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Abstract 

Background:  COVID-19 patients with long incubation period were reported in clinical practice and tracing of close 
contacts, but their epidemiological or clinical features remained vague.

Methods:  We analyzed 11,425 COVID-19 cases reported between January–August, 2020 in China. The accelerated 
failure time model, Logistic and modified Poisson regression models were used to investigate the determinants of 
prolonged incubation period, as well as their association with clinical severity and transmissibility, respectively.

Result:  Among local cases, 268 (10.2%) had a prolonged incubation period of > 14 days, which was more frequently 
seen among elderly patients, those residing in South China, with disease onset after Level I response measures 
administration, or being exposed in public places. Patients with prolonged incubation period had lower risk of severe 
illness (ORadjusted = 0.386, 95% CI: 0.203–0.677). A reduced transmissibility was observed for the primary patients with 
prolonged incubation period (50.4, 95% CI: 32.3–78.6%) than those with an incubation period of ≤14 days.

Conclusions:  The study provides evidence supporting a prolonged incubation period that exceeded 2 weeks in over 
10% for COVID-19. Longer monitoring periods than 14 days for quarantine or persons potentially exposed to SARS-
CoV-2 should be justified in extreme cases, especially for those elderly.
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Background
The novel coronavirus disease (COVID-19), caused by 
severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), has spread rapidly across the world and caused 
a global pandemic [1]. By 1 November 2021, 246,594,191 
confirmed cases and 4,998,784 deaths were reported in 
223 countries, areas, or territories globally [1]. It is dif-
ficult to predict how long the coronavirus pandemic will 
last, due to the unequal distribution of vaccines and the 
changing effect of the new crown vaccines on the con-
stantly emerging variant strains [2–5].
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Non-pharmaceutical approaches including case isola-
tion, contact tracing, and quarantine and social distanc-
ing are still and will be the main interventions for the 
control of this pandemic [6–8]. An accurate estimation of 
the length of the incubation period is crucial for highly 
efficient non-pharmaceutical interventions.

So far, the estimation of the median incubation period 
and the corresponding 95% confidence interval has been 
inconsistent, largely due to the heterogeneity of popula-
tions and epidemic phases that had been studied [9, 10]. 
Although most cases were reported with a median or 
mean incubation between 2 and 12 days, studies show-
ing prolonged incubation period over 2 weeks, with an 
extreme incubation period of 38 days ever reported [9–
13]. However, almost all previous researches were based 
on limited sample sizes, mostly from case reports or 
single case cluster that were recorded at early epidemic 
phase. No studies have ever focused on case series with 
prolonged incubation period > 14 days, to investigate 
their epidemiological features or to explore the associa-
tion with clinical severity and transmissibility. This had 
raised a concern that beyond the required quarantine 
duration, which kind of patients were likely to transmit 
the disease. These need to be addressed in developing 
prevention and control strategies for containing the dis-
ease spread.

Here we extensively reviewed the available data of 
patients with known dates of exposure and symptom 
onset in the Chinese mainland to explore the features of 
patients with prolonged incubation period. The deter-
minants for longer incubation period and the resultant 
impacts on the clinical severity and transmissibility of 
COVID-19 were evaluated for the first time as well.

Methods
Data sources and data extraction
Data on individual COVID-19 cases and the source 
transmission clusters were obtained from publicly avail-
able data, mainly from the websites of provincial and 
municipal health commissions in China and the Chi-
nese Center for Disease Control and Prevention (China 
CDC), or through internet searches using Chinese key-
words (“coronavirus” OR “pneumonia”) and (province 
and city names). For each identified COVID-19 case 
who had clear epidemiological survey information, basic 
demographic characteristics (age, sex, type of residence, 
living city), starting and ending dates of probable expo-
sure, date of symptom onset (fever, respiratory symp-
toms, myalgia, etc.), date of diagnosis, date of discharge, 
infection route (case contact in public place or in work-
place, traveling to Hubei Province, and/or household 
contact) were extracted as necessary information. The 
related epidemiological cluster were determined and 

likewise had epidemiological data extracted, if available. 
Two researchers independently reviewed the informa-
tion of each case and entered the data into a standardized 
reporting sheet to establish a database. Discrepancies 
were resolved by discussion between the two researchers 
and facilitated by a third senior researcher to reach a con-
sensus [14, 15].

