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Olfactory dysfunction is a pre-motor symptom of Parkinson’s disease (PD) that appears years prior to diagnosis and can affect
quality of life in PD. Changes in microbiota community in deep nasal cavity near the olfactory bulb may trigger the olfactory bulb-
mediated neuroinflammatory cascade and eventual dopamine loss in PD. To determine if the deep nasal cavity microbiota of PD is
significantly altered in comparison to healthy controls, we characterized the microbiota of the deep nasal cavity using 16S rRNA
gene amplicon sequencing in PD subjects and compared it to that of spousal and non-spousal healthy controls. Correlations
between microbial taxa and PD symptom severity were also explored. Olfactory microbial communities of PD individuals were more
similar to those of their spousal controls than to non-household controls. In direct comparison of PD and spousal controls and of PD
and non-spousal controls, significantly differently abundant taxa were identified, and this included increased relative abundance of
putative opportunistic-pathobiont species such as Moraxella catarrhalis. M. catarrhalis was also significantly correlated with more
severe motor scores in PD subjects. This proof-of-concept study provides evidence that potential pathobionts are detected in the
olfactory bulb and that a subset of changes in the PD microbiota community could be a consequence of unique environmental
factors associated with PD living. We hypothesize that an altered deep nasal microbiota, characterized by a putative pro-
inflammatory microbial community, could trigger neuroinflammation in PD.
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INTRODUCTION

Parkinson'’s disease (PD) is a complex neurodegenerative disease
characterized by nigrostriatal degeneration resulting in bradyki-
nesia, rigidity, tremor, and gait dysfunction’. Non-motor symp-
toms are also typically present, including depression, constipation,
and alteration of smell. Diminished sense of smell (hyposmia), is a
common hallmark of prodromal PD?,

Though PD’s etiology remains unknown, gut dysbiosis, or
imbalance of the gut microbial community structure and function,
has been implicated in disease pathogenesis. PD gut dysbiosis is
characterized by increased putative pro-inflammatory microbes,
belonging to the phylum Proteobacteria, and a reduction in
putative beneficial short chain fatty acids (SCFAs)-producing
bacteria (e.g., bacteria from the genera Blautia, Roseburia, and
Faecalibacterium)®. This gut dysbiosis may ultimately contribute to
systemic and neuroinflammation, possibly leading to alpha-
synuclein misfolding and aggregation that is observed in PD
intestinal and brain tissue*>.

Given the loss of olfaction that has been associated with pre-
motor PD in 75-95% of early cases®, the nasal cavity may be a
secondary site (in addition to the gut) triggering neuroinflamma-
tion in PD and is hypothesized to serve as a route of pathogen
invasion/toxin exposure, originally termed the “dual-hit hypoth-
esis">*>, Similar to the gut, the nasal cavity supports distinct
microbial communities that inhabit the anterior nares, nasal
vestibule, and middle meatus’. The rostral (deep) region of the
sinusoidal cavity consists of a specialized epithelial layer

proximate to the olfactory bulb®. This is inhabited by a stable
microbial community that plays a role in olfactory development
and the function of smell”. Changes in the microbiota composition
of this region have been associated with a pro-inflammatory
profile in diseases such as chronic rhinosinusitis, which is thought
to reduce olfaction®.

Previous studies failed to find differences between PD and
healthy subjects in the external nostril and nasal wash micro-
biome'®'!. However, the biological linkage of the nostril or nasal
wash microbiome in neuroinflammation is debatable. This study
examines the PD microbiota community in the deep nasal sinus
cavity proximal to the olfactory bulb. Rigorous sample collection
for microbiota analysis was performed by rhinologists experienced
in nasal sample collection after complete nasal endoscopy, using
endoscopy guided small size nasal swabs from the middle meatus.
We posit that the unexplored deep nasal sinus cavity is a more
relevant site for neuroinflammation in PD and hypothesized that
the deep nasal microbiota community has a pro-inflammatory
profile in PD.

RESULTS

Comparison of nasal microbiota between random non-
household (rHC) and spousal household healthy controls
(SpHQ)

Microbial alpha diversity was measured for each sample to
determine if there were differences in microbial community
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structure between rHC (n = 17) and SpHC (n = 11) (Supplementary
Table 1). No significant differences in alpha diversity (Shannon/
Simpson index, Richness, and Evenness) were observed for
analyses conducted at the taxonomic levels of phylum, genus
and species. Beta-diversity analyses revealed significant differ-
ences in nasal microbial community structure between rHC and
SpHC samples at the taxonomic levels of genus and species
(ANOSIM: Fig. 1a, b; Supplementary Table 2). Secondary analysis of
microbial community structure between rHC and SpHC samples
was performed using PERMDISP and revealed a significant
difference (FDR-P < 0.05) at the taxonomic level of phylum though
no significant differences were observed using PERMANOVA
(Supplementary Tables 3-4). Microbial taxa differing in abundance
between rHC and SpHC were identified using DESeq2 and ANCOM
(Supplementary Tables 5-7). A total of 41 species were
significantly differentially abundant (q value < 0.01) between rHC
and SpHC subjects (Supplementary Table 7; Supplementary Fig. 1).
ANCOM analyses identified two differentially abundant taxa,
including Burkholderia xenovorans (W score = 256; higher in rHC)
and Acinetobacter guillouiae (W score =239; higher in SpHCQ)
(Supplementary Table 7). As the two control subject groups had
significantly different deep nasal microbial communities, compar-
isons with PD subjects were performed separately with rHC
and SpHC.
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Fig. 1

