miRNA Quantification: miRNA-Seq FASTQ files were downloaded from GDC. We 

reported the mature miRNA and precursor miRNA expression in TPM (Transcripts Per 

Million) after adapter trimming, quality check, alignment, annotation, reads counting using 

Li Ding Lab’s miRNA pipeline https://github.com/ding-lab/CPTAC_miRNA. The mature 

miRNA expression was calculated irrespective of its gene of origin by summing the 

expression from its precursor miRNAs.

Proteomic, Phosphoproteomic, and Glycoproteomic Sample Preparation and 
Data Acquisition

Sample Processing for Protein Extraction and Tryptic Digestion: All samples for the 

current study were prospectively collected for the CPTAC PDAC project as described above 

and processed for mass spectrometry (MS) analysis at Johns Hopkins University. Tissue 

lysis and downstream sample preparation for global proteomic, phosphoproteomic, and 

glycoproteomic analysis were carried out as previously described (Mertins et al., 2018; Yang 

et al., 2018a). Each of cryo-pulverized pancreatic cancer tissues, normal adjacent tissues 

(NAT), and normal ductal tissues was lysed in lysis buffer (8 M urea, 75 mM NaCl, 50 

mM Tris (pH 8.0), 1 mM EDTA, 2 μg/mL aprotinin, 10 μg/mL leupeptin, 1 mM PMSF, 

10 mM NaF, Phosphatase Inhibitor Cocktail 2 and Phosphatase Inhibitor Cocktail 3 [1:100 

dilution], and 20 μM PUGNAc) by vortexing for 20 sec. The lysed tissue was placed on ice 

for 15 min. This process was repeated one time. Cell debris was removed by centrifugation 

at 20,000 x g for 10 min at 4°C. The protein-containing supernatant was collected and 

measured by BCA assay (Pierce). The sample concentration was adjusted to 8 mg/ml 

with the lysis buffer, and an appropriate volume of the protein solution was used for the 

downstream reduction, alkylation and digestion. Proteins were reduced and alkylated with 

dithiothreitol (DTT, ThermoFisher, 5 mM, 37°C, 1h) and iodoacetamide (IAM, Sigma, 10 

mM, room temperature (RT) in the dark, 45 min), respectively. The reduced proteins were 

diluted 1:4 with 50 mM Tris-HCl (pH 8.0) to reduce urea concentration and digested with 

LysC (Wako Chemicals, an enzyme-to-substrate ratio of 1 mAU:50 mg, RT, 2h) followed by 

trypsin (Promega, an enzyme-to-substrate ratio of 1:50, RT, 16h). The proteolytic reaction 

was quenched by adjusting pH to <3 with 50% of formic acid (FA, Fisher Chemicals). 

The peptides were desalted on reversed phase C18 SPE columns (Waters) and dried using 

Speed-Vac (Thermo Scientific).

Tandem Mass Tag (TMT) Labeling of Peptides: Dried peptides from each sample were 

labeled with 11-plex TMT reagents (Thermo Fisher Scientific). Peptides (300 μg) were 

dissolved in 60 μL of 100 ml HEPES (pH 8.5). A reference sample was created by pooling 

an aliquot from 129 pancreatic cancer tissues and 52 NAT tissues (representing ~85% of 

the sample cohort), and was included in all TMT 11-plex sets as a reference channel. An 

internal quality control (QC) sample that was an NCI-7 Cell Line Panel sample (Clark et 

al., 2018) was interspersed among TMT 11-plex sets. 140 pancreatic cancer tissues and 67 

NATs were co-randomized to 24 TMT 11-plex sets, while 8 normal ductal tissues were 

assigned to the 25th TMT 11-plex set. TMT reagents were dissolved in 250 μL of anhydrous 
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acetonitrile (Sigma), and 20 μL of each TMT reagent was added to the corresponding aliquot 

of peptides. The reaction was incubated at RT for 1h with shaking and quenched with 5% 

hydroxylamine at RT for 15 min. The labelled peptides were desalted on reversed phase C18 

SPE columns (Waters) and dried using Speed-Vac (Thermo Scientific).

Peptide Fractionation by Basic Reversed-phase Liquid Chromatography (bRPLC): The 

desalted peptides from each TMT set were dissolved in 900 μL of 5 mM ammonium 

formate (pH 10) and 2% acetonitrile (ACN) and fractionated with a 4.6 mmx 250 mm 

Zorbax Extend-C18 analytical column (3.5 μm beads, Agilent) lined up with an Agilent 

1220 Series HPLC. Buffer A and B were 5 mM ammonium formate in 2% ACN (pH 10) 

and 5 mM ammonium formate in 90% ACN, respectively. Peptides were separated by using 

a non-linear gradient: 0% buffer B (7 min), 0% to 16% buffer B (6 min), 16% to 40% 

buffer B (60 min), 40% to 44% buffer B (4 min), 44% to 60% buffer B (5 min) and then 

held at 60% buffer B for 14 min. The flow rate was set at 1 mL/min. Collected fractions 

were concatenated into 24 fractions as described previously. (Mertins et al., 2018) Eight 

percent of each of the 24 fractions was aliquoted, cleaned up with strong cation exchange 

(SCX) stage tip, and dried in a Speed-Vac. Samples were resuspended in 3% ACN, 0.1% FA 

prior to ESI-LC-MS/MS analysis. The remaining sample was utilized for phosphopeptide 

enrichment.

Enrichment of Phosphopeptides by Fe-IMAC: The remaining 92% of the sample was 

further concatenated into 12 fractions before being subjected to phosphopeptide enrichment 

using immobilized metal affinity chromatography (IMAC) as previously described (Mertins 

et al., 2018). Ni-NTA agarose beads (QIAGEN) were conditioned and incubated with a 

10mM FeCl3 aqueous solution at RT for 1h to prepare Fe3+-NTA agarose beads. Peptides 

from each fraction were reconstituted in 80% ACN, 0.1% trifluoroacetic acid (TFA) and 

incubated with 10 μL of the Fe3+-IMAC beads at RT for 30 min. The bead solution 

was spun down at 1,000 g for 1 min. The supernatant containing unbound peptides was 

separated from beads and collected for subsequent glycopeptide enrichment. The beads were 

resuspended in 80% ACN (0.1% TFA) and loaded onto conditioned C18 stage tip. The tip 

was washed twice with 80% ACN (0.1% TFA) followed by 1% FA. The flowthroughs were 

collected and combined with the unbound peptides for subsequent glycopeptide enrichment. 

Peptides were eluted from beads to C18 stage tip with 70 μL of 500 mM dibasic potassium 

phosphate, pH 7.0 three times. The tip was then washed twice with 1% FA to remove salts. 

Peptides were eluted twice with 80% ACN (0.1% FA), dried down, and redissolved in 3% 

ACN, 0.1% FA prior to ESI-LC-MS/MS analysis.

Enrichment of Glycopeptides: All unbound peptides from phosphopeptide enrichment 

were desalted on reversed phase C18 SPE column (Waters). The glycopeptides were 

enriched with OASIS MAX solid-phase extraction (Waters). The MAX cartridge was 

conditioned with 3 x 1 mL ACN, then 3 x 1 mL of 100 mM triethylammonium acetate 

buffer, followed by 3 x 1 mL of water, and finally 3 x 1 mL of 95%ACN (1%TFA). 

