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Birthweight associations with
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analysis of 1,778 singleton term
births following assisted
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Objective: To determine the association of combined parental preconception overweight and obesity on infant birthweight.

Design: Retrospective study of fresh in vitro fertilization or intracytoplasmic sperm injection cycles (2009-2017).

Setting: Repromed, South Australia, assisted reproductive technology clinic.

Patients: Couples undergoing in vitro fertilization/intracytoplasmic sperm injection insemination with their own gametes and transfer
of a fresh single blastocyst (N = 1,778).

Intervention(s): None.

Main Outcome Measures: Parental body mass index (BMI) was recorded prior to cycle initiation. Infant birthweight was recorded at
delivery. The impact of parental obesity and their interaction on first singleton term (> 37 weeks’ gestation) birthweight was assessed
using linear regressions assessing nonlinearity and a pairwise linear interactions.

Results: In the base model where parental BMI is assumed linear, there was strong evidence for higher birthweight with increasing
maternal BMI (11.2 g per maternal kg/mz; 95% confidence interval, 7.2, 15.1) but not paternal BMI. The inclusion of a pairwise linear
interaction indicated that paternal BMI attenuates the positive association between maternal BMI and infant birthweight (interaction
—0.88; 95% confidence interval, —1.49, —0.27). The inclusion of nonlinear maternal BMI terms did not change the conclusions.
Conclusions: Increases in the mean infant birthweight associated with maternal obesity are attenuated when the father is obese. While
maternal BMI contributed more to the mean infant birthweight than paternal BMI, a couple-centered approach to preconception health
advice is recommended, given the documented relationships between parental obesity and childhood weight beyond infancy. Further
studies in both assisted reproductive technology and general population cohorts assessing the parental BMI interaction on infant
birthweight are warranted. (Fertil Steril Rep® 2021;2:405-12. ©2021 by American Society for Reproductive Medicine.)
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rising trend for increased body mass index (BMI)

across all age groups, with obesity rates tripling over
the past 40 years (1). A global systematic analysis found that
men and women have gained weight across all age groups,
with most rapid gains occurring during prime reproductive
years (ages 20 and 40 years) (2). In 2014, 38.9 million pregnant
women were estimated to be overweight, and 14.6 million were
estimated to be obese (3). In Australia, approximately 50% of
women and 70% of men who contributed to a pregnancy in
2017 were overweight or obese (4).

It is established that maternal prepregnancy BMI has a
significant impact on infant birthweight, and this is irrespec-
tive of whether couples conceived naturally or through assis-
ted reproductive technology (ART). In non-ART populations,
maternal overweight or obesity increases the likelihood of
an infant being born large for gestational age (odds ratio
[OR], 1.45; 95% confidence interval [CI], 1.29, 1.63; and OR,
1.88; 95% CI, 1.67, 2.11, respectively) or with macrosomia
(OR, 1.70; 95% CI, 1.55, 1.87; and OR, 2.92; 95% CI, 2.67,
3.20, respectively) (5). In comparison, the risk of delivering
a small-for-gestational-age baby increases in mothers who
are underweight (OR, 1.67; 95% CI, 1.49, 1.87) but decreases
in those who are overweight (OR, 0.71; 95% CI, 0.66, 0.76)
or obese mothers (OR, 0.88; 95% CI, 0.78, 0.99) (5). In women
requiring ART, both maternal underweight and obesity are
associated with an increased risk of low birthweight (adjusted
risk ratio, 1.39; 95% CI, 1.25, 1.54; and adjusted risk ratio,
1.26; 95% CI, 1.20, 1.33, respectively) (6). The variance in re-
sults between studies is likely due to the differences seen be-
tween natural conception and ART cohorts, with several
meta-analyses and large cohort studies showing that the
mean birthweight in ART singletons is lower than in naturally
conceived singletons (7, 8).