Comparison of nasal microbiota between random non-
household healthy controls (rHC) and Parkinson’s disease (PD)
subjects

Microbial alpha-diversity indices were compared between rHC
(n=17) and PD (n=30) cohorts. Indices were not significantly
different between groups with the exception of species-level
richness which was significantly lower in PD compared to rHC
subjects, (Supplementary Table 8). Nasal microbial communities
differed between rHC and PD subjects, and this manifested at
taxonomic levels of genus and species, but not phylum (Fig. 1a, b;
Supplementary Tables 2, 3). Taxon-by-taxon analyses also
identified significantly differently abundant genera and species
between groups (Fig. 1c; Supplementary Tables 9-11). Overall,
59 species were significantly differentially abundant (FDR-P < 0.01)
between rHC and PD groups. The PD subjects had significantly
higher abundances of putative pro-inflammatory species Morax-
ella catarrhalis and Ralstonia insidiosa and lower abundances of
species Blautia wexlerae, Lachnospira pectinoschiza, and Propioni-
bacterium humerusii, which are known to be capable of SCFA
production in the gastrointestinal environment, and could
produce SCFAs using nasal cavity mucus'? The PD subjects also
had lower abundances of nasal mucosal anti-inflammatory
Corynebacterium species (DESeq2; Supplementary Fig. 2; Supple-
mentary Table 11). ANCOM identified only Acinetobacter guillouiae
as significantly abundant in PD subjects relative to rHC subjects

Taxonomic Level of Species

Other Species

Streptococcus intermedius
Porphyromonas endodontalis
Corynebacterium fastidiosum
Prevotella pleuritidis
Neisseria mucosa
Corynebacterium cystitidis
Atopobium rimae

Propionibacterium avidum
Klebsiella oxytoca

Filifactor villosus
Propionibacterium humerusii

Propionibacterium granulosum

Corynebacterium kroppenstedtii

Peptostreptococcus stomatis

Anaerococcus octavius

Finegoldia magna

Staphylococcus chromogenes
Col i

Staphylococcus haemolyticus
Ralstonia insidiosa

Corynebacterium striatum

Staphylococcus epidermidis

Peptoniphilusas accharolyticus
Staphylococcus aureus
Moraxella catarrhalis
Corynebacterium propinquum

Propionibacterium acnes

Corynebacterium accolens

T T
rHC (N =17) PD (N = 30)

Deep nasal microbial communities in PD and control subjects. a Differences in overall microbial profiles (taxonomic level of species)

measured using within group Bray-Curtis similarity index between random HC (rHC; n = 17), Spousal HC (SpHC; n=11) and PD (n = 30; One-
Way ANOVA). b Overall distribution of between group Bray-Curtis indices between rHC (n = 17) vs SpHC (n =11); rHC (n = 17) vs. PD (n = 30);
and SpHC (n=11) vs. SpPD (n = 11; One-way ANOVA). Significant p-values (P < 0.05) bold. Each dot indicates a comparison of one pair of
samples. ¢ Average species-level relative abundance profiles of deep nasal microbiota of rHC (n = 17) and PD (n = 30). Taxa with greater than

1% relative abundance are shown.
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(W score =290; Supplementary Table 11). A machine learning
approach (Boruta) was employed for feature selection to identify
taxa driving differences between PD and rHC subjects. This
analysis identified eights species, including: Escherichia albertii,
Peptoniphilus asaccharolyticus, Staphylococcus aureus, Macrococcus
brunensis, Ralstonia insidiosa, Staphylococcus epidermidis, Burkhol-
deria xenovorans, and Acinetobacter guillouiae (Supplementary
Fig. 3).

M. catarrhalis and R. insidiosa, identified both by DESeq2
analysis and Boruta feature selection, were elevated in PD subjects
(Fig. 2a—c). However, the presence and abundance of these taxa
was highly variable (bimodal distribution) within the PD cohort.
The relative abundance of M. catarrhalis ranged from below 0.01
to a maximum of 91.46%, and for 9 of 30 PD samples, no M.
catarrhalis sequences were detected. Many of the PD samples
without M. catarrhalis had an elevated abundance of Ralstonia
insidiosa (from below 0.01 to 58.21%; Fig. 2a, c).