The peptides were loaded twice. The cartridge was washed with 4 x 1 mL of 95% ACN 

(1% TFA) to remove non-glycosylated peptides. The glycopeptide fraction was eluted with 
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50% ACN (0.1% TFA), dried down, and reconstituted in 3% ACN, 0.1% FA prior to 

ESI-LC-MS/MS analysis.

ESI-LC-MS/MS for Global Proteome, Phosphoproteome, and Glycoproteome 
Analysis: The TMT-labeled global proteome, phosphoproteome, and glycoproteome 

fractions were analyzed using Orbitrap Fusion Lumos mass spectrometer (Thermo 

Scientific). Approximately 0.8 μg of peptides were separated on an in-house packed 28 cm 

x 75 mm diameter C18 column (1.9 mm Reprosil-Pur C18-AQ beads (Dr. Maisch GmbH); 

Picofrit 10 mm opening (New Objective)) lined up with an Easy nLC 1200 UHPLC system 

(Thermo Scientific). The column was heated to 50°C using a column heater (Phoenix-ST). 

The flow rate was set at 200 nl/min. Buffer A and B were 3% ACN (0.1% FA) and 90% 

ACN (0.1% FA), respectively. The peptides were separated with a 6–30% B gradient in 

84 min. Peptides were eluted from the column and nanosprayed directly into the mass 

spectrometer. The mass spectrometer was operated in a data-dependent mode. Parameters 

for global proteomic samples were set as follows: MS1 resolution – 60,000, mass range 

– 350 to 1800 m/z, RF Lens – 30%, AGC Target – 4.0e5, Max injection time – 50 ms, 

charge state include – 2-6, dynamic exclusion – 45 s. The cycle time was set to 2 s, and 

within this 2 s the most abundant ions per scan were selected for MS/MS in the orbitrap. 

MS2 resolution – 50,000, high-energy collision dissociation activation energy (HCD) – 37, 

isolation width (m/z) – 0.7, AGC Target – 2.0e5, Max injection time – 105 ms. Parameters 

for phosphoproteomic samples were set as follows: MS1 resolution – 60,000, mass range 

– 350 to 1800 m/z, RF Lens – 30%, AGC Target – 4.0e5, Max injection time – 50 ms, 

charge state include – 2-6, dynamic exclusion – 45 s. The cycle time was set to 2 s, and 

within this 2 s the most abundant ions per scan were selected for MS/MS in the orbitrap. 

MS2 resolution – 50,000, high-energy collision dissociation activation energy (HCD) – 34, 

isolation width (m/z) – 0.7, AGC Target – 2.0e5, Max injection time – 100 ms. Parameters 

for glycoproteomic samples were set as follows: MS1 resolution – 60,000, mass range – 500 

to 2000 m/z, RF Lens – 30%, AGC Target – 5.0e5, Max injection time – 50 ms, charge state 

include – 2-6, dynamic exclusion – 45 s. The cycle time was set to 2 s, and within this 2 s 

the most abundant ions per scan were selected for MS/MS in the orbitrap. MS2 resolution 

– 50,000, high-energy collision dissociation activation energy (HCD) – 35, isolation width 

(m/z) – 0.7, AGC Target – 1.0e5, Max injection time – 100 ms.

ESI-LC-MS/MS for Global Proteome Data-Independent Acquisition (DIA) 
Analysis: Unlabeled, digested peptide material from individual tissue samples (PDAC and 

NAT) was spiked with index Retention Time (iRT) peptides (Biognosys) and subjected to 

DIA analysis. Approximately 1 μg of peptides were separated on an in-house packed 28 cm 

x 75 mm diameter C18 column (1.9 mm Reprosil-Pur C18-AQ beads (Dr. Maisch GmbH); 

Picofrit 10 mm opening (New Objective)) lined up with an Easy nLC 1200 UHPLC system 

(Thermo Scientific). The column was heated to 50°C using a column heater (Phoenix-ST). 

The flow rate was set at 200 nl/min. Buffer A and B were 3% ACN (0.1% FA) and 90% 

ACN (0.1% FA), respectively. The peptides were separated with a 7–30% B gradient in 

118 min. Peptides were eluted from the column and nanosprayed directly into Orbitrap 

Fusion Lumos mass spectrometer (Thermo Scientific). The mass spectrometer was operated 

in a data-independent mode. The DIA segment consisted of one MS1 scan (350-1650 m/z 

Cao et al. Page 29

Cell. Author manuscript; available in PMC 2021 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



range, 120K resolution) followed by 30 MS2 scans (variable m/z range, 30K resolution). 

Additional parameters were as follows: MS1: RF Lens – 30%, AGC Target 3.0e6, Max IT 

– 60 ms, charge state include – 2-6; MS2: isolation width (m/z) – 0.7, AGC Target – 3.0e6, 

Max IT – 120 ms.

Spectral Library generation for Data-Independent Acquisition Analysis: For spectral 

library generation, an aliquot (2 mg) of unlabeled, digested peptide material from individual 

tissue samples (PDAC and NAT) was pooled and subjected to bRPLC. Ninety-six fractions 

were collected into a 96-well plate. These fractions were pooled every eight fraction (e. 

g., combining fractions #1, #9, #17, #25, #33, #41, #49, #57, #65, #73, #81, and #89; #2, 

#18, #26, #34, #42, #58, #66, #74, #82, and #90; and so on). The resulting 8 fractions were 

dried in a speed vacuum centrifuge, resuspended in 3% ACN, 0.1% formic acid, and spiked 

with iRT peptides prior to ESI-LC-MS/MS analysis. Parameters were the same as previously 

described for ESI-LC-MS/MS for TMT-labeled global proteome analysis with a high-energy 

collision dissociation activation energy (HCD) – 34.

Proteomic, Phosphoproteomic, and Glycoproteomic Data Processing

Proteomic and Phosphoproteomic Data Processing: MS/MS spectra were searched using 

the MSFragger version 3.0 (Kong et al., 2017) against a CPTAC3 RefSeq human protein 

sequence database appended with an equal number of decoy sequences. For the analysis of 

whole proteome data, MS/MS spectra were searched using a precursor-ion mass tolerance 

of 10 ppm, and allowing C12/C13 isotope errors (−1/0/1/2/3). MS and MS/MS mass 

calibration, MS/MS spectral deisotoping, and parameter optimization were enabled (Yu et 

al., 2020). Cysteine carbamidomethylation (+57.0215), lysine TMT labeling (+229.1629), 

and peptide N-terminal TMT labeling were specified as fixed modifications. Methionine 

oxidation (+15.9949) and serine TMT labeling (+229.1629) were specified as variable 

modifications. The search was restricted to tryptic and semi-tryptic peptides, allowing 

up to two missed cleavage sites. For phosphopeptide enriched data, the set of variable 

modifications also included phosphorylation (+79.9663) of serine, threonine, and tyrosine 

residues, but excluded the serine TMT labeling, and with C12/C13 isotope errors parameter 

set to (0/1/2).

