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Introduction

Type 1 diabetes (T1D), which accounts for 5%-10% of cases 
of diabetes,1 is marked by the lifelong need for intensive 
insulin therapy at diagnosis, which often occurs before adult-
hood. The goal of intensive insulin therapy is to achieve gly-
cated hemoglobin (HbA1c) levels of ≤7.0%, as reflected in 
multiple guidelines, to reduce complications.2-5 Optimal con-
trol is only achieved by a few with T1D worldwide, specifi-
cally 21% in the United States.6-10

Closed-loop insulin systems are the most advanced 
device-based treatment in T1D care,11,12 and with systems 
such as the MiniMed 670G®, Tandem’s Control-IQ®, 
CamDiab®, and DiabeLoop®, they are now part of clinical 
practice.13,14 Hybrid closed-loop therapy (HCL), compared 
to routine therapy, increase time-in-range (TIR), reduce time 
in hypoglycemia, improve HbA1c, and increase patient satis-
faction.15-21 Unfortunately, HCL has not been able to perfect 
T1D care; in the iDCL trial using Control-IQ®, there 
remained almost half of the participants who had HbA1c lev-
els above 7%.20

A possible way to rectify this problem is the use of adju-
vant pharmacotherapy, which has been previously assessed 

as adjunct to standard of care and HCL.17,19,22-28 Metformin 
has some glycemic improvement, but has not been tested 
with HCL.29 Glucagon-like Peptitde-1 (GLP1)-receptor ago-
nists have demonstrated conflicting outcomes in benefits as 
adjunct to T1D care, both with and without HCL.24-27,30-33 
The effect of dipeptitdyl peptidase-4 inhibitors is not as sig-
nificant compared to other adjunctive agents in T1D,34 with 
one inpatient study demonstrating reduced post-prandial gly-
cemia with sitagliptin using HCL.27 While pramlintide has 
been studied as an injectable pharmacotherapy adjunct to 
routine insulin therapy or integrated into HCL,19,24,25 and has 
shown benefits,22,24 its clinical application is limited by the 
lack of an existing co-formulation with insulin and the need 
for separate injections or infusion systems.
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A separate group of medications is the sodium-glucose-
linked cotransporter inhibitors (SGLTi’s). Sodium-glucose-
linked cotransporters (SGLTs) are solute symporters located 
in the small intestine (SGLT1) and kidneys (SGLT2) which 
exchange sodium and glucose.35,36 The inhibition of SGLT2 
in the renal proximal tubule (ie, SGLT2 inhibitors, such as 
empagliflozin, canagliflozin, dapagliflozin) reduces urinary 
glucose reuptake, and in doing so, reduces serum glucose 
levels.35 These medications have revolutionized pharmacol-
ogy for type 2 diabetes (T2D), given additional non-glyce-
mic benefits such as cardiac and renal protection. This 
narrative review seeks to delve into their data in T1D and 
their potential in HCL.

A Review of the Unmet Needs in 
Closed-Loop Therapy

Post-Prandial Hyperglycemia

While closed-loop therapy is excellent at reducing hypogly-
cemia and increasing the safety of intensive insulin therapy, 
it does not eliminate hyperglycemia. On average, those on 
HCL spend 5-8 hours per day in hyperglycemia.15,16,37 This is 
influenced by the carbohydrate load, meal composition, the 
timing of insulin administration, insulin pharmacokinetics, 
and gastric emptying. Figure 1 demonstrates insulin-depen-
dent and insulin-independent means to potentially ameliorate 
hyperglycemia in closed-loop therapy; note SGLTi’s address 
2 of them.

Carbohydrate Counting

A major barrier to glycemic control in T1D is accurate carbo-
hydrate counting, an essential aspect of insulin dosing.38,39 

Prior studies have depicted high rates of counting inaccura-
cies40,41 and mental health impacts due to disease burden.42 
Carbohydrate counting alleviation could be potentially aided 
through adjunctive pharmacotherapy, particularly if done 
through an insulin-independent elimination of glucose.

