
Frontiers in Cellular and Infection Microbiolo

Edited by:
Carlos Kiffer,

Federal University of São Paul, Brazil

Reviewed by:
Rafael Franco-Cendejas,

National Institute of Rehabilitation Luis
Guillermo Ibarra Ibarra, Mexico

Tushar Suhas Khare,
Savitribai Phule Pune University, India

*Correspondence:
Zulqarnain Baloch

znbalooch@yahoo.com
Xia Xueshan

oliverxia2000@aliyun.com

Specialty section:
This article was submitted to

Clinical Microbiology,
a section of the journal
Frontiers in Cellular and
Infection Microbiology

Received: 06 September 2021
Accepted: 29 October 2021

Published: 25 November 2021

Citation:
Aslam B, Khurshid M, Arshad MI,

Muzammil S, Rasool M, Yasmeen N,
Shah T, Chaudhry TH, Rasool MH,
Shahid A, Xueshan X and Baloch Z
(2021) Antibiotic Resistance: One

Health One World Outlook.
Front. Cell. Infect. Microbiol. 11:771510.

doi: 10.3389/fcimb.2021.771510

REVIEW
published: 25 November 2021

doi: 10.3389/fcimb.2021.771510
Antibiotic Resistance: One Health
One World Outlook
Bilal Aslam1, Mohsin Khurshid1, Muhammad Imran Arshad2, Saima Muzammil1,
Maria Rasool1, Nafeesa Yasmeen3, Taif Shah4, Tamoor Hamid Chaudhry1,5,
Muhammad Hidayat Rasool1, Aqsa Shahid6, Xia Xueshan4* and Zulqarnain Baloch4*

1 Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan, 2 Institute of Microbiology,
University of Agriculture, Faisalabad, Pakistan, 3 College of Veterinary Medicine, South China Agricultural University,
Guangzhou, China, 4 Faculty of Life Science and Technology, Kunming University Science and Technology, Kunming,
Yunnan, China, 5 Public Health Laboratories Division, National Institute of Health, Islamabad, Pakistan, 6 Faculty of
Rehabilitation and Allied Health Sciences, Riphah International University, Faisalabad, Pakistan

Antibiotic resistance (ABR) is a growing public health concern worldwide, and it is now
regarded as a critical One Health issue. One Health’s interconnected domains contribute
to the emergence, evolution, and spread of antibiotic-resistant microorganisms on a local
and global scale, which is a significant risk factor for global health. The persistence and
spread of resistant microbial species, and the association of determinants at the human-
animal-environment interface can alter microbial genomes, resulting in resistant
superbugs in various niches. ABR is motivated by a well-established link between three
domains: human, animal, and environmental health. As a result, addressing ABR through
the One Health approach makes sense. Several countries have implemented national
action plans based on the One Health approach to combat antibiotic-resistant microbes,
following the Tripartite’s Commitment Food and Agriculture Organization (FAO)-World
Organization for Animal Health (OIE)-World Health Organization (WHO) guidelines. The
ABR has been identified as a global health concern, and efforts are being made to mitigate
this global health threat. To summarize, global interdisciplinary and unified approaches
based on One Health principles are required to limit the ABR dissemination cycle, raise
awareness and education about antibiotic use, and promote policy, advocacy, and
antimicrobial stewardship.
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INTRODUCTION

Antibiotic resistance (ABR) is a global health concern that has been linked to humans, animals, and
environmental factors. ABR necessitates a multidisciplinary, multisector, and coordinated approach
to address health threats at the human-animal-environment interface, which are covered under the
umbrella of the One Health concept (Robinson et al., 2016). One Health recognizes the inextricable
link between humans, animals, and the environment to achieve better community health and well-
being. One Health is an interdisciplinary and holistic concept considering the interdependent
human and animal health in association with the ecosystem, where they live. The leading regulatory
authorities such as the International Monetary Fund (IMF), the World Bank, the World Health
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Organization (WHO), and the G8 declared ABR as a major
global health threat of the 21st century. All these forums affirmed
that ABR needs coordinated and interdisciplinary efforts because
different ecosystems participate in the acquisition, emergence,
and distribution of ABR (Hernando-Amado et al., 2019). The
emergence of ABR and transmission dynamics of multi-drug
resistant pathogens comes under One Health case studies
suggesting an indispensable collaborative role of human,
animal, and environmental professionals in mitigation of
global ABR.

In a global context, the “One Health One World” concept
integrates molecular epidemiological aspects that add to
understanding the evolution or genetic relatedness of ABR in
pathogens/vectors, host (human/animal), and the associated
environment on a global scale. The socioeconomic factors such
as world trade, conflict, displacement, travel, human, and animal
migration are important drivers of the global dissemination of
ABR (McMichael, 2015; Hernando-Amado et al., 2019).Whereas,
locally, it emphasizes geographically close ecosystems, which play
a crucial role in the emergence and distribution of ABR. Recently,
in this scenario, the Chile-Sweden collaboration has taken the
One Health–OneWorld initiative to control ABR at a global level
(Cabrera-Pardo et al., 2019).