The post-processing of the search results was done using the Philosopher toolkit version 

v3.2.8 (da Veiga Leprevost et al., 2020). MSFragger output files (in pepXML format) were 

processed using PeptideProphet (Keller et al., 2002) (with the high–mass accuracy binning 

and semi-parametric mixture modeling options) to compute the posterior probability of 

correct identification for each peptide to spectrum match (PSM). In the phosphopeptide-

enriched dataset, PeptideProphet files were additionally processed using PTMProphet 

(Shteynberg et al., 2019) to localize the phosphorylation sites. The resulting pepXML files 

from PeptideProphet (or PTMProphet) from all 25 TMT 11-plex experiments were then 

processed together to assemble peptides into proteins (protein inference) and to create a 

combined file (in protXML format) of high confidence protein groups.

The combined protXML file and the individual PSM lists for each TMT 11-plex were 

further processed using the Philosopher filter command as follows. Each peptide was 
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assigned either as a unique peptide to a particular protein group or set as a razor peptide 

to a single protein group with the most peptide evidence. The protein groups assembled by 

ProteinProphet (Nesvizhskii et al., 2003) were filtered to 1% protein-level False Discovery 

Rate (FDR) using the best peptide approach (allowing both unique and razor peptides) and 

applying the picked FDR target-decoy strategy. In each TMT 11-plex, the PSM lists were 

filtered using a sequential FDR strategy, retaining only those PSMs with PeptideProphet 

probability of 0.9 or higher (which in these data corresponded to less than 1% PSM-level 

FDR) and mapped to proteins that also passed the global 1% protein-level FDR filter. 

For each PSM that passed these filters, the corresponding precursor ion MS1 intensity 

was extracted using the Philosopher label-free quantification module, using 10 p.p.m mass 

tolerance and 0.4 min retention time window for extracted ion chromatogram peak tracing.

Also, for all PSMs corresponding to a TMT-labeled peptide, eleven TMT reporter ion 

intensities were extracted from the MS/MS scans (using 0.002 Da window). The precursor 

ion purity scores were calculated using the intensity of the sequenced precursor ion and 

that of other interfering ions observed in MS1 data (within a 0.7 Da isolation window). All 

supporting information for each PSM, including the accession numbers and names of the 

protein/gene selected based on the protein inference approach with razor peptide assignment 

and quantification information (MS1 precursor-ion intensity and the TMT reporter ion 

intensities), was summarized in the output PSM.tsv files, one file for each TMT 11-plex 

experiment.

To generate summary reports on different levels (gene, peptide, and protein for global 

and phosphopeptide enriched data; additional modification site report for phosphopeptide 

data), all PSM.tsv files were processed together using TMT-Integrator (Djomehri et al., 

2020). Each PSM in a PSM.tsv file that passed the following criteria were kept for creating 

integrated reports, including (1) having a TMT label at peptide N-terminus, (2) having 

non-zero intensity in the reference channel, (2) precursor-ion purity above 50%, (3) summed 

reported ion intensity (across all channels) not in the lower 5% of all PSMs (2.5% for 

phosphopeptide enriched data), (4) fully tryptic peptides, (5) peptide with phosphorylation 

(for phosphopeptide enriched data). For a peptide with redundant PSMs in the same MS run, 

only the PSM with the highest summed TMT intensity was kept for later analysis. PSMs 

mapping to common external contaminant proteins was excluded, and both unique and 

razor peptides were used for quantification. Next, the reporter ion intensities of each PSM 

were log2 transformed and normalized by the reference channel intensity (i.e., subtracted 

log2 reference intensity from those log2 report ion intensities), therefore the intensities 

were converted into a log2-based ratio (denoted as ‘ratios’ in the following paragraphs). 

After converting the intensities to ratios, the PSMs were grouped based on the predefined 

level (i.e., gene, protein, peptide, and site-level). The interquartile range (IQR) algorithm 

was then applied to remove the outliers in each PSM group, and the remaining ratios 

were median centered. The ratios were converted back to abundances using the weighted 

sum of the MS1 intensities of the top three most intense peptide ions, with the weighting 

factor (computed for each PSM) taken as the ratio of the reference channel intensity to 

the summed reporter ion intensity (across all channels). In generating the site-level reports 

(phosphopeptide-enriched data), sites with PTMProphet computed localization probability 
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equal or greater than 0.75 were considered as confidently localized. Additional details 

regarding these steps can be found in (Clark et al., 2019).

Glycoproteomic Data Processing: Glycoproteomic and phosphoproteomic raw data files 

were converted to universal format mzML files using the msconvert tool from ProteoWizard, 

and searched with the GPQuest search engine (version 2.1) with the following 

modifications: dynamic oxidation (+15.9949 Da) on Met, and static carbamidomethylation 

(+57.021464 Da) on Cys residues. GPQuest was applied to identify intact N-linked 

glycopeptides to MS/MS spectra using two approaches: searching spectra containing 

oxonium ions (‘oxo-spectra’) and identifying intact N-linked glycopeptides. The oxonium 

ions were used as the signature features of the glycopeptides from the MS/MS spectra, 

which were caused by the fragmentation of glycans attached to intact glycopeptides in 

the mass spectrometer. In this study, the MS/MS spectra containing the oxonium ions 

(m/z 204.0966) in the top 10 abundant peaks (N-linked glycopeptide search) and top 1000 

abundant peaks (O-linked glycopeptide search) after removing TMT reporter ions were 

considered as the potential glycopeptide candidates. The intact N-linked glycopeptides were 

identified by using GPQuest to search against the glycopeptide database of glycositeatlas 

(Sun et al., 2019) and a glycan database collected from the public database of GlycomeDB 

(Ranzinger et al., 2011). Each tandem mass spectrum was first processed in a series of 

preprocessing procedures, including removing reporter ions, spectrum de-noising, intensity 

square root transformation (Liu et al., 2007), oxonium ions evaluation and glycan type 

prediction (Toghi Eshghi et al., 2016). The top 100 peaks in each preprocessed spectrum 

were matched to the fragment ion index generated from a peptide sequence database 

to identify all the candidate peptides. All the qualified (>= 6 fragment ions matchings) 

candidate peptides were compared with the spectrum again to calculate the Morpheus 

scores (Wenger and Coon, 2013) by considering all the peptide fragments, glycopeptide 

fragments, and their isotope peaks. The peptide having the highest Morpheus score was then 

assigned to the spectrum. The mass gap between the assigned peptide and the precursor 

mass was searched in the glycan database to find the associated glycan. The best hits of all 

‘oxo-spectra’ were filtered by precursor isotopes distribution fitting score and then ranked 

by the Morpheus score in descending order, in which those with FDR <1% and covering 

>10% total intensity of each tandem spectrum were reserved as qualified identifications. The 

precursor mass tolerance was set as 10ppm, and the fragment mass tolerance was 20 ppm.