However, the potential impact of paternal BMI is rarely
considered in these studies, despite a small body of evidence
suggesting that paternal preconception overweight and
obesity may also contribute to infant birthweight (9, 10).
Furthermore, evidence for an interaction between the precon-
ception obesity status of parents and infant birthweight is not
possible to discern from existing studies, given that obesity
tends to aggregate in family units so that obese mothers
commonly have obese partners (11). One study including
2,980 parent-offspring trios reported that maternal BMI
was a stronger predictor of ponderal index and birthweight
than paternal BMI (12). A limitation of this study was that
parental preconception body weight was estimated retrospec-
tively by the mother at the time of child data collection at
3-18 years (12).

Therefore, while it is clearly evident that maternal precon-
ception BMI affects infant birthweight, the influence of
paternal preconception BMI remains unclear. Furthermore, it
is unknown whether there is an additional effect on infant
birthweight if both parents are overweight or obese. We hy-
pothesized that the combination of both maternal and paternal
preconception overweight/obesity has a greater impact on in-
fant birthweight than either independent parental effect. This
study aimed to assess the independent and combined effects
of maternal and paternal preconception overweight and
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obesity on the mean infant birthweight utilizing an ART cohort
where preconception parental BMI is routinely collected.

MATERIALS AND METHODS
Human Ethics

The Scientific Advisory Committee of Repromed (Ade-
laide, Australia) approved the retrospective study
(November 14, 2019). The study was exempt from Human
Research Ethics Committee review at the University of
Adelaide. Patients had previously given written consent
to allow their records to be accessed for low-risk retro-
spective investigation.

Study Population and Data Collection

The study involved the retrospective analysis of fresh cycles
from 2009 to 2017 at Repromed (Dulwich, South Australia,
and Darwin, Northern Territory, clinics). Cycles including
in vitro fertilization (IVF) or intracytoplasmic sperm injection
(ICSI) with autologous sperm and eggs and the transfer of a
single blastocyst embryo were assessed (Supplemental
Fig. 1, available online). First singleton term births (>37
weeks’ gestation) with birthweights recorded were included
in the analysis. Preterm births (<37 weeks’ gestation), twin
births, and second pregnancies from the same patient couple
were excluded from the analysis (Supplemental Fig. 1).
Parental, demographic, and treatment factors that are known
to influence birthweight including maternal (13) and paternal
age (14), socioeconomic status (15) (assessed using the Socio-
Economic Indexes for Areas [SEIFA]) (16), insemination
method (17), sex of baby (18), delivery method (19), and
gestational age (20) were collected from case notes. A high
SEIFA score indicates greater social advantage, while a low
score indicates relatively greater disadvantage; the average
SEIFA score is 1,000, and the middle two-thirds of the SEIFA
scores generally fall between approximately 900 and 1,100
(16). Infertility diagnosis was also collected from case notes;
however, it was not included in the final modeling analysis
as it has been previously shown to not be associated with
birthweight in term pregnancies (21, 22).

All data including infant birthweight (g), gestational age
(weeks), sex (male/female), twin deliveries, and delivery
method (vaginal/cesarean) were supplied by the treating
obstetrician as per the ART treatment act that indicates
mandatory reporting to the Australian and New Zealand As-
sisted Reproduction Database.

Assessment of Parental BMI

Body mass index of both parents was recorded before cycle
initiation as part of routine clinical practice at Repromed.
Both maternal and paternal heights were measured with a sta-
diometer (cm), and weight (kg) was measured with electronic
scales. Body mass index was calculated using the formula
weight/height? and categorized based on the World Health
Organisation criteria as underweight (<18.5 kg/mz), normal
weight (18.5-24.9 kg/m?), overweight (25.0-29.9 kg/m?),
and obesity (>30.0 kg/m?). Obesity was subclassified as
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obesity class I (30.0-34.9 kg/m?), obesity class II (35.0-39.9
kg/m?), and obesity class III (>40 kg/m?).