The Lack of Non-Glycemic Benefits

T1D care includes the reduction of vascular complications 
and optimization of metabolic health. There is an increasing 
prevalence of overweight and obese individuals with T1D, 
with up to 31% higher BMI than the general population.43-45 
This results in worsened clinical outcomes; not only is 
increased BMI in T1D linked with poor glycemic control,46 
but it is further linked with increased cardiac risk factors and 
complications.46-49

Cardiovascular and kidney disease are significant causes 
of mortality for T1D.50,51 Though glycemic control improves 
cardiac and renal outcomes,2,3,52 mortality is still increased in 
those with well-controlled T1D compared to those without 
T1D.53 It is estimated that those with T1D have a life expec-
tancy 11-13 years shorter than those without diabetes of the 
same age.54 The treatment of nephropathy in T1D has not 
seen a breakthrough in over a decade, which includes glyce-
mic and blood pressure control as well as specific pharmaco-
therapy.2,55-57 Unfortunately, there are not as much data in 
cardiovascular protection in T1D as there are for renal pro-
tection, as T1D is often under-represented in cardiovascular 
trials. Glycemic control was shown to improve cardiovascu-
lar outcomes 17 years later after DCCT, but appears to not be 
sufficient to completely normalize cardiovascular risk.2,3,58 
Adjunct pharmacotherapy may be a way to allow for further 
metabolic benefits.

SGLTi’s in T1D: A Review of the 
Randomized Controlled Trials (RCTs) 
and Real-World Use

A natural interest in SGLTi use sparked in T1D given their 
novel action and benefit in T2D. Table 1 depicts RCTs 
assessing SGLTi use in T1D. Canagliflozin was the first drug 
studied in a major RCT, revealing significant benefits in gly-
cemic control and body weight, while reducing insulin needs 
without increasing hypoglycemia.59,60 Unfortunately, the 
rates of diabetic ketoacidosis (DKA) were markedly elevated 
at 4.3% and 6% with 100 and 300 mg respectively versus 
none in the placebo group. Following this trial, the DEPICT 
trials (dapagliflozin), the inTandem trials (using sotagliflozin, 
an SGLT1 and 2 inhibitor), and the EASE trials (empa-
gliflozin) assessed these agents as adjunct to routine care to 
T1D management.59,61-69 Various meta-analyses have 
assessed the collective data on these medications in T1D. 
The summated reductions are in HbA1c by 0.39%, weight by 
3.47%, mean glucose by 1.07 mmol/L, TDD by 10.4%, and 
systolic blood pressure 3.37 mmHg.70-73 CGM data revealed 

Insulin-independent 
glucose-lowering 

mechanisms

Insulin-dependent 
glucose-lowering 

mechanisms

Increased 
glucosuria* 

Glucagon 
suppression 

Decreased intestinal 
absorption*

Increased insulin 
sensitivity

Optimized 
insulin-glucose 

pharmacokinetics

Insulin dose 
adjustment 
and timing

Figure 1.  Methods of glucose normalization in type 1 diabetes 
while on closed-loop therapy.
Items marked with an asterix apply to SGLTi’s mechanism of action.
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improvements in TIR without increased hypoglyce-
mia.59,62,64,66,74 Unfortunately, the relative risks of ketoacido-
sis in those treated with SGLTi compared to placebo were 
3-5.70-73

SGLTi use in T1D has had variable uptake worldwide. In 
2019, Europe approved both sotagliflozin and dapagliflozin 
for T1D.77,78 The National Institute for Health and Care 
Excellence (NICE) approved the use of dapagliflozin as 
adjunct to insulin therapy for those with T1D with inade-
quate control, BMI ≥ 27 kg/m2 and insulin requirements of 
≥0.5 Units/kg.77,79 Japan has also approved dapagliflozin 
and ipragliflozin, a selective SGLT2 inhibitor, for T1D.80,81 
In the United States, empagliflozin and sotagliflozin were 
refused approval by the FDA,82,83 but American off-label use 
in T1D is still present.84

SGLT Inhibitor Use and Closed-Loop 
Therapy: Research thus Far

Though the trials assessing SGLTi’s as adjunct to routine 
T1D have been extensive, there are only small pilot studies 
published thus far assessing their potential use in closed-loop 
therapy (see Table 2). Two studies have used dapagliflozin 
and empagliflozin as adjunct to closed-loop therapy.85,86 In 
the study described in Biester et  al.85 dapagliflozin 10 mg 
BID (2 doses) was used as adjunct to fully closed-loop; par-
ticipants were given 2 mixed meal tests 6 hours apart without 
meal announcement. The TIR with dapagliflozin was 68% 
compared to 50% in the placebo arm (P < .001), and required 
22% less insulin.