For the identification of O-linked glycopeptides, the LC-MS/MS data were searched 

against a peptide database generated from 2,225 O-linked glycoproteins and 84 Functional 

Glycomics Gateway (CFG) O-linked glycan database. The 2,225 O-linked glycoproteins 

were collected from glycoproteins identified using EXoO method (Yang et al., 2018b; Yang 

et al., 2020) and O-glycoprotein database (www.oglyp.org). An IR score of over 0.2 and 

Morpheus score of at least 7 were used to filter the data and the decoy identification was 

used to calculate the FDR for the identification of O-linked glycopeptides. The identified 

O-linked glycopeptides were compared to the list of N-linked glycopeptides identified in 

this study, and the overlapped glycopeptides were removed from the final list of O-linked 

glycopeptides.
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Peptide-spectrum matches (PSMs) were quantified using the MS-PyCloud proteomics 

pipeline (https://bitbucket.org/mschnau/ms-pycloud/downloads/). TMT correction factors 

were applied in order to correct the MS2 intensity of each PSM. Only fully-tryptic peptides 

with up to two missed cleavages were retained. Glycopeptide (peptide + glycan) false 

discovery rate (FDR) was restricted to less than or equal to 1 percent by applying a 

PSM-level FDR filter of less than or equal to 0.25 percent, requiring a minimum of two 

PSMs per peptide, and a minimum of one peptide per protein. Sample log2 ratios were 

calculated for each PSM relative to the pooled reference for that sample’s TMTplex after 

median normalizing each sample in the TMTplex to the pooled reference. PSM log2 ratios 

were then rolled up to glycopeptide-level by taking the median of PSMs that map to the 

same glycopeptide. The glycopeptide log2 ratio matrix was then median normalized across 

all samples. The glycopeptide abundance matrix was derived from the log2 ratio matrix by 

adding the median log2 value of all TMTplex pooled reference summed MS2 intensities to 

each sample log2 ratio for a given glycopeptide.

Protein Database Searching and Quantification of Global DIA Data: Raw mass 

spectrometry files from DIA and data dependent acquisition (DDA) platforms were 

processed using the DIA-Umpire (Tsou et al., 2015) based pipeline to generate a combined 

spectral library that integrated DDA and DIA search results (Cho et al., 2020; Clark et al., 

2019). The combined library was then converted to Spectronaut (Biognosys) format and 

loaded into Spectronaut. The DIA data was searched using default settings of Spectronaut 

(Cho et al., 2020; Clark et al., 2019), and the results were exported without normalization. 

The protein abundances were further grouped by unique gene names using sum of all 

the protein abundances belonging to the identical gene name. The protein abundances in 

the protein expression matrix were log2-transformed. The missing value excluded median 

abundance Mi = median (Aij, j = 1,…p) of all p proteins in each sample i were calculated. 

The median abundance of the first sample (C3L-01124-T) was selected as the reference 

M0. The abundances in each sample were median centered to M0 (normalized Aij = Aij-

Mi+M0).

Data Quality Control—Different normalization methods for global proteomics, 

phosphoproteomics and glycoproteomics data were evaluated using OmicsEV (https://

github.com/bzhanglab/OmicsEV/) and an optimal normalization method was then selected 

for each data type. After the data were normalized, batch effect was also evaluated using 

OmicsEV both visually by correlation heatmaps ordered by TMT-plex and by PCA. For 

each PC, the Pearson correlation coefficient to the batch covariate was calculated and 

significance was assessed by using one-way ANOVA. None of the first 3 PCs were 

significantly correlated to the TMT-plex, indicating the lack of a batch effect. Pairwise 

comparisons between replicate samples and samples within TMT plexes were conducted 

using the square of the Pearson correlation coefficient (R2) based on the data generated 

using a virtual reference-based method. In the correlation analysis, only features without any 

missing value were used. The virtual reference of proteomic, phosphoproteomic, N-linked 

glycoproteomic, and O-linked glycoproteomic data was calculated as the median PSM 

intensity from all channels in the TMTplex, with zero value intensities being omitted.
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In addition to extensive QC during data acquisition, RNA sequencing data quality was 

assessed using FastQC. To detect potential sample swaps or mislabeling across data types, 

genome-wide correlations at all omics levels (e.g. RNA-Protein) were used to determine 

sample identity concordance. Of note, the gender of one case (C3N-02295) was predicted 

to be male based on mRNA data, which was inconsistent with the clinical data provided. 

We decided to include this case in our cohort since we did not perform any gender-related 

analysis.

Integrated Analysis

Mutation Impact on the RNA, Proteome, and Phosphoproteome: We examined the 

cis- and trans-effects of 11 genes with somatic mutations that were significantly mutated 

in previous large scale PDAC studies (Bailey et al., 2018; Weinstein et al., 2013) on the 

RNA, proteome, and phosphoproteome. We collected a set of interacting proteins partners 

from OmniPath (downloaded on 2018-03-29) (Turei et al., 2016), DEPOD (downloaded 

on 2018-03-29) (Duan et al., 2015), CORUM (downloaded on 2018-06-29) (Ruepp et 

al., 2010), Signor2 (downloaded on 2018-10-29) (Perfetto et al., 2016), and Reactome 

(downloaded on 2018-11-01) (Fabregat et al., 2018). We used this interaction set to assess 

the trans-effects of these genes. After excluding silent mutations, samples were separated 

into mutated and WT groups for each gene of interest, removing samples with missing 

values. We used the Wilcoxon rank-sum test to report differentially expressed features 

(RNA, proteins, or phosphosites) between the two groups, requiring at least 3 samples in 

each comparison group. Differentially enriched features passing an FDR <0.05 cut-off were 

separated into two categories based on cis- and trans-effects.

Copy Number Impacts on Gene and Protein Levels: To infer focal-level significant 

somatic copy number alterations (SCNA) we used GISTIC2 (Mermel et al., 2011) with the 

default parameters except for increased thresholds for amplifications and deletions (i.e., -ta 

and -td parameters of GISTIC2), that were set to 0.4, and confidence level set to 0.95. This 

analysis was performed on the segment-level SCNA data for the autosomes.

We first filtered all the genes to those with quantifiable copy number, gene expression, 

and proteomics (N=11,623). Next, we also filtered genes for those occurring in the focal 

amplified regions identified by GISTIC2 with Q value < 0.25 (N = 543). Finally, we filtered 

the genes by their CN-mRNA correlation and CN-protein correlation to keep the genes with 

significant CN cis-effect (FDR < 0.05, Spearman’s correlation). The resulting set of genes 

(N=23) was used for the gene set enrichment analysis to identify significantly enriched 

GO-biological processes (Subramanian et al., 2005).

DNA Methylation Associations with RNA, Protein, and Phosphorylation: To investigate 

the association between methylation and proteomics expression, for each gene, we 

first calculated Z scores for its mRNA expression, protein, and phosphorylation levels 

and beta values for DNA methylation. We then calculated Pearson correlation scores 

with its associated significance between methylation and gene expression, protein, and 

phosphorylation levels for all pairs of genes, respectively.
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The 69 tumors and 9 normal adjacent tissues (NATs) covered in both RNA and DNA 

methylation data sets were involved in this identification of epigenetically-silenced genes. 