Comparison of deep nasal microbiota between spousal
household healthy controls (SpHC) and household PD (SpPD)
subjects

To determine if household spouses could serve as appropriate
controls, the nasal microbiome of PD subjects’ spouses (SpHC;
n=11) living in the same household were compared to
their paired PD subjects (SpPD; n=11). The nasal microbial
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communities of SpHC and SpPD were more similar to each other
than the general PD subjects (n = 30) and rHC subjects (n = 17), as
assessed by between group Bray-Curtis similarity (Fig. 1b). No
significant differences in alpha diversity between SpHC and SpPD
cohorts were observed for analyses conducted at the taxonomic
levels of phylum, genus, and species (Supplementary Table 12).
The SpHC and SpPD nasal microbial community structures were
not significantly different at the taxonomic levels of genus and
species (Supplementary Tables 2-4). The nasal microbial commu-
nities of SpHC and SpPD cohorts were similar in composition, with
similar average relative abundance of species Corynebacterium
accolens, Propionibacterium acnes, and Corynebacterium poropin-
quum (Fig. 3a). However, the relative abundances of species M.
catarrhalis was significantly higher, and that of Staphylococcus
epidermidis and Staphylococcus aureus significantly lower, in SpPD
compared to SpHC subjects (Fig. 3a). In total, 11 significantly
differentially abundant species (Wilcoxon-signed rank paired
test: P<0.05) were detected, including a significantly higher
relative abundance of M. catarrhalis in SpPD subjects (Fig. 2b;
Supplementary Table 13). Boruta feature selection identified
five bacterial species that were driving differential SpPD
microbiomes from SpHC microbiomes. These species included:
Staphylococcus aureus, Staphylococcus chromogenes, Trabulsiella
farmeri, M. catarrhalis, and Staphylococcus epidermidis (Supple-
mentary Fig. 4).
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Fig.2 Differentially abundant deep nasal bacterial taxa between PD and control subjects. a Heatmap showing log10 relative abundance of
deep nasal bacterial species in rHC (n = 17), SpHC (n = 11), and PD (n = 30) subjects. Rows include bacterial taxa that are FDR-P significant with
greater than log2 fold change and identified in the Boruta feature selection algorithm for discernment of PD and rHC microbiomes. The color
intensity indicates the direction of effect of relative abundance within samples. Range of colors from pink to red indicate relative abundance
values (6-10) and a range from green to gray indicate relative abundance values (0-4). Each column represents a single sample, and the
subject group of each sample is indicated by the top row (rHC (blue), SpHC (yellow), and PD (purple)). Each household pair (SpHC and SpPD)
are labeled accordingly with its specific pair number. Relative abundance of b Moraxella catarrhalis and ¢ Ralstonia insidiosa in rtHC (n = 17), PD
(n=30), SpHC (n = 11), and SpPD subjects (n = 11) are shown. Relative abundance values are displayed as Log(x + 1) on a Log10 scale with y-
axis starting at 0.0001, due to bimodal distribution. DESeq?2 (g-values) or Wilcoxon-signed rank paired test (p-values) are indicated.
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Mean Relative Abundance (%)

Fig. 3 Mean relative abundances of the deep nasal microbiota between spousal PD and spousal healthy control subjects, and
comparison of two different 16S rRNA gene amplicon sequencing protocols. a Bar plot of the deep nasal microbial communities of SpHC
and SpPD subjects. The mean relative abundance of species with greater than 1% average relative abundance are shown. b Bar plots of the
deep nasal microbial communities of rHC, PD, SpHC, and SpPD subjects using the single amplicon (V4) sequencing protocol and the multi-
amplicon (Swift) sequencing protocol. Bar plots are shown for the mean deep nasal microbial community of each group at the taxonomic
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Correlation of nasal microbiota with clinical characteristics in
PD subjects

We investigated whether clinical characteristics like age, PD
duration, motor symptom severity (MDS-UPDRS, H&Y), olfactory
function (UPSIT) and levodopa daily dosage (LEDD) could be
significantly correlated with bacterial taxa. Univariate analysis,
using Pearson’s correlation, was conducted on 29 PD subjects with
clinical metadata and microbial features at the taxonomic levels of
phylum and species.

MDS-UPDRS IV scores positively correlated with Proteobacteria
(R=0.39, R2=0.15, P=0.04), while H&Y scores were negatively
correlated with Proteobacteria (R= —0.50, R?> =0.26, P =0.006).
Three species were significantly correlated with PD subject clinical
characteristics (Table 1, Supplementary Fig. 5). H&Y scores were
negatively correlated with M. catarrhalis. MDS-UPDRS subject
scores positively correlated with M. catarrhalis and Staphylococcus
epidermidis. UPSIT scores positively correlated with the commensal
bacterial species Peptinophilus asaccharolyticus. A total of 21 out of
30 PD subjects were taking LEDD. Our results indicated no
significant (P> 0.05) correlations between the PD subjects’ LEDD
and the most abundant phyla or species (>1%). A network analysis
of the most abundant microbial features (>1% relative abundance
across all samples) was used to visualize interactions between
measured PD clinical features (e.g., UPDRS) and the nasal
microbiome (Fig. 4; Supplementary Fig. 6). This analysis identified

G. Pal et al.

np)

correlational clusters between Ralstonia insidiosa, Staphylococcus
aureus, and Staphylococcus epidermidis, and between Corynebac-
terium striatum, Corynebacterium tuberculostearicum, and Peptoni-
philus asaccharolyticus (Fig. 4).