Individual data on occupation, underlying diseases, 
and clinical severity were additionally collected from 
epidemiological investigation reports of COVID-
19 cases provided by China CDC. These data were 
matched to the publicly available dataset by city, age, 
gender, reported date, and other overlapped variables. 
The pooled de-identified data were used for the subse-
quent analysis. Suspected cases and asymptomatic cases 
were excluded from the current study. Cases reported 
in Hubei Province and imported cases from abroad 
were also excluded due to a lack of detailed exposure 
information.

Definitions of key variables

(1)	 Incubation period: for each case i, let TE
i  and 

TS
i  be the exposure (infection) and symptom 

onset dates, respectively. The incubation period 
is then V Inc

i = TS
i − TE

i  . The exact exposure 
date is usually not directly observed but rather 
bounded by an interval, i.e., Li ≤ TE

i ≤ Ui , 
and the incubation interval is thus bounded by 
TS
i −Ui ≤ V Inc

i ≤ TS
i − Li . We considered the 

earliest onset of clinical symptoms as the date of 
symptom onset. The date of exposure usually had 
the following two situations. First, if a patient had 
a history of travel to Hubei Province before symp-
tom onset, the starting and ending dates of expo-
sure (Li and Ui) were set as the dates of arriving at 
and departing from Hubei province, respectively. 
Second, if a patient was exposed to (a) a confirmed 
COVID-19 patient, (b) a person who resided in or 
had traveled to Hubei Province, or (c) a person with 
known contact with a confirmed COVID-19 case, 
the starting and ending dates of exposure (Li and 
Ui) were set as the initial and the last contact dates, 
respectively.

(2)	 Cluster: the case clusters in our crowdsourced data 
were obtained by contact-tracing. All cases that 
were determined to be in close contact with each 
other were defined as a case cluster.

(3)	 Primary and secondary cases: we use the earliest 
symptom onset date in each case cluster as baseline 
and call it day 0. A local case with symptom onset 
on days 0 or 1 or an imported case with symptom 
onset on days 0–3 is considered as a primary case; 
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otherwise, the patient is considered a secondary 
case. All cases that did not belong to any cluster, 
were treated as primary cases.

(4)	 Transmissibility: the number of secondary cases 
infected by the primary case within a cluster was a 
measure of the transmissibility of the primary case. 
If there were multiple primary cases within a clus-
ter, they were treated as having jointly infected the 
secondary cases in the cluster.

(5)	 Type of residence: Urban area or Rural area as the 
permanent residence.

(6)	 Epidemic phase: Cases were assigned to a phase 
“Before Level I response was employed” or “After 
Level I response was employed” based on their 
onset date, with different Level I response date 
across different provinces.

(7)	 Geographical Location: Northern, Southern, and 
Central China are defined according to the lati-
tude of the city where the case is reported. Herein 
Northern China referred to north of 35°N latitude, 
Central China referred to between 30°N and 35°N 
and Southern China referred to south of 30°N.

Estimation of incubation period
For local cases and imported cases for whom both the 
left and right intervals of the incubation period are 
complete, we respectively fitted 4 commonly used dis-
tributions of incubation period (Weibull, Gamma, Logl-
ogistic, and Lognormal) using the package ‘fitdistrplus’ 
of the statistical software R. In addition, the cases were 
stratified according to age, duration from onset to 
discharge, and infection route, and estimated for the 
incubation periods in a disaggregated way. The opti-
mal fitted distribution for incubation period was deter-
mined by AIC (Akaike’s Information Criterion) and was 
used to calculate the median of incubation period and 
95% confidence interval. Based on the optimal distri-
bution, we estimated the conditional probability that 
the incubation period of each case was greater than 
14 days under the condition of their upper and lower 
intervals of the incubation period, P(t > 14| t > tlower, 
t < tupper). Use this probability value to randomly classify 
each case (includes interval-censored data and right-
censored data) into a prolonged incubation period 
group (>14 days) or a normal incubation period group 
(≤14 days). We repeated this process 10,000 times, and 
for those with classification into prolonged incuba-
tion period group more than 5000 times, the case was 
grouped as with prolonged incubation period group, 
otherwise, the case was defined as a normal incubation 
period group.