Probes that were located in CpG Islands (CpGIs) and transcript start sites (TSS) were 

selected except those located on X and Y chromosomes. Hierarchical clustering analysis 

(Scipy 1.5.2, Python package) showed that the tumor and NAT tissues can be separated 

based on the beta value of DNA methylation except one NAT sample (Figure S2E). The 

approach of identification of epigenetically-silenced genes is similar to the TCGA project 

(The Cancer Genome Atlas Research Network, 2017). Level 3 RNA-seq RSEM data were 

log2-transformed [log2 (RSEM+1)] and used to assess the expression levels associated with 

DNA methylation changes. DNA methylation and gene expression data were merged by 

Entrez Gene IDs. We removed the CpG sites that were methylated in the NATs (mean 

β-value > 0.2). We then dichotomized the DNA methylation data using a β-value of > 

0.3 to definite positive DNA methylation, and further eliminated CpG sites methylated in 

fewer than 3% of the tumor samples. For each probe/gene pair, we applied the following 

algorithm: 1) classify the tumors as either methylated (β > 0.3) or unmethylated (β ≤0.3); 

2) compute the mean expression in the methylated and unmethylated groups; 3) compute 

the standard deviation of the expression in the unmethylated group. We then selected probes 

for which the mean expression in the methylated group was lower than 1.64 (10% of one-

sided Z distribution) standard deviations of the mean expression in the unmethylated group 

and the NAT tissues. We labeled each individual tumor sample as epigenetically silenced 

for a specific probe/gene pair selected from above if: a) it belonged to the methylated 

group and b) the expression of the corresponding gene was lower than the mean of the 

unmethylated group of samples. If there were multiple probes associated with the same 

gene, a sample identified as epigenetically silenced at more than or equal to half the probes 

for the corresponding gene was also labeled as epigenetically silenced at the gene level. The 

methylation status of ZNF544 was also found significantly correlated with survival time by 

using the Python package lifelines (version 0.25.4, DOI: 10.5281/zenodo.4002777).

Differential Abundance Analysis: Paired differential abundance analysis between tumor 

and NATs was performed using the Wilcoxon signed-rank test. At least 50% of the 

paired samples were required to have non-missing values. Significance was determined 

to be Benjamini-Hochberg corrected p value < 0.01 and fold change was calculated as 

the median log2 fold change. Unpaired differential abundance analysis was performed 

using the Wilcoxon rank sum test. At least 4 samples in both groups were required to 

have non-missing values. Adjusted p values and fold changes were calculated as above. 

Immunohistochemistry data were collected from the Human Protein Atlas (Uhlen et al., 

2015) for pancreatic cancer samples. The list of secretable proteins was also collected from 

the Human Protein Atlas.

Glycoproteomics Analysis

Tumor related glycoproteins identification.: The Wilcoxon rank sum test was used 

to compare the global protein expression difference of each protein containing at 

least one glycopeptide identified in the glycoproteomics data (termed glycoprotein) 

in tumors and NATs. At least 50% of all samples were required to have non-

missing values. At least 4 samples in each group were required to have non-missing 
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values. The p values were corrected to FDR values using the Benjamini-Hochberg 

method (statsmodels.stats.multitest.multipletests, version 0.12.0, Python 3.7). The statistical 

significant up-/down-regulations were determined by using FDR <0.01, while the median 

log2 fold changes (log2FC) = 1 or −1 were applied to further dichotomize the significant 

changes to ‘2x up/down’ and ‘up/down’ respectively (Figure 4A). The secreted-to-blood 

glycoproteins were annotated with their gene names. The protein subcellular location 

information (Table S4) was collected from two resources: The Human Protein Atlas 

(www.proteinatlas.org) (Thul et al., 2017) and UniprotKB (www.uniprot.org) (The UniProt 

Consortium, 2017). The sunburst plot (Plotly, Python package) of the up-/down-regulated 

glycoproteins and their corresponding cellular locations were shown in Figure S4A. The 

gene set enrichment analysis of altered glycoproteins was achieved by Webgestalt (http://

www.webgestalt.org/).

Impact of early Stage and KRAS hotspot mutations on N-linked glycoprotein expression.: 
We compared the glycoprotein expression measured in tumors (including subsets of early 

stage: stage I and II, and four most common KRAS hotspot mutations: G12D, G12R, G12V, 

and Q61H) and normal tissues (including NATs and normal duct tissues). The Wilcoxon 

rank sum test was applied on each pair of comparison (stats, R package) to investigate 

the secreted glycoproteins significantly up-regulated in tumors (Figure 4B, Table S4). The 

P-values were adjusted by Benjamini-Hochberg procedures. If the p value was < 0.01, the 

result was annotated as “>2x up” when the fold change > 2, otherwise it was annotated 

as “up”. The Wilcoxon tests were also applied in the investigation of tumor (all tumors, 

early stage tumors, and four KRAS mutant subsets: G12D, G12V, G12R, and Q61H) and 

normal (NATs or normal duct tissues) comparison for other proteins, including MUC family 

proteins (Figure S4C), CEACAM5 and CEACAM6 (Figure S4D), and LGALS3BP, HPX, 

COL6A1 and their corresponding glycopeptides (Figure S4E).

Protein glycosylation comparison on protein level and intact glycopeptide level.: The log2 

fold change (FC) of the intact glycopeptides and the corresponding global protein expression 

were shown in Figure 4C. The associated glycans on the intact glycopeptides were classified 

to three groups of oligomannose (HM), fucose (Fuc), and sialic acid (Sia) based on the 

composition of the glycans. The projection of the distribution of log2 FC values were shown 

in the top and right side for protein and intact glycopeptides, respectively.

Correlation between the glycosylation enzymes and intact glycopeptide expression and 
investigation of glycosylation biosynthetic pathways.: The intact glycopeptide expression 

was hypothesized to be influenced at least by the expression of substrate glycoproteins and 

glycosylation enzymes. The Spearman’s rank correlation coefficient was used to measure 

the correlation between the abundance (log2 ratio values) of intact glycopeptides and the 

abundance of glycosylation enzymes identified from the global proteomic data in this study. 

The correlation matrix was further arranged by the order of enzymes in the glycosylation 

synthetic pathways and visualized in Figure 4D. The glycan compositions were linked to 

the intact glycopeptides in the middle panel of Figure 4D. The result of Wilcoxon ranked 

sum tests on the tumor/NAT abundance comparison of the glycosylation enzymes was 

shown in Figure 4E to illustrate the overall trend of down-regulated precursor pathway 
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and up-regulated capping pathways of glycosylation in tumors on protein level. The same 

approach was applied on mRNA data and shown in Figure S4F.

Kinase and Substrate Co-regulation: To discover the phosphorylation events that were 

relevant to PDAC, we utilized phosphosite abundance data to examine the relationship 

between phospho-substrates and their associated kinases. The kinase-substrate association 

was first extracted from PhosphoSitePlus (Hornbeck et al., 2015) to eliminate phosphosites 

that were not reported as well as those without associated kinases identified in our global 

proteome data. Next, we inspected any substantial differences among 41 tumor/NAT pairs, 

especially those showing higher changes in tumors, by calculating the fold change (log2 

scale) between each paired sample as well as groups (median log2 fold change). Finally, 

we ranked each tumor (> 1.5 fold increase) among different kinase-substrate pairs to 

obtain the high ranked phospho-substrate events in the majority of tumors. We identified 

five phospho-substrate events of five kinases with inhibitors that are either FDA-approved 

or under investigation. Data was analyzed using Omic-Sig (https://github.com/hzhangjhu/

Omic-Sig) (Lih et al., 2019). Kinases enriched in different hotspot KRAS mutations were 

stratified from the phospho-substrates (at least 2 substrates) showing elevated expression 

profiles (>2 fold increase with adjusted p<0.05) in the differential analysis between KRAS 
mutant tumors and NATs. The differential analysis was conducted using Wilcoxon rank-sum 

test (unpaired samples) and Wilcoxon signed-rank test (paired samples) in transcriptomics, 

global proteomics, or phosphoproteomics data (at least 50% of all samples were required to 

have non-missing values) between PDAC tumors and NATs/normal ductal tissues as well as 

between early stage PDAC tumors and NATs/normal ductal tissues (proteins/phosphosites 

quantified in at least 4 samples in both groups). The p-value was adjusted using the 

Benjamini Hochberg method. The druggability score was calculated by summing the 

number of PDAC cell lines with positive drug response from Genomics of Drug Sensitivity 

in Cancer (https://www.cancerrxgene.org/) and then log transformed.