IVF Protocol

Women underwent a gonadotropin-releasing hormone
antagonist protocol of treatment with vaginal progesterone
gel (Crinone)/estradiol valerate luteal support or human-
derived human chorionic gonadotropin luteal support (Pre-
gnyl), as previously described (23). Over the course of the
study (2009-2017), there were no substantive changes to lab-
oratory protocols, including in culture media, consumables,
gas phase, or equipment used including incubator type. Dur-
ing this time frame, the clinic was relatively static in its clin-
ical protocols and policies. Extended culture was standard
protocol (cleavage-stage transfer was rarely utilized), and
stimulation regimes were also relatively static (antagonist
protocol was standard). Eggs were fertilized by either standard
IVF or ICSI in fertilization medium (G-IVF-PLUS, Vitrolife,
Gothenburg, Sweden). Embryos were cultured using the
sequential culture media system supplied by Vitrolife at 6%
CO,, 5% 0,, and 89% N,, wherein cleavage-stage embryos
were grown until day 3 in G1 PLUS and then moved into
G2 PLUS, which supported blastocyst development until em-
bryo transfer on day 4 or 5. The best morphologically graded
blastocyst was transferred using EmbryoGlue transfer me-
dium (Vitrolife). Patients were in the care of their treating
IVF physician until confirmation of a viable pregnancy
following ultrasound at 6-8 weeks’ gestation and then
referred on to primary obstetric care.

Statistical Methods

For continuous demographic, treatment, and outcome factors,
means (standard deviations) and medians (ranges) are re-
ported, and for discrete factors, frequencies (percentages)
are reported. Associations between paternal and maternal
BMI and infant birthweight were assessed using linear regres-
sions, adjusting for baby sex (male or female), gestational age,
delivery method (cesarean or vaginal), transfer method (IVF
or ICSI), year of birth, maternal age, paternal age, and
parental SEIFA score. Nonlinear associations were modeled
using restricted cubic splines (knots at 5%, 35" 65" and
g5th percentiles) for gestational age. This base model (MO)
was extended in the following three stages: model M1,
initially with the inclusion of the pairwise linear interaction
of parental BMIs; model M2, then with the inclusion of
nonlinear terms for maternal BMI; and model M3, finally
with the inclusion of nonlinear terms for paternal BMI, that
is, this final model included nonlinear terms for both parental
BMIs and their pairwise linear interaction. The nonlinear as-
sociations were also modeled using restricted cubic splines
with four knots. Multiple imputation using chained equations
(100 datasets were imputed each with 100 iterations) was em-
ployed to account for the substantial missing parental BMI
data (18% and 33% for maternal and paternal data, respec-
tively). Analyses were performed in R (version 3.6.3) using
the mice and rms packages. A P value of <.05 was considered
statistically significant.

Fertil Steril Rep®

RESULTS
Patient Demographics

A total of 1,778 couples were included in the analysis
(Supplemental Fig. 1). The median age of mothers was 32
(range, 20.0-45.0) years, which was lower than that of fathers
(35 years; range, 20.0-65.0) (Table 1). The median BMI of
mothers (24.4 kg/m?; range, 16.2-55.9) was in the normal
weight category, but BMI spanned from underweight
(<18.5 kg/m?) to obese class III (>40 kg/m?) categories. The
median BMI of fathers (27.4 kg/m?; range, 17.3-54.2) was
in the overweight category and also spanned from under-
weight to obese class IIIl. Moreover, 33% of paternal BMI
data was missing compared with 18% of maternal BMI
data. The mean SEIFA score (mean, 994; standard deviation,
72) was slightly lower than the Australian benchmark of
1,000, reflecting social disadvantage in this cohort. Male fac-
tor infertility was the most common contributing infertility
diagnosis (53%) in the cohort. Intracytoplasmic sperm injec-
tion insemination was used in over 80% of cases with delivery
method (vaginal vs. cesarean) and infant sex (female vs. male)
split approximately 50%. Table 1 presents demographic sum-
mary statistics, with Supplemental Table 1 (available online)
presenting these statistics by parental obesity categories.