Statistical analysis
The baseline characteristics, epidemiological informa-
tion, and clinical phenotype were compared between 
local COVID-19 cases with an incubation period of ≤14 
and > 14 days. Pearson’s Chi-square test was used for cat-
egorical variables and Fisher’s exact test was used when 
more than 20% of cells of “R×C contingency table” have 
expected frequencies < 5. Wilcoxon sum-rank test was 
used to compare continuous variables between the two 
groups of patients. The changing patterns of the incuba-
tion period were profiled over four epidemic periods, by 
different case characteristics.

An accelerated failure time model (AFT) assuming 
a Gamma distribution for the incubation period was 
applied to evaluate the impact of patients’ characteristics 
on the length of incubation period. The AFT model was 
implemented using the “survreg” function in the R pack-
age “survival” [16]. In the “survreg” function, the param-
eters (baseline shape and scale parameters and covariate 
coefficients) were estimated via the maximum likelihood 
approach. This model allowed us to analyze the associa-
tions between interval-censored response variables and 
explanatory variables.

A Logistic regression model was used to evaluate the 
association between incubation period and clinical sever-
ity, with sex, age, geographical location, occupation, type 
of residence, underlying diseases included as covariates. 
Attribute value frequency (AVF) and Z-score were used 
to filter out outliers and be evaluated for their influence 
on the model [17–19].

To evaluate the impact of primary case’s character-
istics on the transmissibility of COVID-19, we used the 
epidemiological cluster as research unit to fit the modi-
fied Poisson regression model. The number of secondary 
cases in a cluster was used as the dependent variable, and 
the characteristics of the primary cases, mainly com-
prised of incubation period (normal or prolonged incu-
bation), sex, age, geographical location, type of residence, 
underlying diseases, epidemic phase, and clinical severity, 
were used as explanatory variables. If the cases did not 
report epidemiological association with any other con-
firmed cases, then transmissibility of “0” was assigned. 
To reduce the bias caused by incomplete epidemiologi-
cal surveys information, we determined transmissibility 
of “0” only for cases that were reported from cities with 
high-quality epidemiological surveys (herein referred 
to the cities with over 40% of the total cases defined for 
their association with other confirmed cases).

Since there could be more than one primary case in 
a cluster, we modified the ordinary Poisson regression 
model to represent those multiple primary cases jointly 
infected secondary cases in a cluster and constructed a 
new logarithmic likelihood function as follows:
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Where n represents the number of clusters, m repre-
sents the number of primary cases in a cluster, XT is the 
characteristics of primary cases, yk represent the number 
of secondary cases in a cluster. The maximum likelihood 
estimation was used to estimate the regression coeffi-
cients of this model.

To assess multicollinearity among the model predic-
tors, variance inflation factor (VIF) of each variable was 
calculated and all VIFs in our models were lower than 2, 
indicating a very low multicollinearity of them (Supple-
mentary Table 1). All the analyses were performed using 
R software (version 3.6.3, R Foundation for Statistical 
Computing, Vienna, Austria).

Results
Demographic characteristics of the included patients
Altogether 11,425 confirmed COVID-19 cases were 
included in our dataset, accounting for 81% of total 
cases which were reported from all 30 provinces out-
side Hubei Province in the Chinese mainland during the 
period from 20 January 2020 to 14 August 2020 (Supple-
mentary Fig. 1). Due to the wide disparity of incubation 
period between imported cases from Hubei Province and 
local cases, we made separate evaluations and modeling 
for these two groups of patients. After excluding cases 
with missing, vague, or conflicting exposure history or 
unknown date of symptom onset (5886 cases), there were 
2632 local cases, and 2907 imported cases were included 
in the final analysis. Depending on the availability of crit-
ical variables for separate analysis, 2196 local cases and 
806 imported cases were used for estimation of the incu-
bation period, 1604 local cases and 2341 imported cases 
were applied to estimate the impacting factors of incu-
bation period, 2126 local cases and 2337 imported cases 
were analyzed for the association between incubation 
period and clinical severity, and 525 local primary cases 
(467 clusters, 412 secondary cases) and 1035 imported 
primary cases (984 clusters, 477 secondary cases) were 
analyzed for the association between incubation period 
and transmissibility (Fig. 1).