In Haidar et al.86 empagliflozin 25 mg daily as adjunct to 
closed-loop therapy was assessed for alleviation of carbohy-
drate counting via 3 arms: full carbohydrate counting, simple 
meal announcement, or no meal announcement. The simple 
meal announcement with empagliflozin resulted in a daytime 
mean glucose of 8.5 mmol/L and daytime TIR of 68%, which 

was non-inferior to full carbohydrate counting alone (TIR 
70% with mean glucose 8.5 mmol/L, non-inferiority 
P = .007). Empagliflozin with full carbohydrate counting 
resulted in the highest daytime TIR (84%) and lowest mean 
glucose (7.4 mmol/L), which was significantly lower com-
pared to full carbohydrate counting alone with no empa-
gliflozin (P = .004).

The Benefits of SGLT Inhibitor Use in 
Closed-Loop Therapy

Glycemic Outcomes and Insulin Dose 
Optimization

The trials demonstrated in Table 1 revealed decrease in mean 
fasting glucose, mean glucose throughout the day, and glyce-
mic variability with SGLTi use.70,72,73,87 While improved 
overnight glucose control is novel in SGLTi use with routine 
insulin therapy, HCL has already shown superior nocturnal 
glycemia.18,20,88 Given daytime hyperglycemia is the main 
obstacle, SGLTi-induced reductions in glucose variability 
may blunt these rises. The pilot study for sotagliflozin was 
one of the few studies looking at postprandial effects of 
SGLTi, where post-breakfast 3-hour CGM data had lower 
glucose levels compared to placebo.89 Though postprandial 
glucose levels were not reported for Haidar et al. (see Table 
2), the daytime time-in-range and standard deviation were 
significantly reduced in the empagliflozin 25 mg group on 
HCL compared to placebo on HCL.86 In Biester et al.85 the 
areas under the curve for both meals were reduced in the 
dapagliflozin group compared to placebo, as was standard 
deviation of glucose.

SGLTi use also reduces the amount of insulin needed to 
accomplish these glycemic changes. Basal and bolus insulin 
doses were decreased in the SGLTi trials.72,73 The compari-
son of basal vs bolus reduction was usually not assessed 

Table 2.  Prior Studies Assessing the Use of SGLT2i’s as Adjunct to Closed-Loop Therapy.

Study
Duration per 
intervention Number of participants Study design Outcomes

Biester 
et al.85

24 hours 30 (15 adolescents +  
15 young adults)

Double-blinded, crossover design, inpatient study: 
Patient admission by 4 pm, DreaMed closed-loop 
therapy by 7 pm, dapagliflozin 10 mg at night then 
morning (vs placebo) with 2 unannounced liquid 
meals, 6 hours apart (ie, fully automated).

Aim: Assess the effect of dapagliflozin on overnight 
and post prandial glucose on fully automated 
closed-loop therapy

TIR was 68 ± 6% using dapagliflozin vs 50 ± 13% 
in placebo (P < .001) Nocturnal glucose 
was 6.2 ± 0.7 mmol/L using dapagliflozin vs 
7.3 ± 1.7 mmol/L in placebo (P = .003) Total daily 
dose decreased by 22% (P = .004) No difference in 
hypoglycemia. Average ketone levels were increased 
in dapagliflozin vs placebo (0.29 vs 0.16 mmol/L, 
P < .001)

Haidar 
et al.86

9-14 hours 
per meal 
intervention 
per 
participant

30 Open-label, crossover design: Empagliflozin 25 mg vs 
placebo with run-in optimization on usual pump 
therapy x 5- 14 days as outpatient, then trial of 
closed-loop (McGill Artificial Pancreas) with 3 
meal modalities: carbohydrate counting, simple 
meal announcement, or no meal announcement 
(full automated). Aim: Assess whether adding 
empagliflozin 25 mg to closed-loop therapy could 
reduce the carbohydrate counting burden in T1D 
without degrading glycemic control