16S rRNA V4 sequencing analysis
To validate our findings obtained using the multi-amplicon
sequencing approach as shown above, we performed a more
conventional 16S rRNA amplicon sequencing analysis targeting
only a single variable region (V4). Using the same analytical
approach, all group comparisons were performed again with the
V4 dataset, at the taxonomic levels of family and genus due to
lower taxonomic resolution of the single amplicon data (Supple-
mentary Fig. 7; Supplementary Tables 14-21). At the taxonomic
level of genus, both methods yielded highly similar observed
microbial communities, with the exception that the V4 amplicon
did not properly amplify bacteria from the genus Propionibacter-
ium (Fig. 3b, Supplementary Tables 22-24). This phenomenon has
been identified previously and is due to mismatches between the
rRNA gene of bacteria from the genus Propionibacterium and the
commonly used 515 F and 806 R primers at or near the 3’ ends of
each primer'3.

Analysis of the single amplicon sequence data also indicated
that PD subjects had higher relative abundance of bacteria from

Table 1. Altered deep nasal microbial community features correlated with clinical variables of PD subjects.

Taxa Taxonomic level R value R-squared value p-value
H&Y Moraxella catarrhalis Species —0.46 0.21 0.01
MDS-UPDRS il Staphylococcus epidermidis Species 0.57 0.33 <0.01
MDS-UPDRS IV Moraxella catarrhalis Species 0.44 0.19 0.02
UPSIT Peptoniphilus asaccharolyticus Species 0.48 0.23 0.04
Clinical characteristics of study PD subjects, including H & Y, MDS-UPDRS llI, IV, and UPSIT, were correlated with the species taxonomic level of PD subjects'
deep nasal microbiome (N = 29) using Pearson’s correlation on rarefied data. R = Pearson’s correlation coefficient, ranging from values +1 to —1. R-squared
value = the square of Pearson’s correlation coefficient. Significant P-values (P < 0.05; R > +0.3: bold).
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Fig. 4 Multivariate analysis of bacterial species and PD clinical features. Visualization of multiple associations present in clinical features of
PD subjects with deep nasal microbiota data using a multivariate network analysis of bacteria (species) in the deep nasal sinus of PD subjects
(n=29) and PD clinical characteristics. Positive correlations (green arrows), negative correlations (red arrows), strong (thick edges) and weak
(thin edges, less saturated) correlations between PD subject clinical features and bacterial species are shown. Correlation arrows displayed are

significant (P < 0.05) and have R-values greater than 0.46.
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the genus Moraxella compared to rHC (q < 0.01; Supplementary
Table 23). Additionally, the relative abundance of Staphylococcus
was lower in SpPD relative to SpHC subjects (Wilcoxon-signed
rank paired test: P < 0.05) (Supplementary Table 24).

DISCUSSION

This proof-of-concept study shows that PD subjects have a
dysbiotic microbial community in the deep nasal sinus cavity
characterized by loss of putative beneficial bacteria and an
increase in putative pro-inflammatory bacteria. Since nasal middle
meatus mucosa are in close proximity to the olfactory bulb, our
findings of a putative pro-inflammatory mucosal-associated
microbiota community in the deep nasal sinus cavity supports
Braak’s hypothesis that the olfactory bulb is one of the sites that
initiates and/or perpetuates neuroinflammation and alpha-
synuclein aggregation in PD°. Our data warrant future investiga-
tion into the exact role of deep nasal sinus cavity microbiota
inflammation in PD pathogenesis.

To date, no study has compared the deep nasal sinus cavity
microbial profiles between PD and control subjects. The deep
nasal microbiota community in PD subjects was distinct when
compared to either spousal or random healthy controls, with
changes characterized by increased relative abundances of
putative pro-inflammatory bacteria belonging to phylum Proteo-
bacteria, including M. catarrhalis. The increased relative abun-
dance of this taxon in PD subjects was confirmed by two distinct
16S rRNA gene amplification protocols. M. catarrhalis is an LPS-
producing bacterium (phylum Proteobacteria), and while mem-
bers of the genus were previously regarded as human commen-
sals'®, they are now emerging as pathogens causing infections in
the eyes, ears, upper respiratory tract, and joints'”. Although the
presence of Moraxella was not always associated with the nasal
microbiome of PD subjects, an increased relative abundance of M.
catarrhalis in  PD subjects (median=0.019%; range of
<0.01-91.46%), as well as other pathogens, suggests a role
promoting nasal inflammation and possibly neuroinflammation in
PD. The microbiomes with the highest relative abundance of
Moraxella (e.g., greater than 10%) were consistently from PD
subjects.