Estimation of incubation period and the impacting factors
Based on data from 2196 local cases, the Gamma dis-
tribution model yielded the best-fitted estimation for 
incubation period (median 6.4, 95% CI: 6.1–6.6 days) 
(Fig.  2A, Supplementary Figs.  2, 3 and 4). The elderly 
> 60 years seemed to have a longer incubation period 
than those 46–60 years (P = 0.003) (Fig.  2B). Patients 

lnL(β) =

n
∑

k=1

[

yk ln

(

m
∑

t=1

exp
(

Xkt
Tβ

)

)
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m
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)
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with a longer duration from onset to discharge 
(> 3 weeks) had a shorter incubation period than those 
with the duration of ≤3 weeks (5.6 vs. 7.3 days of the 
median incubation period, P < 0.001) (Fig. 2C). Patients 
had a shorter incubation period for those infected by a 
household member than those infected by other peo-
ple (median of 5.5 days vs. 7.1 days in a public place 
and 6.7 days in a working place, P < 0.001) (Fig.  2D). 
In the analysis of imported cases, a longer incubation 
period was observed from imported cases than from 
local cases (6.9 days vs. 6.4 days, P < 0.001), and all the 
above-mentioned inter-group differences were similarly 
observed (Supplementary Figs. 5, 6, 7 and 8).

For the analysis among local cases, 268 cases (10.2%) 
had a prolonged incubation period of > 14 days 
(Table  1). When compared with those with a normal 
incubation period within 14 days, they were more likely 
to be older than 60 years (P = 0.002), residing in South-
ern China (P = 0.002), to be secondary cases (P = 0.009), 
with non-severe disease (P = 0.015), to have a shorter 
duration from symptom onset to discharge (P < 0.001), 
to develop the disease after Level I response measures 
administration (P = 0.001), infected by being exposed 
in public places (P < 0.001). In terms of gender, occu-
pation, type of residence, disease outcome, or underly-
ing disease, no sufficiently credible differences between 
groups were observed. Among the imported cases from 
Hubei, differential associations were inferred. A longer 
incubation was associated with a higher proportion of 
residing in rural areas (P = 0.030) and with occupation 
types of service worker or unemployment (P = 0.046). 
In contrast, no difference between Northern and 
Southern China was observable (P = 0.157) (Supple-
mentary Table 2).

The multivariate accelerated failure time model that 
was applied on local cases further disclosed that the 
elderly > 60 years of age, patients with disease onset after 
Level I response measures administration, and those 
were infected via exposure in public places were associ-
ated with a longer incubation period compared those 
exposures through household contact (P < 0.001), while 
geographic location, type of residence, occupation, and 
underlying diseases seem unlikely to be related to the 
incubation period in local cases (Table  2). By contrast, 
the model applied on imported cases from Hubei, dis-
closed different degrees of association between incuba-
tion period and occupation, geographical location, and 
type of residence (Supplementary Table 3).
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In local cases, the median incubation period varied 
along the epidemic period and increased in a linear pat-
tern from 4 days for patients being sick before 22 January 
2020, to over 10 days after 6 February 2020. This tempo-
ral pattern was consistently displayed when further dis-
seminated by age, sex, type of residence, geographical 
location, case type, clinical severity, duration from onset 
to discharge, underlying disease, and infection route 
(Fig.  3). For imported cases from Hubei, the incubation 
period likewise increased along the epidemic periods 
(Supplementary Fig. 9).

Association between incubation period and disease 
severity
The logistic regression model was applied to evaluate 
the impact from incubation period on severe COVID-19 
(Table 3). It’s disclosed that non-severe illness was signifi-
cantly related to prolonged incubation period > 14 days 
than those with incubation period ≤14 days (adjusted 
OR = 0.386, 95% CI: 0.203–0.677), after adjusting for 

other factors. On the other hand, a higher risk of severe 
illness was related to patients > 60 years old (P < 0.001), 
residing in Northern China, with underlying diseases of 
diabetes. The separate analysis on the imported cases 
demonstrated highly similar results as that of local cases 
(Supplementary Table  4). The sensitivity analysis by 
removing outliers was shown in Supplementary Table 5, 
and the results show that outliers had a very weak influ-
ence on the model.