Parental Preconception BMI and Infant
Birthweight

In the base model of infant birthweight (model MO) in which
the influence of parental BMI was assumed linear, there was
strong evidence for higher birthweight with increasing
maternal BMI, with a mean increase of 11.2 g per maternal
kg/m? (95% CI, 7.2, 15.1; P<.001; Table 2). In this base model,
there was no evidence of an association between paternal BMI
and birthweight (P = .44, Table 2). The inclusion of a pairwise
linear interaction (model M1), however, indicated that
paternal BMI appears to attenuate the positive association be-
tween maternal BMI and infant birthweight (interaction ; 95%
CI, —1.49, —0.27; P = .005; Table 2). As shown in Figure 1A,
Supplemental Fig. 2A and Table 3, the estimated mean (95%
CI) birthweights only increased from 3.33 kg (3.25, 3.42) to
3.43 kg (3.36, 3.50) in mothers who had BMIs equal to 20
kg/m? as compared with 35 kg/m?, when the father was obese
(BMI = 35 kg/m?). Comparatively, with a paternal BMI of 20
kg/m?, birthweight increased from 3.19 kg (3.11, 3.27) to 3.48
kg (3.38, 3.58) with increasing maternal BMI (20 vs. 35 kg/
m?). The inclusion of nonlinear maternal BMI terms (model
M2) did not qualitatively change these conclusions (paternal
linear interaction P = .02, Fig. 1B, Supplemental Fig. 2B and
Table 2). However, the interaction did become nonsignificant
(P = .15) when both parental BMIs were modeled nonlinearly
(model M3). This addition of nonlinear paternal BMI added
negligible explanatory value (P = .41, Table 2), with no qual-
itative difference in the estimated mean (95% CI) birthweights
for normal-weight versus obese parents. For example, in this
full model, as presented in Figure 1C, Supplemental Fig. 2C
and Table 3, the estimated birthweights increased from 3.18
kg (3.07, 3.29) to 3.43 kg (3.29, 3.57) for an increase in
mothers’ BMI from 20 to 35 kg/mz, when the father had
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TABLE 1

Summary of parental demographics, treatment choices, and birth

ou

tcomes.

Parental characteristics

Age and BMI

Maternal age (years)
Median (range)
Mean (SD)

Paternal age (years)
Median (range)

N = 1,778

33.0 (20.0, 45.0)
32.8 (4.12)

35.0(20.0, 65.0)

TABLE 1

Continued.
Parental characteristics N = 1,778
Infant Sex
Female 896 (50%)
Male 882 (50%)
Infant birthweight (g)
Median (range) 3,330 (1587, 4998)
Mean (SD) 3, 358 (448)
<2,500 g 1 2%)
2,500-3,999 g 1 587 (89%)
>4,000 g 150 (8%)

Note: BMI = body mass index; SEIFA = Socio-Economic Indexes for Areas; SD = standard de-

viation; IVF = In vitro fertilization; ICSI =

intracytoplasmic sperm injection.

McPherson. Parental obesity and infant birthweight. Fertil Steril Rep 2021.

Mean (SD) 36.1(6.3)
Maternal BMI (kg/m?)
Median (range) 24.4(16.2, 55.9)
Mean (SD) 25.9 (6.0)
Missing 315 (18%)
<18.5 kg/m? 40 (2%)
18.5-24.9 kg/mZ 754 (42%)
25-29.9 I<g/m2 371 (21%)
30-34.9 kg/m? 155 (9%)
35-39.9 k(zg/mz 91 (5%)
>40 kg/m 52 (3%)
Paternal BMI (kg/mz)
Median (range) 27.4(17.3,54.2)
Mean (SD) 28 1(4.6)
Missing 585 (33%)
<18.5 kg/m? 3 (<1%)
18.5-24.9 kg/m? 283 (16%)
25-29.9 kg/m? 572 (32%)
30-34.9 kg/m? 238 (13%)
35-39.9 kg/mz 68 (4%)
>40 kg/m 29 (2%)
Couple BMI (kg/m?)