RNA Subtyping: The RNA subtyping was performed similarly to the TCGA PDAC 

study (The Cancer Genome Atlas Research Network, 2017). Specifically, for the three 

RNA subtyping schemes reported previously (i.e. Collisson, Bailey, and Moffitt), the gene 

signatures were obtained from the original publications (Bailey et al., 2016; Collisson et 

al., 2011; Moffitt et al., 2015). The harmonized RNA expression matrices (with zero counts 

less than 50% for all the genes) for these gene signatures (Collisson N=61; Bailey N=488 

and Moffitt N=49) were normalized by z-scoring in the gene-wise manner. Next, we applied 

consensus clustering (Wilkerson and Hayes, 2010) to these subsetted RNA matrices to 

identify sample groups with distinct expression patterns for these signature genes. We chose 

the K value (i.e. cluster number) equal to the reported subtype numbers of each subtyping 

scheme, after we checked the Consensus Cumulative Distribution Function (CDF) plot and 

the Delta Area plot to ensure that these Ks indeed represented the best cohort partition 

(Wilkerson and Hayes, 2010). These clusters were further labelled by interrogating their 

expression of the signature genes used at the first place.

Multi-omics Clustering: Non-negative matrix factorization (NMF)-based multi-omics 

clustering was performed similar to as previously described (Gillette et al., 2020; Huang 
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et al., 2021; Krug et al., 2020; Wang et al., 2021). Briefly, NMF was used to perform 

unsupervised clustering of tumor samples using gene copy number aberrations, mRNA 

and protein expression, and phosphorylation and glycosylation sites abundances. To enable 

integrative multi-omics clustering, we required all data types (and converted if necessary) 

to represent ratios to either a common reference measured in each TMT plex (proteome, 

phosphorylation and glycosylation sites) or an in-silico common reference calculated as 

the median abundance across all samples. All data tables were then concatenated and only 

features quantified in all tumors were used for subsequent analysis (no missing values were 

allowed). Features with the lowest standard deviation (bottom 5th percentile) across all 

samples were deemed uninformative and were removed from the dataset. Each column in 

the data matrix was further scaled and standardized such that all features from different data 

types were represented as z-scores. Since NMF requires a non-negative input matrix, the 

data matrix of z-scores was further converted into a non-negative matrix as follows:

1. Create one data matrix with all negative numbers zeroed.

2. Create another data matrix with all positive numbers zeroed and the signs of all 

negative numbers removed.

3. Concatenate both matrices resulting in a data matrix twice as large as the 

original, but with positive values only and zeros and hence appropriate for NMF.

The resulting matrix was then subjected to NMF analysis leveraging the NMF R-package 

(Gaujoux and Seoighe, 2010) and using the factorization method described in (Brunet et al., 

2004). Given a factorization rank k (where k is the number of clusters), NMF decomposes 

a p x n data matrix V into two matrices W and H such that multiplication of W and 

H approximates V. Matrix H is a k x n matrix whose entries represent weights for each 

sample (1 to N) to contribute to each cluster (1 to k), whereas matrix W is a p x k matrix 

representing weights for each feature (1 to p) to contribute to each cluster (1 to k). Matrix 

H was used to assign samples to clusters by choosing the k with maximum score in each 

column of H. For each sample, we calculated a cluster membership score as the maximal 

fractional score of the corresponding column in matrix H.

To determine the optimal factorization rank k (number of clusters) for the multi-omic data 

matrix, a range of clusters between k=2 and 10 was tested. For each k we factorized matrix 

V using 50 iterations with random initializations of W and H. To determine the optimal 

factorization rank we calculated two metrics for each k: 1) cophenetic correlation coefficient 

measuring how well the intrinsic structure of the data was recapitulated after clustering 

and 2) the dispersion coefficient of the consensus matrix as defined in (Kim and Park, 

2007) measuring the reproducibility of the clustering across 50 iterations. The optimal k 
was defined as the maximum of the product of both metrics for cluster numbers between 

k=2 and 10. Having determined the optimal factorization rank k, and in order to achieve 

robust factorization of the multi-omics data matrix, the NMF analysis was repeated using 

500 iterations with random initializations of W and H.

Matrix W containing the weights of each feature in a certain cluster was used to derive a 

list of representative features separating the clusters using the method proposed in (Kim and 

Park, 2007). Cluster-specific features were further subjected to a 2-sample moderated t-test 
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(Ritchie et al., 2015) comparing the feature abundance between the respective cluster and 

all other clusters. Derived p-values were adjusted for multiple hypothesis testing using the 

method proposed by Benjamini and Hochberg (Benjamini and Hochberg, 1995).

In order to functionally characterize the clustering results, normalized enrichment scores 

(NES) of cancer-relevant gene sets were calculated by projecting the matrix of signed 

multi-omic feature weights (Wsigned) onto Hallmark pathway gene sets (Liberzon et al., 

2015) using ssGSEA (Barbie et al., 2009). To derive a single weight for each gene measured 

across multiple omics data types (protein, RNA, phosphorylation site, acetylation site) we 

retained the weight with maximal absolute amplitude. We used the ssGSEA implementation 

available on https://github.com/broadinstitute/ssGSEA2.0 using the following parameters:

• gene.set.database=“h.all.v6.2.symbols.gmt”

• sample.norm.type=“rank”

• weight=1

• statistic=”area.under.RES”

• output.score.type=“NES”

• nperm=1000

• global.fdr=TRUE

• min.overlap=5

• correl.type=”z.score”

The association between the resulting clusters and inferred phenotypes (e.g. RNA subtypes) 

and clinical variables, either a Fisher’s exact test (R function fisher.test) for discrete 

variables or a Wilcoxon rank-sum test (ggpubr R-package) in case of continuous variables 

was used to assess overrepresentation in tumors assigned to each cluster.

Inference of subtype-specific drug signatures (DSigDB GSEA): Gene Set Enrichment 

Analysis (GSEA) implemented in the WebGestaltR R-package (Liao et al., 2019) was used 

to infer signatures of approved drugs (D1, 1,202 gene sets) and kinase inhibitors (D2, 

1,220 gene sets) available in the drug signatures database (DSigDB, Yoo et al., 2015, http://

dsigdb.tanlab.org/DSigDBv1.0/). Based on the signed multi-omic feature weights (Wsigned) 

for the two proteogenomic clusters described above, a single weight for each protein was 

derived by retaining the weight with maximal amplitude. Negative weights indicated in 

cluster C1, positive weights proteins with specific expression in cluster C2, respectively. 