TIR (68 ± 16%) and mean glucose (8.5 ± 1.4 mmol/L) 
of simple meal announcement + empagliflozin 25 mg 
were non-inferior to carbohydrate counting + placebo. 
Empagliflozin 25 mg + carbohydrate counting 
had the highest TIR (85 ± 11%) and lowest mean 
glucose (7.4 ± 1.3 mmol/L) of all interventions. 
Ketone levels were higher in the empagliflozin 
group (0.22 ± 0.18 mmol/L) than placebo 
(0.13 ± 0.11 mmol/L, P < .001) No difference in 
hypoglycemia.
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except for the EASE trials, which found the ratio unchanged.64 
In the small closed-loop studies using SGLT2i’s, the findings 
were different. In Biester et al.85 bolus but not basal insulin 
was significantly reduced in dapagliflozin compared to pla-
cebo. In Haidar et al.86 empagliflozin combined with simple 
meal announcement on closed-loop had reduced bolus 
requirements compared to HCL on placebo, yet with non-
inferior changes to glycemic control or basal dose.86 In that 
same study, empagliflozin with carbohydrate counting 
resulted in no statistically significant change in mean basal 
or bolus dose compared to placebo with carbohydrate count-
ing, but TDD was significantly reduced. Though these are 
small studies, this may suggest insulin utilization is different 
when SGLTi is combined with closed-loop therapy, and uri-
nary excretion of glucose could bypass the difficulties in 
insulin pharmacokinetics in HCL.

Alleviation of Carbohydrate Counting

Though commercial HCL may remove a certain amount of 
nutritional distress,90 simplified meal announcements and 
fully closed-loop are the next frontiers in closed-loop insulin 
delivery systems research.91-95 The main objectives of the 
studies described in Table 2 were to alleviate carbohydrate 
counting with the use of closed-loop therapy. While Biester 
et  al demonstrated time-in-range was higher with SGLT2i 
compared to placebo without meal announcement, Haidar 
et al.86 revealed this is still inferior to carbohydrate counting. 
Adding SGLTi pharmacotherapy to reduce glucose levels 
while simultaneously optimizing automated insulin delivery 
through bolus simplification may relieve some of the burden 
of carbohydrate measurement.

Improved Metabolic Outcomes and Potentially 
Reductions in Complications

HCL has increased the ability to achieve target glycemic con-
trol, which in itself has shown improvements in micro- and 
macrovascular complications,2,3 but glucose control alone 
cannot eliminate the increased mortality and vascular compli-
cations seen in T1D.53,58 The latest advances in T2D pharma-
cotherapy, alternatively, have shown advantages in weight 
management, and renal and cardiovascular protection inde-
pendent of glucose-lowering properties.96-98

Intensive insulin therapy is known to cause difficulties in 
weight loss.99 A comparison of pharmacotherapies in T1D 
demonstrated SGLTi’s as one of the most effective pharma-
cotherapies for weight loss.59,63-66,68,100,101 Though SGLTi’s 
have not yet had an RCT in T1D dedicated to renal outcomes, 
post-hoc analyses from DEPICT revealed reduction in albu-
minuria with dapagliflozin;102 a meta-analysis also revealed 
benefits with sotagliflozin.103 A study using empagliflozin 
25 mg for 8 weeks in those with T1D demonstrated that in 
clamped euglycemia, renal hyperfiltration (an early sign of 
diabetic nephropathy) was attenuated by the use of empa-
gliflozin.104 In the trial DAPA-CKD where dapagliflozin was 

administered to participants with chronic kidney disease, of 
whom 32% did not have diabetes, reductions in progression 
of chronic kidney disease were seen in those taking dapa-
gliflozin, independent of diabetes diagnosis.105 Because ben-
efits were seen without diabetes, their mechanism of action 
may then be also protective in those with T1D.