Both <30 kg/m?
Maternal <30 kg/m?,
paternal >30 kg/m?

747 (42%)
207 (12%)

Maternal >30 kg/mz, 116 (7%)
paternal <30 kg/m?
Both >30 kg/m? 117 (7%)

Maternal <30 kg/m?
(paternal missing)
Maternal >30 kg/m? 62 (3%)
(paternal m\ssinzg)

214 (12%)

Paternal <30 kg/m 2 (<1%)
(maternal missing)
Paternal >30 kg/m? 4 (<1%)
(maternal missing)
Both missing 309 (17%)
SEIFA
Median (range) 1,000 (673, 1163)
Mean (SD) 994 (72)
Missing 35 (2%)
Infertility diagnosis
Tubal factor 147 (8%)
Endometrial factor 121 (7%)
Male factor 949 (53%)
Other 590 (33%)
Unexplained 380 (21%)
Birth factors
Insemination method
IVF 278 (16%)
ICSI 1,500 (84 %)
Delivery method
Vaginal 1,041 (59%)
Cesarean 734 (41%)
Missing 3(<1%)

Gestational length (weeks)
Median (range) 39.1(37.0,42.1)
Mean (SD) 39.2 (1.1)

McPherson. Parental obesity and infant birthweight. Fertil Steril Rep 2021.

normal weight (BMI = 20 kg/m?). This is twice the change in
birthweights that was observed for when fathers were obese
(BMI = 35 kg/m?), for which the increase in birthweight
was 3.30 kg (3.20, 3.40) to 3.42 kg (3.34, 3.50) for the same
change in mothers’ BMI. The estimates for the four models,
including the estimates for the adjustments (i.e., parental
age, SEIFA score, baby sex, gestational age, delivery method,
transfer method, and year of delivery), are shown in
Supplemental Table 2 (available online).

DISCUSSION

In a retrospective study of 1,778 singleton term births
following ART, we were unable to detect increasing birth-
weight when both parents were obese, as compared with
just one parent alone. That is, while infants are heavier
when born to overweight or obese mothers, this association
appears to be substantially attenuated in the presence of
paternal obesity. Importantly, the estimated increase in birth-
weight with maternal obesity (with normal paternal BMI) was
double than that observed with paternal obesity (and normal
maternal BMI), demonstrating a much larger contribution of
maternal BMI than that of paternal BMI to infant birthweight.

To our knowledge, this is the first study assessing the pos-
sibility of a combined contribution of maternal and paternal
preconception BMIs on infant birthweight. The strengths of
our study include the use of a database in which preconcep-
tion health, IVF cycle outcomes, and pregnancy rates were
registered prospectively, thereby minimizing selection bias.
Body mass index was calculated preconception from clini-
cally recorded measurements of maternal and paternal
weights and heights; the analysis only included first singleton
term births; and the large population size from a singular ART
unit limited variability in clinical protocols. The limitations of
our study include the retrospective study design, which limits
the ability to control and collect some key parental factors
that can influence infant birthweight, including parental
smoking, ethnicity, or infertility duration (24-27). The use
of a subfertile cohort means that our results may only be
generalizable to couples undergoing ART, although
infertility diagnosis has previously been shown to
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TABLE 2

The association of parental body mass index with infant birthweight, examining the influence of nonlinearity and a pairwise linear interaction.