The resulting vector of protein weights (n=5,773) was used as ranking in WebGestaltR. 

Normalized enrichment scores and p-values were based on 1,000 permutations. Other 

relevant parameters in WebGestaltR were set as follows: sigMethod=”top”, topThr=10, 

minNum=5, fdrThr = 0.05, sigMethod = “fdr”, fdrMethod = “BH”.

Methylation-based Deconvolution: We used an established methylation-based 

deconvolution method, EDec (Onuchic et al., 2016) to dissect the composition of different 

cell types within the whole bulk tumor. In brief, EDec assumes that the methylation 
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observed from the whole bulk tumor is a linear combination of the methylation from 

each constituent cell type, weighted by their proportion within the whole bulk tumor. 

Mathematically, EDec applies the NMF algorithm to the methylation matrix (i.e. a # 

methylation feature by # samples matrix, with entries being beta values) profiled from 

the whole bulk tumor and generates a # methylation feature by # cell-type matrix (with 

entries being beta vale) and a # cell type by # samples matrix (with entries being cell 

type proportions). To ensure that the second matrix reflects the cell type composition, 

EDec uses only the methylation features (i.e. probe-level methylation) that are known to 

have differential levels across the presumed cell types within the tumor. We selected such 

methylation features from cell lines or physically purified tissues that are available in the 

public database (Table S6, adapted from (Lurie et al., 2020)). Based on the robustness of 

NMF matrix decomposition, the methylation-based deconvolution resulted into four cell 

types: tumor epithelial cells, immune cells, stromal cells and mature exocrine and endocrine 

cells.

Tumor Microenvironment Inference: The RNA-based tumor microenvironment inference 

tool ESTIMATE (Yoshihara et al., 2013) was used to derive the overall immune score 

and stromal score for each sample. In addition, two established RNA-based immune cell 

inference tools, xCell (Aran et al., 2017) and MCPCounter (Becht et al., 2016), were used 

to dissect the relative level of different immune cell infiltration. For these tools, we used 

RNA expression quantified as upper-quantile normalized RSEM and kept only genes with 

zero counts less than 50% as the input. We found that the xCell results were sparse for 

some immune cells and further filtered out immune cell types with zero readout in >80% of 

samples. The remaining cell types were used to derive the microenvironment-based grouping 

using consensus clustering (Wilkerson and Hayes, 2010). To further explore the relationship 

between these tumor microenvironment components, a correlation network was built by 

performing the Pearson’s correlation for all pairs of xCell components and linking the pairs 

with adjusted p value < 0.05 with edges. The network module discovery was performed by 

edge betweenness implanted in the R package ‘igraph’.

To contextualize our immune profiling results with current understanding in the field, we 

extracted the gene signatures from relevant publications, including the “normal stromal” 

and “activated stromal” genes from Moffitt et al., 2015, “immune” and “ECM” genes from 

Maurer et al., 2019, and ‘classical’ (signature 1 and 6) and ‘basal-like’ (signature 2 and 

10) genes from Chan-Seng-Yue et al., 2020 and used single sample GSEA (ssGSEA that 

was implemented in GSVA R package (Hanzelmann et al., 2013) to infer the corresponding 

microenvironment activities. For the ssGSEA scores derived from Maurer et al., 2019, 

we applied the data deconvolution method reported in the publication and used stroma-

specific gene expression for the analysis. In addition, we generated the subtypes reported 

by Puleo et al, 2018 by centroid-based subtyping using the reported gene signatures from 

the publication. The comparisons of the xCell-based immune subtyping and the results using 

these published gene signatures and methods were discussed in the discussion section.

Adjustment for Epithelial Content: For the fifteen patients with an ESTIMATE score for 

both tumor and NAT samples, a linear mixed model was used to correct for non-epithelial 
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content. The lmerTest package (doi = {10.18637/jss.v082.i13}) in R was used. Proteomics 

data had to be available for both the tumor and normal samples for at least 10 of the patients. 

The tumor type and z-scored ESTIMATE score were fixed effects and the patient was a 

random effect. P value for expression was adjusted using Benjamini-Hochberg, with 0.01 

considered significant. A beta value > 1 for expression was used to filter tumor-associated 

proteins.

Over-representation Analysis: Over-representation analysis of Gene Ontology Biological 

Process terms was performed using WebGestaltR (Liao et al., 2019) with the > 2-fold 

increased or decreased proteins in tumors vs NAT compared to a background of all 

quantified proteins (proteins non-missing in at least 50% of the paired samples). For PTMs, 

proteins containing at least one PTM that was > 2-fold increased or decreased in tumors 

vs NAT were compared to a background of proteins containing at least one quantified site 

(non-missing in at least 50% of the paired samples). A Benjamini-Hochberg corrected p 

value of 0.01 was considered significant.

Survival Analysis: Cox proportional hazards regression (from the R package survival) 
on overall survival was performed to test the association between survival outcomes to 

continuous variables. Logrank test (from the R package survminer) was used to test the 

differential survival outcomes between categorical variables. Samples with a death event 

within 30 days of surgery were excluded. For the survival association analysis for the tumor 

proteomics data, the proteins were filtered to keep the ones with no-missing values for at 

least 10 patients.
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Figure 1. Proteogenomic landscape of the PDAC cohort.
A) Sample numbers and omics data types of the cohort. B) Country of origin, cancer stage, 

tumor site, and vital status proportions in the cohort. C) Molecular and histology-based 

tumor estimates are used to classify samples into “sufficient” and “low” purity groups. D) 
KRAS VAF distribution in the cohort colored by KRAS hotspot amino acid change. The 

sufficient neoplastic purity KRAS VAF cutoff, denoted by a dashed line, is 0.075 (15% 

neoplastic cellularity). The 4 samples with no KRAS mutations detected were also included 
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in the sufficient tumor cellularity group since they had high mutation burden (n > 25), high 

CNV (index > 1), and/or additional driver events in TP53, CDKN2A, and SMAD4.
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Figure 2. Impact of genomic alterations on the transcriptome, proteome, and phosphoproteome.
A) Genomic landscape of the cohort with sufficient tumor cellularity (n = 105) showing 

mutated genes with a frequency ≥0.05. All mutation types are considered, including 

missense, frameshift, splice-site, copy number alterations, and fusion events. G12D, G12R, 

and G12V are the most common KRAS driver mutations present in the cohort. B) Cis- and 

trans-effects of genomic alterations on RNA and protein levels. C) Cis- and trans-effects of 

genomic alterations on phosphosites. Protein levels are used as a covariate to remove protein 

abundance-related effects. In B and C, cis-effects are denoted by circles while trans-effects 
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are denoted with squares. D) Major gene copy number amplification and deletion rates in the 

cohort. The log ratio cutoffs used are [−0.4, 0.4] (See STAR Methods). E) Significant arm 

level focal peaks detected using GISTIC. Several of these peaks contain known driver genes 

in PDAC such as GATA6, CDKN2A, and SMAD4. F) CNV driver approach schematic. 