Association between incubation period 
and transmissibility
Based on data from 467 clusters involving 525 primary 
cases, lower transmissibility was observed among the 
primary patients with prolonged incubation period, with 
a 50.4% (95% CI: 32.3–78.6%, P = 0.002) reduction from 
that among patients with incubation period ≤14 days, 
according to Poisson regression model (Table 4). On the 
other hand, higher transmissibility was found for elderly 
patients aged > 60 years as compared with those aged 

Fig. 1  Flowchart of COVID-19 patients screened for data analyses in this study. *Other case characteristics referred to sex, age, occupation, 
geographical location, type of residence, and underlying disease
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45 years or less, for patients from Northern China than 
those from Central China or Southern China, and for 
patients who were sick before Level I response measures 
administration (all P < 0.001). There were insufficient sta-
tistical evidence of an effect on transmissibility in terms 
of sex, type of residence, disease severity, or underlying 
disease. In contrast, the analysis on the imported cases 
from Hubei revealed higher transmissibility among 
patients of the male gender, with preexisting cardiovas-
cular and cerebrovascular diseases or other diseases 
(Supplementary Table 6).

Discussion
Based on the largest individual-level dataset with detailed 
epidemiological information, we determined over 10% of 
COVID-19 patients had a prolonged incubation period 
of > 14 days. The longer incubation periods seen in our 
patients might occur for a variety of reasons, but with 
older age and less severe disease more frequently seen, 

no matter local cases or imported cases were estimated. 
For the first time as we know, we found an increasing 
proportion of patients with prolonged incubation period 
along with the epidemic, which increased from 4.0 to 
10.8% after Level I response measures were administered 
in local cases. This was accompanied by an increased 
median incubation period from 3.52 (95% CI: 3.11–
3.98) to 6.83 (95% CI: 6.59–7.07). The results indicated 
that the medical observation period of 14 days that was 
adopted by most countries, recommended by WHO [20] 
was insufficient. Isolation and medical quarantine poli-
cies of 2 weeks currently in place may miss the patients 
with longer incubation period, for whom extra effective 
management should be adopted. In China, a “14 + 7 + 7” 
quarantine strategy had been employed for those return-
ing from abroad since late December 2020. This includes 
14-day intensive isolation and medical quarantine at the 
port of entry plus a 7-day medical observation at home 
and another 7-day health surveillance in the community, 

Fig. 2  Estimated incubation period of local COVID-19 cases based on Gamma distribution. A The incubation period distribution of all cases. B The 
incubation period distribution of different age groups. C The incubation period distribution of different time groups from onset to discharge. D The 
incubation period distribution of different infection routes. Vertical lines indicate median of the Gamma distribution
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Table 1  Demographic, clinical, and epidemiologic characteristics compared between local COVID-19 cases with an incubation period 
of ≤14 and > 14 days, in the mainland of China

# For category variables, the Chi-square test is the preferred method, however, the Fisher’s exact test was used when more than 20% of cells of “R × C table” 
contingency table have expected frequencies < 5. For continuous variables, the Wilcoxon sum-rank test was used
a Manual worker contains construction worker, factory worker, cleaner, etc.
b Represents that the variable contains missing values

Characteristics Number of cases (%) P-value#

≤14 days >14 days

Sex 0.895

  Male 1167 (49.37%) 134 (50.00%)

  Female 1197 (50.63%) 134 (50.00%)

Age, year 0.002

  0–45 1125 (47.59%) 119 (44.40%)

  46–60 772 (32.66%) 72 (26.87%)

  > 60 467 (19.75%) 77 (28.73%)

Occupationb 0.840

  Manual workera 154 (8.11%) 21 (8.97%)

  Farmer 380 (20.02%) 47 (20.09%)

  Office worker 350 (18.44%) 48 (20.51%)

  Service worker 322 (16.97%) 34 (14.53%)

  Unemployed 692 (36.46%) 84 (35.90%)

Geographical location 0.002

  Northern 789 (33.38%) 70 (26.12%)

  Central 968 (40.95%) 104 (38.81%)

  Southern 607 (25.68%) 94 (35.07%)

Type of residence 0.107

  Urban area 1534 (64.89%) 160 (59.70%)

  Rural area 830 (35.11%) 108 (40.30%)

Case type 0.009

  Primary cases 1306 (55.25%) 125 (46.64%)

  Secondary cases 1058 (44.75%) 143 (53.36%)

Clinical severityb 0.015

  Non-severe 1819 (89.43%) 229 (94.63%)

  Severe 215 (10.57%) 13 (5.37%)

Outcomeb 1.000

  Discharge 2013 (98.72%) 240 (98.77%)

  Death 26 (1.28%) 3 (1.23%)

Duration from onset to dischargeb, median days 
(IQR)