In the EMPEROR and DAPA-HF trials, cardiac outcomes 
were assessed in those with heart failure, with or without 
T2D, after using empagliflozin and dapagliflozin respec-
tively, which showed cardio-protective benefits regardless of 
diabetes diagnosis.106,107 Unfortunately, EMPEROR 
excluded those with any history of ketoacidosis, while 
DAPA-HF excluded those with T1D altogether. Heart fail-
ure, whether it be due to preserved or reduced ejection frac-
tion, is often underdiagnosed with individuals with T1D.108 
SGLT2i's may at least improve the cardiovascular risk of 
hypertension; many of the studies of SGLTi as adjunct in 
T1D showed blood pressure reductions (Table 1). Though 
SGLTi use may slightly increase both LDL and HDL choles-
terols, this was not linked with increased cardiac risk.96,109

Potential Risks of SGLT Inhibitor Use 
in Closed-Loop Therapy

The main barrier to implementation of SGLTi use in T1D 
care is the fear of DKA. It is a common concern in T1D; in 
the T1D Exchange, 2%-7% of adults with T1D had an epi-
sode of DKA in 2016.110 This is particularly concerning 
because RCT data often underestimates the complications 
eventually seen in real-world data, as what was seen with 
DKA with SGLT2i use in T2D.111-114

The studies assessing SGLTi use in closed-loop therapy 
were too small to assess DKA risk but demonstrate slight but 
significant elevations in ketone levels.85,86 A case report of 
DKA with SGLTi while on HCL has previously been pub-
lished,115 which highlights the risks of ketoacidosis during 
reduced insulin delivery and decreased patient oversight 
when a pump’s algorithm is fully trusted. Though these risks 
differ from non-automated pump therapy, the known risks on 
routine pump therapy, such as catheter malfunctions, are still 
present. Many of the alarms on commercial systems to warn 
of ketone risk are geared towards hyperglycemia, which do 
not acknowledge euglycemic ketoacidosis with SGLTi use.

So why the increased risk? Increased urinary glucose 
excretion reduces insulin requirements, increasing lipolysis 
and fatty acid delivery to the liver, as well as increasing gluca-
gon secretion, thus switching energy use to ketosis.116-118 In a 
study where markers of lipolysis were measured during insu-
lin withdrawal in those with T1D on dapagliflozin vs placebo, 
the increase in lipolysis markers were higher in those taking 
dapagliflozin compared to the expected rise in placebo.119

Further subanalyses pertaining to DKA were performed within 
the large studies assessing SGLTi use in T1D. As the first large 
trial, the canagliflozin study originally lacked strategic DKA pre-
vention strategies.59 All cases were linked to known precipitants of 
DKA such as acute illness or catheter malfunctions without 
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differences in baseline characteristics from the study population.120 
For InTandem-1,2, the exposure-adjusted incidence rates (EAIRs) 
for DKA were 3.1 events per 100 person-years for sotagliflozin 
200 mg and 4.2 per 100 person-years for sotagliflozin 400 mg, in 
comparison to 0.2 for placebo. Larger reductions in TDD were 
associated with increased risk of DKA. Those who developed 
DKA on sotagliflozin were (for sotagliflozin 400 mg): more likely 
to be female (EAIR 6.2), on pump therapy (EAIR 6.0), with 
TDD < 0.7 IU/kg (EAIR 4.9), and body mass index (BMI) < 27 kg/
m2 (EAIR 4.4). Higher BMI may be protective due to lower rates 
of lipolysis compared to lean individuals.121,122 A detailed risk miti-
gation plan initiated later on in InTandem-1 and -2 allowed for 
reductions in DKA incidence rates.123

Risk factors similar to InTandem were seen in the EASE 
trials, where of the 72 cases of DKA, 53 were in women, and 
48 were with pump therapy.64 The increased risk of DKA in 
women is seen independent of SGLT2i use; in the T1D 
exchange, DKA rates were higher in women.110 This could 
be related to an increased rate of lipolysis in women.124