From all genes with copy number events, 543 are located in the GISTIC focal peaks, of 

which 165 have RNA effects and 23 also have protein level effects. These 23 genes have 

roles in actin filament and cytoskeleton organization pathways. G) Violin plots showing 

the impact of copy number in a select number of proteins from these 23 putative CNV 

drivers. *** Denote p < 0.001. The control group in each comparison includes all samples 

without the copy number event for each gene or protein. The alterations of H) mRNA and 

proteins, and I) phosphosites associated with CDKN2A and SMAD4 deletions. Samples 

with wild-type CDKN2A and SMAD4 serve as controls.
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Figure 3. Identification of tumor-associated proteins and modification sites by comparison of 
tumor and normal tissues.
A) Differential protein abundance between tumors and paired NATs. Selected GO biological 

process terms for significantly increased and significantly decreased proteins are shown 

above the volcano plot. B) Proteins with a median fold change > 2 compared to matched 

NAT and with significantly increased abundance both compared to normal ductal tissues and 

after adjusting for epithelial content for all samples and the subset of stage I/II samples. 

Secreted proteins are indicated with a green dot. C) Kaplan-Meier curve for LOXL2 protein 
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abundance association with overall survival. The two groups were separated by median 

LOXL2 abundance. D) Median phosphosite and N-linked glycosylation site fold change 

compared to the protein fold change in tumor compared to matched NAT. E) Cox regression 

signed p value for phosphosite and N-linked glycosylation site abundance association with 

survival compared to the protein association to survival. F) Kaplan-Meier survival curves for 

an N-linked glycosylation site on APOD and APOD protein abundance.
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Figure 4. Glycoproteomic characterization identified N-linked glycoproteins and glycosylation 
enzymes for the early detection or therapeutic intervention.
A) Differential expression analysis of N-linked glycoproteins in tumors to identify the most 

significant secreted (highlighted) and membrane N-linked glycoproteins elevated in tumors 

compared to NATs. B) Up-regulation of N-linked glycoproteins in all tumors, early stage 

tumors or tumors with different hotspot KRAS mutations relative to NATs and normal ductal 

tissues (Normal duct) at N-linked glycoprotein expression levels. C) Comparative analysis 

of the expression of global proteomics and glycoproteomics. IGP: intact glycopeptides; 
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HM: high mannose type glycopeptides; Fuc: fucosylated glycopeptides; Sia: sialylated 

glycopeptides. D) Association of intact glycopeptide abundance and protein levels of 

glycosylation enzymes in tumors and NATs. E) Differential protein expression of N-linked 

glycosylation enzymes between tumors and NATs.
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Figure 5. Kinase and substrate co-regulation.
A) Differential abundances between 41 tumor/NAT paired tissues of stratified phospho-

substrates (top) and their associated kinases (bottom). B) Pathways based on the selected 

phospho-substrates and kinases, with relevant drugs. Expression changes on mRNA and/or 

protein/phosphosites between PDAC tumors and NATs/Normal ductal tissues are labeled. 

C) Expression profiles of PAK1- and PAK2-associated proteins at transcriptomics and 

proteomics levels. D) Expression profiles of the class I p21-activated kinases (PAKs) in 

Normal duct, NAT, Tumor, and Early stage. E) Heatmap showing kinases elevated in 
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different KRAS hotspot mutations. The kinases were identified based on their up-regulated 

phospho-substrates. The drug target annotation is from Human Protein Atlas (https://

www.proteinatlas.org/) alongside with the log-transformed druggability score based on the 

drug sensitivity evaluated in PDAC cell lines from Genomics of Drug Sensitivity in Cancer 

(https://www.cancerrxgene.org/). Normal duct: normal ductal tissues; NAT: normal adjacent 

tissues; Tumor: all PDAC tumors; Early stage: Stage I and II PDAC tumors. Asterisks 

represent significant differences between two groups (Benjamini-Hochberg adjusted p): *p < 

0.05; **p < 0.01; ***p<0.001; N.S., not significant. The list of kinase inhibitors/drugs is not 

exhaustive.
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Figure 6. Delineation of the cellular composition of PDAC tumors and identification of biological 
events accounting for the immune-cold phenotype.
A) The 140 tumors were classified into four clusters based on tumor composition (upper 

heatmap). The cytotoxic T cells, together with endothelial cells enriched in the cluster D 

are highlighted by a rectangle. The expression of immune cytotoxic factor and checkpoint 

genes is shown in the sample order (lower heatmap). B) The comparison of endothelial 

cells between immune hot and cold samples based on the in silico deconvolution using 

either xCell or MCPCounter. C) Immune cold tumors have reduced endothelial adhesion 

proteins. D) Immune cold tumors have upregulated VEGF and hypoxia pathways. B-D: 

**p<0.01, n.s. not significant, Student’s t-test. E) The immune cold tumors had higher 

levels of glycolytic pathway components. Shown are the comparison of these components 

between immune cold vs hot at both the RNA and protein level. Some of the pathway 

components are identified with known functional phosphosites and are highlighted by brown 

circles. F) Phosphorylation pathway enrichment showed that the immune cold samples 

have higher phosphorylation levels of cell junction proteins. Shown are immune cold vs. 

hot fold changes for protein phosphorylation, protein expression and RNA expression. 

*p<0.05, Student’s t-test. G) The possible working model. VEGF and hypoxia pathways 

are associated with aberrant tumor vasculature and a hypoxic tumor microenvironment, 

and downregulated endothelial cell adhesion proteins, increased glycolysis and cell junction 

further inhibit the cytotoxic immune infiltration and function. H) The clinical outcome 

associated with CD8+ T cells. I) The clinical outcome associated with VEGF and hypoxia 
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pathway activities. H-I): The p values were derived from logrank test and numbers in 

parentheses represent sample sizes for each group.
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Figure 7. Proteogenomic subtyping of 105 high-purity tumors using gene copy number, mRNA, 
protein, phosphosite, and glycosite abundances largely separated tumors to two subtypes.
A) Heatmap depicting the z-scored abundances of proteogenomic features separating the 

two clusters as determined by NMF. Cluster membership scores indicating the strength of 

association of each sample with a given cluster were calculated as proportional weights. 

The columns of the matrix are ordered by proteogenomic subtype and decreasing cluster 

membership score. B) Pathway-level analysis on proteogenomic subtypes. Shown are 

pathway activity scores of cancer hallmark gene sets derived from single sample Gene Set 
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Enrichment Analysis (ssGSEA) applied to the vector of feature weights characterizing each 

cluster. Asterisks indicate gene sets with FDR < 0.01. cat: category. C) Overrepresentation 

analysis of clinical variables, RNA-subtypes and somatic mutations in each proteogenomic 

subtype (Fisher’s exact test). Size of the dots scale with the significance of association. 

Cyan dots indicate association with the C1 (NMF classical), orange dots with the C2 (NMF 

basal-like) subtype. Vertical dashed lines correspond to nominal p-value of 0.05. D-G) 
Kaplan-Meier Plots comparing the survival outcomes between (D) Moffitt classical samples 

assigned into proteogenomic classical cluster (C1) and proteogenomic basal-like cluster 

(C2), (E) Moffitt basal-like samples assigned to the two proteogenomic clusters, (F) the two 

proteogenomic clusters, and (G) the two Moffitt subtypes. The p values were derived from 

logrank test and numbers in parentheses represent sample sizes for each group. The hazard 

ratios (HRs) were derived from Cox PH regression and shown as “HR (95% confidence 

interval)”.
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