21.00 (16.00, 27.00) 19.00 (15.00, 23.00) < 0.001

Epidemic phases 0.001

  Before Level I response 240 (10.15%) 10 (3.73%)

  After Level I response 2124 (89.85%) 258 (96.27%)

Underlying diseaseb 0.837

  None 1449 (72.81%) 175 (73.53%)

  Cardia-cerebrovascular disease 276 (13.87%) 38 (15.97%)

  Diabetes 91 (4.57%) 11 (4.62%)

  Other disease 284 (14.27%) 31 (13.03%)

Infection routeb < 0.001

  Contact in public places 585 (32.02%) 96 (55.17%)

  Household contact 1060 (58.02%) 65 (37.36%)

  Contact in workplaces 182 (9.96%) 13 (7.47%)
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or locally stricter medical quarantine measure. Still, 
it is also important to weigh the potential health ben-
efits of reducing transmission and thus case numbers 
against high economic and social costs that differ among 
countries.

Compared to those with an incubation period within 
14 days, COVID-19 patients with a prolonged incubation 
period exceeding 14 days were significantly less severe 
and accompanied by shorter duration from symptom 
onset to discharge. This finding was in agreement with 
the notion that a shorter incubation period of SARS-
CoV could be related to a more severe condition due to 

more aggressive and damaging inflammatory responses 
[21–24]. Consistent with previous researches [25, 26], 
sex did not effect on the length of incubation period. It’s 
otherwise notable that the elderly > 60 years old tended to 
have a longer incubation period than younger age groups. 
Aging can lead to compromised immune response 
including the immune response to respiratory viruses, 
which is often related to a longer incubation period [27, 
28], a similar finding for SARS-CoV-1 in 2003 [29].

A higher proportion of patients with prolonged incu-
bation period was observed in Southern and Central 
China than other parts of the country, which might be 

Table 2  Factors associated with incubation period among 1604 cases using accelerated failure time model

# Factors with P-value greater than 0.1 in univariate analysis were excluded from the multivariate analysis
a Manual worker contains construction worker, factory worker, cleaner, etc.

Factors N Univariate analysis Multivariate analysis#

EXP(β) (95%CI) P-value EXP(β) (95%CI) P-value

Sex
  Female 809 1 –

  Male 795 1.030 (0.961, 1.104) 0.406

Age, year
  > 60 494 1 – 1 –

  0–45 367 0.960 (0.879, 1.049) 0.366 0.945 (0.868, 1.030) 0.200

  46–60 743 0.903 (0.821, 0.993) 0.035 0.898 (0.819, 0.986) 0.024

Occupation
  Manual workera 128 1 –

  Farmer 312 0.920 (0.795, 1.065) 0.266

  Office worker 288 0.973 (0.841, 1.126) 0.711

  Public service worker 249 0.945 (0.812, 1.099) 0.464

  Unemployed 627 0.980 (0.857, 1.120) 0.767

Geographical Location
  Northern 513 1 –

  Central 691 0.961 (0.886, 1.041) 0.329

  Southern 400 1.025 (0.934, 1.125) 0.608

Type of residence
  Urban area 1005 1 –

  Rural area 599 1.023 (0.952, 1.100) 0.529

Underlying disease
  None 1149 1 –

  Cardio-cerebrovascular disease 242 0.997 (0.901, 1.103) 0.951

  Diabetes 76 0.947 (0.802, 1.119) 0.521

  Other diseases 233 0.972 (0.880, 1.072) 0.567

Epidemic phase
  Before Level I response 147 1 – 1 –

  After Level I response 1457 1.811 (1.618, 2.027) < 0.001 1.825 (1.631, 2.042) < 0.001

Infection route
  Contact in public places 529 1 – 1 –

  Household contact 959 0.827 (0.769, 0.890) < 0.001 0.814 (0.758, 0.874) < 0.001

  Contact in workplaces 116 0.950 (0.828, 1.089) 0.461 0.954 (0.836, 1.089) 0.485
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influenced by meteorological factors, e.g., temperature 
[30–32]. The function of the human immune system could 
be weakened in a comparatively colder environment such 
as in Northern China, which may raise the risk of being 
infected and lead to a short incubation period [31]. This 
was also supported by laboratory findings indicating that 

lower environment temperature might decrease the infec-
tion capacity and viral loads of SARS-COV-2 [32].