MO (linear BMI) M1 (linear + int) M2 (non-lin mat-BMI + int) M3 (non-lin BMI + int)

Parental interactions Est (g) [95% CI] Pvalue  Est(g) [95% ClI]  Pvalue Est(g)[95% CI] Pvalue Est(g)[95% CIl Pvalue
Mat BMI (linear) 11.2[7.2,15.1] <.001 12.2[8.2, 16.2] <.001 33.7[12.1,55.3] <.001* 33.9[12.2, 55.6] <.001*
Mat BMI —520[=3l6112] —156 [—320, 9]

(nonlinear 1)
Mat BMI 310[-37, 657] 318 [-31, 667]

(nonlinear 2)
Pat BMI (linear) 2.0[-3.1,7.1] 44  44[-1.0,9.9] A1 4.2([-1.3,9.7] 13 4.0[-18.3, 26.2] .10*
Pat BMI 26 [—75, 126]

(nonlinear 1)
Pat BMI —110 [—424, 204]

(nonlinear 2)
Mat BMI (linear) x —0.88[—-1.49, —0.27] .005 —-0.79[-1.5, —0.1] .02 —0.56[-1.31,0.20] .15

Pat BMI (linear)

Note: BMI = body mass index; Mat = maternal; Pat = paternal; lin = linear; int = interaction. *A single P value is reported for all nonlinear terms. The base model MO0 includes just the two parental
BM s linearly. Model M1 extends MO with the inclusion of the pairwise linear interaction of parental BMIs. Model M2 extends M1 with the inclusion of nonlinear terms for maternal BMI. Model M3 is
the full model with nonlinear terms for both parental BMIs and their pairwise linear interaction. The following adjustment factors were included in the models: gestational age, parental age, Socio-

Economic Indexes for Areas score, year of delivery, and delivery method.
McPherson. Parental obesity and infant birthweight. Fertil Steril Rep 2021.

minimally influence infant birthweight in term pregnancies
(21, 22). There was no prior power calculation performed for
this analysis, although it is known that large samples sizes
are required to reliably detect interactions.

Contrary to our hypothesis, we found no additional effect
of having two overweight or obese parents on infant birth-
weight beyond the effect of maternal obesity. Evidence
from our rodent model of obesity also indicates that the effect
of parental obesity on infant birthweight is unlikely to be ad-
ditive but is instead a combination of both maternal and

paternal phenotypes (28). This is evident in the current dataset
where the effect of maternal obesity on infant birthweight
was substantially attenuated in the presence of paternal
obesity. This is because infants born to obese fathers start
out heavier (approximately 150 g). While we found no addi-
tional effect of combined parental BMI on infant birthweight,
additive effects may become evident as infants grow. For
instance, the Raine cohort in Western Australia demonstrated
that parental obesity was the strongest predictor of offspring
adult BMI (29), while the Midspan Family Study in Scotland
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Estimated mean infant birthweight by maternal body mass index (BMI). The interaction is illustrated by varying maternal BMI with paternal (Pat) BMI
set at 20 (blue) and 35 (red) kg/mz, respectively. (A) Model M1 with both linear paternal BMls, (B) model M2 with nonlinear maternal BMI, and (C)
model M3 with both nonlinear parental BMls. Gray circles are observed birthweights. Solid lines are the estimated means, and dashed lines are the
95% confidence intervals. Presented mean estimates are for covariates: female baby; gestational age, 3 weeks; vaginal birth in 2012; in vitro
fertilization insemination; maternal age, 33 years; paternal age, 35 years; and Socio-Economic Indexes for Areas score, 1000.

McPherson. Parental obesity and infant birthweight. Fertil Steril Rep 2021.
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TABLE 3

Estimates and 95% confidence intervals for the mean infant birthweight for maternal and paternal body mass indexes.

Maternal Paternal M1: birthweight M2: birthweight M3: birthweight
BMI (kg/m?) BMI (kg/m?) (g) [95% ClI] (g) [95% ClI] () [95% ClI]
20 20 3191 [3112, 3270] 3176 [3095, 3256] 3176 [3066, 3286]
35 20 3481 [3382, 3580] 3457 [3354, 3560] 3427 [3287, 3567]
20 35 3335 [3250, 3421] 3309 [3215, 3403] 3296 [3196, 3395]
35 35 3427 [3355, 3500] 3412 [3336, 3487] 3422 [3344, 3499]

Note: BMI = body mass index. Model M1 extends MO with the inclusion of the pairwise linear interaction of parental BMIs. Model M2 extends M1 with the inclusion of nonlinear terms for maternal
BMI. Model M3 is the full model with both nonlinear terms for both parental BMIs and their pairwise linear interaction. The following adjustment factors were included in the models: gestational

age, parental age, Socio-Economic Indexes for Areas score, year of delivery, and delivery method.

