Skip to main content
. 2021 Nov 25;4:759110. doi: 10.3389/fdata.2021.759110

TABLE 5.

KEP results of association rule mining (ARM) baseline (A), DSKG R generated using Pandaset (DSKG-P R ) and NuScenes (DSKG-N R ) on three algorithms, each experiment averaged with standard deviation across five runs (B,C), followed by the results of the additional investigations: different KG structures (D,E) and integration of external knowledge (F). Evaluation metrics: MRR = Mean Reciprocal Rank, H@K= Hits@K, Accu. = KEP Accuracy, Micro/Macro F1 = Micro/Macro-averaged-F1-score.

Ranking metrics KEP performance metrics
MRR H@1 H@3 H@10 Accu. (%) Micro F1 Macro F1
(A) ARM 27.19 0.16 0.06
(B) DSKG-P R TransE 0.32 ± 0.03 0.16 ± 0.05 0.35 ± 0.04 0.71 ± 0.03 22.98 ± 4.33 0.26 ± 0.04 0.20 ± 0.02
HolE 0.93 ± 0.00 0.87 ± 0.01 0.98 ± 0.00 1.00 ± 0.00 88.91 ± 0.64 0.90 ± 0.01 0.87 ± 0.00
ConvKB 0.29 ± 0.01 0.11 ± 0.02 0.31 ± 0.02 0.86 ± 0.02 17.83 ± 1.99 0.22 ± 0.02 0.17 ± 0.02
(C) DSKG-N R TransE 0.42 ± 0.03 0.22 ± 0.03 0.51 ± 0.03 0.91 ± 0.01 28.08 ± 2.45 0.32 ± 0.03 0.20 ± 0.01
HolE 0.23 ± 0.01 0.11 ± 0.01 0.22 ± 0.01 0.51 ± 0.03 13.80 ± 0.84 0.16 ± 0.01 0.11 ± 0.01
ConvKB 0.49 ± 0.02 0.31 ± 0.04 0.60 ± 0.02 0.91 ± 0.01 36.35 ± 2.96 0.40 ± 0.03 0.20 ± 0.01
(D) DSKG Bi TransE 0.41 0.19 0.52 0.97 29.03 0.34 0.32
HolE 0.29 0.11 0.28 0.87 16.55 0.19 0.20
ConvKB 0.23 0.07 0.21 0.68 12.30 0.16 0.14
(E) DSKG Prot TransE 0.26 0.10 0.28 0.62 17.77 0.21 0.18
HolE 0.33 0.17 0.32 0.81 23.70 0.27 0.22
ConvKB 0.30 0.10 0.36 0.86 19.21 0.24 0.20
(F) DSKGSE TransE 0.30 0.18 0.32 0.50 24.53 0.27 0.17
HolE 0.81 0.69 0.92 0.98 74.52 0.82 0.81
ConvKB 0.29 0.13 0.32 0.71 21.01 0.26 0.22

“Bold” values in (B, C) indicate the peak performance for each metric in DSKG-R, while “underlined” values in (D,E, and F) indicate the same for each additional investigation.