The lower transmissibility for those patients with 
longer incubation periods was also proposed to be 
related to lower viral loads, that might be decreased 
during intergenerational transmission.

Fig. 3  The incubation period in different populations profiled along epidemic period. The proportion of subgroups of patients corresponded to 
the left axis. The incubation period estimated from subgroups of patients corresponded to the right axis
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The incubation period of COVID-19 also depended 
on how the disease has been acquired. The cases with a 
longer incubation period were more likely to be infected 
through the contact in public and working places com-
pared to those with a household contact. Understand-
ably that public and working places have wider or open 
space, which was related to a lower exposure intensity 
than household contact which more likely occured under 
closed settings.

In this study, we analyzed imported cases and locally 
exposed cases separately, because the self-reported 
delay from exposure to symptom onset was longer 
among cases imported from Hubei Province than 
locally exposed cases. First, the difference could result 
from inherent heterogeneity in exposure and immunity 

between travelers and residents due to the possibility 
that travelers were usually younger than the residents in 
general. In addition, recall bias could also differ, as trave-
lers likely had more frequent close contacts in a variety 
of settings.

The study had limitations. Firstly, the classification 
of a case as a primary or secondary case based only on 
the time of symptom onset might lead to misclassifica-
tion, since the date of symptom onset for some primary 
cases might be late than that of secondary cases. Sec-
ondly, we only included the confirmed cases with appar-
ent illness, while asymptomatic cases were excluded 
due to their undefinable disease onset date, and inac-
cessible viral shedding data. Thus, our study conclusion 
cannot be extrapolated to asymptomatic cases. It is the 

Table 3  Factors affecting the severity of COVID-19 among 2126 local cases using Logistic regression model

# Factors with P-value greater than 0.1 in univariate analysis were excluded in the multivariate analysis
a Manual worker contains construction worker, factory worker, cleaner, etc.

Factors N Univariate analysis Multivariate analysis#

EXP(β) (95%CI) P-value EXP(β) (95%CI) P-value

Incubation
  Normal 1893 1 – 1 –

  Prolonged 233 0.461 (0.247, 0.790) 0.009 0.386 (0.203, 0.677) 0.002

Sex
  Female 1071 1 –

  Male 1055 1.058 (0.804, 1.393) 0.689

Age, year
  0–45 992 1 – 1 –

  46–60 670 1.615 (1.098, 2.380) 0.015 1.380 (0.927, 2.054) 0.112

  > 60 464 5.857 (4.169, 8.324) < 0.001 4.482 (3.074, 6.584) < 0.001

Occupation
  Manual workera 174 1 – No significant and excluded

  Farmer 426 4.852 (2.338, 11.802) < 0.001

  Office worker 398 1.805 (0.816, 4.566) 0.172

  Public service worker 354 2.453 (1.125, 6.149) 0.036

  Unemployed 774 3.060 (1.492, 7.389) 0.005

Geographical Location
  Northern 617 1 – 1 –

  Central 946 0.630 (0.463, 0.859) 0.003 0.644 (0.465, 0.894) 0.008

  Southern 563 0.490 (0.333, 0.712) < 0.001 0.561 (0.374, 0.832) 0.005

Type of residence
  Urban area 1291 1 –

  Rural area 835 1.212 (0.916, 1.598) 0.175

Underlying disease
  None 1542 1 – 1 –

  Cardia-cerebrovascular disease 305 2.562 (1.819, 3.574) < 0.001 1.511 (1.041, 2.175) 0.028

  Diabetes 101 2.457 (1.492, 3.967) < 0.001 2.155 (1.288, 3.538) 0.003

  Other disease 300 2.060 (1.457, 2.877) < 0.001 1.605 (1.114, 2.283) 0.010
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first study that focused on the prolonged incubation of 
COVID-19 disease, disclosing the wide variation of incu-
bation period of SARS-CoV-2 infection, which could be 
explained by the difference in the biological heterogene-
ity of the population and the control measures of certain 
regions or periods.

Conclusions
The study provides evidence supporting a prolonged 
incubation period that exceeded 2 weeks in over 10% 
for COVID-19. Longer monitoring periods than 14 days 
for quarantine or persons potentially exposed to SARS-
CoV-2 should be justified in extreme cases, especially for 
those elderly. This study may contribute to the COVID-
19 control effort by providing an informed estimate of 
the incubation period, a key variable needed for informed 
decision-making throughout the pandemic.
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