McPherson. Parental obesity and infant birthweight. Fertil Steril Rep 2021.

revealed that adult offspring from two obese parents had a
higher risk of cardiovascular diseases compared with
offspring without obese parents (30). In contrast, a study as-
sessing 2,980 parent-offspring trios showed that the effect of
parental preconception BMI on child and adolescent BMI was
minimal (12) and suggested that while parental obesity may
play a role in infant birthweight, family environment likely
plays a much larger role in cardio-metabolic disease risk in
adult life. The clinical relevance of our results are unclear
(i.e., approximately 290-g increase in birthweight is unlikely
to impact clinical outcomes); however, birthweight is reported
to play a significant role in the establishment of adolescent
and early adulthood BMI (29, 31). Therefore, if obesity aggre-
gates within families, then a focus on preconception planning
for “healthy couples” and emphasizing the need to improve
lifestyle for the family unit prior to pregnancy is recommen-
ded. This may help shape and establish later life habits to sup-
port long-term health of future generations.

There is a large body of literature demonstrating the
impact of maternal BMI on infant birthweight (32), and there
is some evidence that paternal BMI also impacts infant birth-
weight (9, 10). Unfortunately, much of the literature on
paternal BMI includes self-reported paternal height and
weight from the mother during pregnancy, at birth, or when
the child was a toddler, rather than preconception, with
adjustments for potential confounders often inadequate
(33, 34). Thus, the impact of paternal BMI remains unclear.
Some (35, 36) but not all (37-39) studies have demonstrated
an association between paternal BMI and infant
birthweight, with similar mixed reports seen on the extreme
ends of infant birthweight (small for gestational age or
large for gestational age) (22, 40, 41). In our study, we
found that paternal BMI only minimally impacted infant
birthweight, with a paternal effect only evident when
paternal BMI was added to the regression models as a
pairwise linear interaction (4.43 g for every 1-unit increase
in paternal BMI). The lack of consensus in the reported effects
of paternal overweight and obesity on infant birthweight
highlights the necessity for further large cohort studies in
both ART and naturally conceived populations, ensuring cor-
rect clinical measurements of preconception paternal BMI.

The mechanism on how parental obesity is altering infant
birthweight is likely due to a combination of genetic and
epigenetic factors (noncoding ribonucleic acid (RNAs) and de-
oxyribonucleic acid (DNA) and histone methylation) deliv-

ered by sperm and eggs at fertilization (42-44) and the
relationship between in utero fetal programming by
nutritional stimuli (45, 46). A number of genes are known
to play a part in the heritability of weight (47, 48); however,
these genetic loci do not fully account for the transmission,
indicating that programming effects go beyond underlining
genetics. Maternal obesity during gestation has been
associated with an altered expression of a number of
circulating microRNAs with levels directly correlating with
changes in placental weight and infant birthweight (49),
while a number of studies in animal models and humans
directly show a link between paternal obesity at conception,
sperm epigenetic changes, and altered fetal phenotypes (36,
50-54). These studies collectively indicate that the parental
programming effect to infant birthweight goes beyond that
of a shared living environment, with preconception factors
able to influence the health of subsequent children.

In conclusion, utilizing close to 1,800 singleton term
births from an Australian ART cohort, our results demonstrate
that increases in mean infant birthweight associated with
maternal obesity are attenuated when the father is obese.
While maternal BMI contributed more to the mean infant
birthweight than paternal BMI, a couple-centered approach
to preconception health advice could be valuable, given the
relationships documented between parental obesity and
childhood weight beyond infancy. Further studies in both
ART and general population cohorts assessing the interaction
of maternal and paternal preconception BMIs on infant birth-
weight to support or refute our findings are warranted.
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