Another feature of the deep nasal sinus cavity microbiota
community in PD subjects was reduced relative abundance of
putative anti-inflammatory bacteria, including Blautia wexlerae,
Lachnospira pectinoschiza, and Propionibacterium humerusii. These
three taxa have been characterized as anti-inflammatory SCFA-
producing bacteria associated with reduced abundance in PD gut
microbiome and other inflammatory disorders such as colorectal
cancer'®. Thus, these organisms and other similar taxa may play an
important role in maintaining a balanced (anti-inflammatory)
microbial composition in the nasal microbiome. This model of loss
of beneficial commensals resulting in overgrowth of pathobionts
is common to many human diseases associated with dysbiotic
microbiomes'”.

The putatively dysbiotic microbial profiles in PD subjects
observed in this study have broad similarities to profiles observed
in studies of gut microbiota in PD, as summarized in detail in
recent reviews'®'?, Collectively, those studies have revealed
increased pro-inflammatory/LPS-producing bacteria and a reduc-
tion in putative beneficial/SCFA-producing bacteria in PD*'8, Thus,
our study supports the hypothesis that gut and deep nasal
dysbiotic microbiota communities are triggers/enablers of neu-
roinflammation, and this could lead to alpha-synuclein aggrega-
tion and dopamine loss in the brain.

In contrast to our findings, two recent studies using superficial
nostril swabs or nasal fluid wash demonstrated no clear
differences within the nasal microbiome of PD subjects vs.
random HC subjects'®'". We posit that collecting nasal swabs
from the deep nasal cavity, under endoscopic guidance, results in
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sampling of a unique and more biologically relevant site. This
specific collection method allows for the nasal mucosal microbial
composition in close proximity to the olfactory bulb to be
examined. This location is more likely to impact PD pathology,
consistent with Braak’s hypotheses and PD subject autopsy data’.
Prior studies have demonstrated that microbial communities are
distinct in different parts of the body including different skin
sites?®, multiple locations along the Gl tract?’, and different
locations within the oral cavity?. Similarly, we hypothesized that
the deep nasal sinus cavity microbiome is unique, and that data
from the oro-nasal cavity may not sure as a viable proxy for the
deep nasal sinus cavity microbiome. Further studies will be
required to better understand the role of deep nasal sinus cavity
microbiome.

Our results demonstrate that specific bacterial species may
correlate with certain PD phenotypes. For instance, we found
that M. catarrhalis positively correlated with MDS-UPDRS IV
scores, but negatively correlated with H&Y scores. The MDS-
UPDRS Part IV measures motor complications of PD, while H&Y
staging is weighted heavily towards postural instability?324,
Thus, the positive correlation of M. catarrhalis with MDS-UPDRS
Parts IV and negative correlation with H&Y staging suggests a
phenotype where subjects exhibit more prominent motor
symptoms, but with potentially preserved postural stability.
Similar microbial and phenotypic relationships were found with
the phyla Proteobacteria. Additional studies are needed to
verify these correlations between species and PD phenotype.
Moreover, M. catarrhalis co-occurred with clusters of opportu-
nistic pathogens species including Ralstonia insidiosa, Staphy-
lococcus aureus, and Staphylococcus epidermidis; these taxa also
positively correlated with PD motor scores. Unsurprisingly,
olfactory function was negatively correlated with disease
duration. Although olfactory function did not correlate with
the relative abundance of any putative pro-inflammatory
bacteria, olfactory function was positively correlated with the
commensal Peptinophilus asaccharolyticus. Within the multi-
variate analysis, Peptinophilus asaccharolyticus clustered with
species Corynebacterium striatum, and Corynebacterium tuber-
culostearicum. The role of these organisms in the host function
of smell is not known. Bacteria from the genus Corynebacterium
are dominant in the sinonasal microbiome of healthy indivi-
duals?>. However, their abundance is negatively affected by
chronic inflammation in the upper airways, and they exhibit an
inverse relationship with Staphylococcus aureus®®. Therefore, the
decrease of Corynebacterium spp. in PD subjects with smell loss
suggests an important role in maintaining nasal mucosal
homeostasis and preventing inflammation. These data support
microbial species as a prediction model for PD using a feature
selection algorithm and demonstrate a correlation of specific
nasal microbiota with worsened PD clinical characteristics.
Further studies are also needed to confirm our observation of
the significant positive correlation between M. catarrhalis and
PD disease severity.