Going Forward: Research and Clinical 
Strategies to Optimize SGLTi Use in 
HCL

There are potential benefits and risks by adding SGLTi phar-
macotherapy to HCL. Given the small studies, more research 
must be done. Though empagliflozin 2.5 mg’s effect on CGM 
did not reach significance in EASE-3,64 its potential may be 
synergistic with HCL and enough to reduce the post-prandial 
excursions seen in HCL. Further studies are underway to 
assess empagliflozin’s utility in HCL (NCT04450563, 
NCT03979352, NCT04201496). Studies of larger sample 
sizes and longer duration will aid in assessing therapeutic 
effects, specifically (1) degree of glycemic improvement, 
particularly in those who do not achieve goals on HCL, (2) 

what aspect of HCL is modified (ie, bolus vs basal changes, 
prandial vs fasting glucose), and (3) the risks associated with 
this regimen. Further observational studies in commercial 
HCL systems will also provide guidance.

Risk mitigation must be accomplished prior to widespread 
use of this regimen. This involves revision of clinical strate-
gies and appropriate patient selection. While prior recom-
mendations have described the targeted population for this 
therapy,125,126 Table 3 expands on these concepts to HCL and 
other potential benefits.

The most important method to reduce risk of DKA is 
ketone monitoring. Very recently a continuous ketone moni-
tor device has been proposed.127 Ideally, the device’s ketone 
data could be integrated into the insulin-dosing algorithm to 
increase insulin requirements in order to reduce ketone levels 
in an additional closed-loop fashion. Until this is feasible, 
clinical and technological strategies are required. The afore-
mentioned risk factors are incorporated into various guide-
lines to mitigate DKA risk in SGLT2i use in T1D.126,128 Both 
the STICH and STOP-DKA are protocols that describe 
approaches to mitigating DKA risk and reducing ketone lev-
els with SGLTi use in T1D.125,129 Unfortunately, these do not 
address HCL. To avoid the risk of DKA, not only from rou-
tine pump malfunction but from possible minimal or sus-
pended insulin delivery, clear recommendations must be 
given. These include recommended carbohydrate intake, 
additional insulin bolus doses, or potentially, turning off the 
algorithm in order to manually increase insulin delivery.

Conclusions

As it emerges into commercial use, HCL is becoming a life-
changing therapy and may eventually dominate insulin pump 
therapy as CGM becomes standard-of-care. As those with 
T1D move onto closed-loop therapy, they may want to bring 

Table 3.  A Consideration of Patient Choice in Strategic SGLTi Use as Adjunct to Closed-Loop Therapy in Those with Type 1 Diabetes.

Suggested indications for use Those to avoid prescribing or do so cautiously

Validated To be investigated Avoid Caution

Overweight/obese patients (in particular 
BMI > 27 kg/m2)

Post-prandial elevations despite closed-
loop insulin therapy

Non-compliant with ketone protocol CSII use with frequent catheter 
malfunctions

Insulin resistance (>0.5 Units/kg) Cardiovascular disease Recurrent DKA and other ketosis events, 
or recent DKA (within 12 months)

Young women

Metabolic syndrome Relief in precise carbohydrate counting Ketogenic or very low calorie diet TDD < 0.5 Units/kg

Hyperglycemia despite optimized insulin 
therapy

Inability to achieve TIR > 70% Severe non-compliance or deficits in 
diabetes self-management

BMI < 25 kg/m2

Desire for blood pressure control along 
with achieving euglycemia

BMI ≤ 18.5 kg/m2  

Albuminuria and diabetic nephropathy 
(emerging data)

Recurrent serious infections or acute 
illness (eg, osteomyelitis, cellulitis, 
urosepsis, foot ulcers)

 

  Total daily dose <0.3 U/kg/day  

  Age < 18 or >75 years old  
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their pre-existing SGLTi prescriptions with them. Those who 
transition to HCL may also find themselves with difficulties 
in reducing post-prandial hyperglycemia, or struggling with 
weight loss or vascular complications. The use of SGLTi 
could optimize HCL, and would efficiently add the benefits 
of weight loss, blood pressure control, and renoprotection 
that HCL alone cannot offer. The use of SGLTi in T1D 
remains a controversial topic, yet there are significant poten-
tials for closing the gaps in routine care.

Abbreviations
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