We showed that microbial communities in PD are more similar
to their household spousal healthy controls (SpHC) than age/
gender/race matched random healthy controls. The similarity of
the nasal microbiome in SpPD and SpHC subjects is consistent
with prior studies showing that individuals who share a common
household share similar microbiomes®’-?8, Additionally, several
studies have demonstrated that microbial diversity changes in the
nasal microbiome are dependent upon environmental conditions
such as living quarters and pets?’. Our data provided evidence
that at least some of the alterations in the microbiota community
(including gut microbiota community) reported in PD subjects
might be a consequence of unique environmental factors
associated with the PD lifestyle. Our data supports the use of
household controls in future studies of the microbiota community.
We note that despite the increased similarity of SpPD and SpHC
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microbiomes, bacteria from the genus Moraxella were still
significantly different between groups, and this suggests a
physiological rather than environmental driver.

This study’s limitations include the relatively small sample size
and lack of inclusion of ambient air samples and surface samples
of the households of spousal participants. The difficult sample
collection, performed by RUMC rhinologists experienced in nasal
sample collection after complete nasal endoscopy and using
endoscopy guided small sized nasal swabs from the middle
meatus, restricted recruitment of large numbers of subjects in the
PD, SpHC, and rHC groups. Abnormal microbiomes in the deep
nasal sinus cavity have been reported in patients with anosmia°.
Koskinen et al. posit that the nasal microbiome could shape
olfactory function and thus, dysbiotic microbiota in patients with
abnormal smell could be a contributing factor in olfactory bulb
dysfunction. This is the only published study that has interrogated
microbiota community in the deep nasal sinus cavity—a testa-
ment to the technical difficulty in obtaining samples from this site.
However, we note that the sample size (n=67) employed by
Koskinen et al. is similar to that of our study (n = 58).

In conclusion, our proof-of-concept study provides preliminary
data indicating the presence of a dysbiotic and potentially pro-
inflammatory deep nasal sinus cavity microbiota environment in
PD subjects as compared to rHC and SpHC subjects. Within PD
subjects there was a positive correlation between putative pro-
inflammatory bacteria, including M. catarrhalis, and PD clinical
features. Furthermore, the value of including household controls
for studying microbial community structure in disease states such
as PD is confirmed. Overall, our study supports a strong scientific
rationale for future mechanistic studies to establish a causal link
between nasal microbiota dysbiosis and PD pathogenesis

METHODS
Study design

This cross-sectional case-control study was conducted at Rush University
Medical Center (RUMC) Chicago, IL. We aimed to interrogate the microbial
community of the middle meatus nasal cavity of PD subjects and compare
them to (1) their healthy spousal household control counterparts, and (2)
random, age/gender/race matched healthy controls. All subjects signed
the RUMC Institutional Review Board approved informed consent form,
and the study was registered with National Institute of Health (NIH) Clinical
Trials (ClinicalTrials.gov Identifier: NCT03336697).

Subject’s demographics and clinical characteristics

PD subjects were recruited from the RUMC Movement Disorders Clinic. PD
subjects met the United Kingdom Parkinson’s Disease Society Brain Bank
diagnostic criteria>® and were required to be Hoehn & Yahr (H&Y) stage
1-3 at the time of enrollment. Spousal healthy controls of PD subjects
(SpHC) were also invited to participate. Random non-spousal healthy
control subjects (rHC) were recruited via research advertisements at RUMC.
All healthy control subjects were matched to PD subjects according to age
(£5 years) and sex. All control patients were healthy non-allergic patients
who were evaluated by otolaryngologist and had no evidence of chronic
inflammation that might impact the nasal microbiota.

Subjects were excluded based on the following criteria: (1) Occupation
expected to change intestinal flora pattern (e.g. sanitation worker); (2)
Treatment with medications that may induce parkinsonism including
metoclopramide; (3) Typical or atypical antipsychotic medications; (4)
Treatment within 12 weeks with systemic and nasal antibiotics, probiotics
and prebiotics; (5) Known diagnosis of inflammatory bowel disease;
symptomatic organic gastrointestinal (Gl) disease other than hemorrhoids
and hiatal hernia; (6) Abdominal surgeries for Gl disease such as bowel
resection, diverticular surgery, colostomy (surgery for hemorrhoids and
cholecystectomy or appendectomy for benign disease more than 5 years
prior to enrollment were allowed); (7) Symptomatic functional Gl disease
that could impair intestinal motility such as scleroderma or use of Gl
motility drugs; (8) Acute illness requiring hospitalization; (9) Pre-existing
organ failure or comorbidities as these may change Gl flora, like liver
disease, chronic kidney disease, uncontrolled psychiatric illness; (10)
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Clinically important lung disease or heart failure; (11) HIV disease; (12)
Alcoholism, unreliable drinking history or consumption of alcohol more
than three times a week or binge drinking or drinking more than or equal
to three drinks per occasion; (13) Transplant recipients; (14) History of
diabetes; (15) Clinically significant dehydration or clinically detectable
ascites or peripheral edema or cardiac failure; (16) Presence of short bowel
syndrome or severe malnutrition; (17) Use of immunosuppressive
medications with three months of enrollment; (18) Chronic use of diuretics.

A movement disorders neurologist examined all PD and SpHC subjects.
Parkinsonian symptoms were assessed using the Movement Disorders
Society Revision of the Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS) I-IV?324 and H&Y staging®>. Olfactory function was measured using
University of Pennsylvania Smell Identification Test (UPSIT)>.

Fifty-eight (n = 58) participants were enrolled, including 30 PD subjects
and 28 healthy control subjects. Of the 28 healthy control subjects, 11 were
SpHC of 11 corresponding PD subjects (SpPD), while the remaining were
17 rHC (Table 2). There were no significant differences in age or sex
between any groups. However, significantly higher numbers of men were
recorded in the rHC group then in the SpHC group (71% vs. 45%, p < 0.01).
Additionally, we report mean and standard deviations for the following
clinical features: age of onset of disease, disease duration, MDS-UPDRS I-1V,
H&Y Stages, levodopa daily dosages (LEDD), and UPSIT (Table 2). The
metadata for all individual subjects reported in this study are shown in
Additional File 1.

Sample collection, DNA extraction, and DNA sequencing

We used deep nasal swabbing under nasal anterior endoscopy by a trained
rhinologist in the Department of Otorhinolaryngology at RUMC. Utilizing a
30-degree rigid nasal endoscope, the physician gently passed a cotton
swab into the nasal passage to visualize and swab the olfactory cleft
region. The cotton swab heads were placed in sterile tubes and frozen
immediately at —80°C until DNA extraction. Total genomic DNA was
extracted from the swabs using the FastDNA SPIN Kit from the
manufacturer’s protocol (FastDNA Spin Kit for Soil, MP Biomedicals, Solon,
OH). DNA concentrations were measured with fluorometric quantitation
(Qubit, Life Technologies, Grand Island, NY, USA) (Supplementary Table 25),
PCR amplified and sequenced on an lllumina MiniSeq sequencer at the
Genome Research Core (GRC) at the University of lllinois at Chicago (UIC).
16S rRNA gene amplicon library preparation was performed using two
parallel techniques. To provide superior resolution at the species
taxonomic level, a multi-amplicon workflow was conducted employing
the Swift Amplicon 16S + ITS Panel (Swift Biosciences, Madison, WI). The
primary microbiome analyses were performed on this dataset and results
are based on these data unless otherwise stated. Libraries were also
prepared using a standard single target 16S rRNA gene amplicon pipeline,
targeting the V4 region of the microbial small subunit rRNA gene with
primers 515 F/806R>?, as described previously*3. To reduce batch effects, all
samples were extracted using the same DNA extraction kit at the same
time, and library preparation for all samples was conducted in 96-well
plates simultaneously. Raw sequence data (FASTQ files) were deposited in
the National Center for Biotechnology Information (NCBI) Sequence Read
Archive (SRA), under the BioProject identifier PRINA625973 (Swift multi-
amplicon) and PRINA625976 (V4 amplicon).

16S rRNA V1-V9 sequencing analysis

Annotation of the multi-amplicon data was performed using the 16S
Metagenomics application (v1.0.1) within the Illumina Basespace cloud
computing environment and employing the lllumina-curated version of
the GreenGenes reference database. The primary output from the dataset
was a biological observation matrix (BIOM)** generated at each taxonomic
level from phylum to species. Downstream analyses were performed using
the software package Primer73° and packages within the R programming
environment (R Core Team, 2017).

16S rRNA V4 sequencing analysis

Raw sequences obtained were merged using the PEAR (Paired-End read
merger) algorithm (v0.9.11)3%. Merged sequences were then quality filtered
using cutadapt and denoised using the DADA2 algorithm within the
QIIME2 (v 2020.8.0) workflow®’=#°, The produced amplicon sequence
variants (ASVs) were used in all downstream analyses. Taxonomy was
assigned to ASVs by using the naive Bayes taxonomy classifier against the
SILVA_138 99% out database reference sequences*™*3. No reagent
contaminant ASVs were identified using decontam package based on
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Table 2. Clinical features of Parkinson’s disease subjects and healthy control subjects.

PD rHC p-value SpPD SpHC p-value
Total subjects 30 17 - 1 11 -
Age 60.12 (6.86) 55.18 (11.09) 0.64 58.4 (5.09) 59.4 (5.2) 0.65
Sex (% male) 83% 71% 0.46 64% 45% 0.67
Age of onset 54.69 (8.15) - - 53.2 (7.88) - -
Disease duration 5.53 (4.81) - - 14.1 (19.78) - -
Total MDS-UPDRS 30.1 (14.1) - - 26.67 (9.32) - -
MDS-UPDRS | 55 (3.2) - - 5.58 (3.26) - -
MDS-UPDRS I 5.4 (4.9) - - 5 (2.86) - -
MDS-UPDRS il 17.8 (8.3) - - 14.25 (4.47) - -
MDS-UPDRS IV 1.3 (2.5 - - 1.83 (2.79) - -
H&Y Stages 1.9 (0.3) - - 1.82 (0.40) - -
LEDD 400.8 (369.6) - - 308.18 (245.72) - -
UPSIT 24.7 (6.7) - - 26.2 (8.36) 37 (2.7) 0.02
58 participants; Mean + (S.D.). Statistical analyses were performed using the Students t-test (age), Chi-square test (sex), and Mann-Whitney U (UPSIT).
Significant P-values (P < 0.05: bold).
MDS-UPDRS Movement Disorder Society’s Unified Parkinson’s Disease Rating Scale, H&Y Hoehn and Yahr, LEDD Levodopa Equivalent Daily Dosing, UPSIT The
Smell Identification Test, PD Parkinson’s disease, rHC random non-spousal healthy controls, SpPD household Parkinson’s disease, SpHC household spousal
healthy controls.

prevalence in the PCR negative control samples, using default para-
meters**. Chloroplast, aquatic, soil, and mitochondrial ASVs were removed
from statistical analysis*®.

Statistical analysis

Analyses of alpha- and beta-diversity were used to examine changes in
nasal microbial community structure. Alpha-diversity metrics (i.e., Shannon
index, Simpson’s index, richness and evenness) were calculated from
rarefied datasets (5000 sequences/sample for V1-V9 amplicons;
2300 sequences/sample for V4 amplicons). Three sets of comparisons
were made: (1) PD subjects and non-spousal (random) controls, (2) PD
subjects and their spousal control counterparts, and (3) spousal controls
and non-spousal controls. Group comparisons were performed with
Students t-test, Chi-square test, and Mann-Whitney U test for quantitative
and categorical variables as appropriate using the software GraphPad
Prism (v9.0, GraphPad Software LLC San Diego California).

Pairwise Bray-Curtis dissimilarity was used as the metric for data
visualization and analysis of similarity (ANOSIM) calculations to assess
microbial community structure differences between samples. ANOSIM was
performed at the phylum, genus and species taxonomic levels on square-
root transformed data. In addition, Permutation Multivariate Analysis of
Variance (PERMANOVA) (ideal for equal sample size group comparisons)
and Permutational Analysis of Multivariate Dispersions (PERMDISP) (ideal
for unequal sample size group comparisons) were utilized to assess the
microbial composition between groups at the phylum, genus, and species
taxonomic levels*¢~48, Significance of PERMANOVA and PERMDISP values
were determined using 9999 permutations and corrected for multiple
testing using the Benjamini-Hochberg method (q < 0.05).

Differential abundances of individual taxa between groups were
determined using differential abundance analysis (DESeq2)***° generating
a false-discovery rate (FDR) corrected p-value. DESeq2 has been shown to
most appropriate for differential abundance comparisons in studies with
small sample size groups (<20) or unbalanced design®°. DeSeq2 multi-
amplicon data was filtered to include individual taxa with an absolute log2
fold change (>+1.2) with a significant FDR-P value (q < 0.01). Additionally,
analysis of composition of microbiomes (ANCOM) was performed on the
nasal microbial community between subject groups to identify differen-
tially abundant taxa in analyses of compositional data®'*2, This analysis
generates a W score, which counts of the number of sub-hypotheses that
have passed for a given taxon. ANCOM samples with less than 5000
(V1-V9) or 2300 (V4) sequences were removed. All listed significant
features [genus and species] rejected the null hypothesis. Furthermore, the
Wilcoxon-signed rank test, using R programming, was utilized to
determine the differences in the relative abundance of shared taxa for
paired analyses between spouses.
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A network analysis was generated using the ggraph package within the
R programming language. Pearson'’s correlations were generated between
the relative abundances of specific taxa (phylum and species) with PD
clinical parameters with a significant threshold of p-value: (p < 0.05) and R
value: (>0.3). Random forest models (number of runs = 1000) were used to
predict disease status based on the microbiota profile using the R
implementation of the algorithm (Boruta algorithm, “randomForest”
package)*3.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY

Raw sequence data (FASTQ files) were deposited in the National Center for
Biotechnology Information (NCBI) Sequence Read Archive (SRA), under the BioProject
identifier PRINA625973 (Swift multi-amplicon: 16S V1-V9) and PRINA625976 (16S V4
amplicon). All other relevant data are available from the corresponding author upon
reasonable request.

CODE AVAILABILITY

The code to generate microbial analysis for Swift multi-amplicon (16S rRNA V1-V9)
and 16S rRNA V4 amplicon sequencing has been deposited at the Zenodo repository,
with the following https://zenodo.org/record/5039413#.YNo_XC1h1pR.
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