Inadequate antibiotic use in animals and humans,
contaminated environments, and ineffective infection control
policies are among the causes of ABR’s local and global spread
(Marti et al., 2014; Burow and Käsbohrer, 2017). Resistance
reservoirs have emerged due to the irrational use of antibiotics in
humans, animals, communities, and associated environments,
resulting in the persistence of drug residues or resistance genes in
the environment. Multiple environmental reservoirs are part of
ABR dissemination, including soil, water, hospital, industrial,
farm waste, and various polluted ecological niches (Marti et al.,
2014; Huijbers et al., 2015) (Figure 1). The drivers of the local
and global distribution of ABR include imprudent use of
antibiotics in animals and humans, contaminated environment,
and inadequate infection control policies (Marti et al., 2014;
Burow and Käsbohrer, 2017). Reservoirs of resistance have
emerged due to the irrational use of antibiotics in humans,
animals, communities, and associated environments, resulting
in the persistence of drug residues or resistance genes in the
environment. Multiple environmental reservoirs are part of ABR
dissemination, including soil, water, hospital, industrial, farm
waste, and various polluted ecological niches (Marti et al., 2014;
Huijbers et al., 2015). The trafficking or spillover of pathogens
with resistance genes is easier within or among humans, animals,
and the associated environment (Woolhouse and Ward, 2013;
Holmes et al., 2016). However, recently, some researchers have
questioned the contribution of animal production to the ABR
crisis as they described limited livestock or aquaculture-
associated infections in humans (Chang et al., 2015).

It is plausible to address ABR by considering a multi-sectoral
and coordinated One Health approach (O’Neill, 2015; Holmes
et al., 2016). One Health endorses that sustained growth of the
human population is affected by climate change and the
reduction in natural resources so that various disciplines may
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
work together for the global health security of humans, animals,
and the ecosystem (So et al., 2015). In the context of ABR, human
health is considered as a priority with interdependent animal and
associated environmental health due to the emergence and
increased prevalence of multidrug-resistant (MDR) superbugs
such as Staphylococcus aureus (S. aureus), Escherichia coli
(E. coli), and Klebsiella pneumoniae (K. pneumoniae). It has
been estimated that ABR poses a significant health burden on the
global population (Prestinaci et al., 2015; O'Neill, 2016), and an
estimated 0.2 million neonatal deaths have been reported due to
MDR pathogen-associated sepsis. Out of these neonatal deaths,
about 0.1 million were reported from five countries, i.e., China,
Congo, Nigeria, Pakistan, and India (Malik et al., 2019).

This review highlights the “One Health One World”
perspective on ABR by presenting its interlinked and multi-
sectoral nature with key health or disease considerations of
humans, animals, and the associated environment. The
challenges and factors linked with implementing the One
Health approach and containment of ABR at a local and global
level are highlighted. The key guidelines and One Health action
plan initiated by the Tripartite’s Commitment Food and
Agriculture Organization (FAO)-World Organization for
Animal Health (OIE)-WHO to control zoonotic diseases and
ABR are also summarized.
DELINEATING THE ONE HEALTH
DOMAINS INVOLVED IN ABR

According to the WHO recommendations, the ABR should be
specifically used to describe resistant bacteria because humans
and animals themselves have not become antibiotic-resistant
(Hernando-Amado et al., 2019). The ABR is a major component
of One Health studies as it is a leading concern for global public
health, food safety, and food security. The major domains of One
Health directly linked with ABR include surveillance and
reporting of ABR, tracking transmission dynamics of MDR
pathogens at the human-animal-environment triad, awareness,
community education, policy decisions, and preparation of the
technical workforce to decrease ABR. In human clinical settings,
“antibiotic-resistant infections or antibiotic-resistant patients’
may be used because this term describes the patient that
harbors the antibiotic-resistant pathogen and who is a
potential risk factor for the distribution of ABR. In an
environmental setting, hospital-acquired infections associated
with resistant pathogens may be described as “antibiotic-
resistant hospitals” to restrain the dissemination of ABR
(Donker et al., 2012). The term “antibiotic-resistant
environments”, like contaminated soil, polluted rivers, sewage,
waste, etc., would allow grading of different environmental
niches with their potential risk of ABR transmission.

To develop a criterion for identifying ABR resistant patients,
hospitals, and environments, the WHO has prioritized the
detection of resistant bacteria harboring antibiotic resistance
genes (ABRGs) by employing various novel molecular tools
like real-time PCR, gene capture tools, and whole-genome
November 2021 | Volume 11 | Article 771510
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sequencing, etc. (Lanza et al., 2018; Tacconelli et al., 2018;
Pärnänen et al., 2019). A detailed analysis of ABRGs and
resistant bacteria involved in disseminating ABR from the
contaminated environment to the non-contaminated
environmental niche is also vital (Martıńez, 2011).

The molecular epidemiology and genetic relatedness of ABR
at the human-animal-environment interface are critical One
Health components for reducing the global burden of ABR
microorganisms. Integrated-type of surveillance programs with
regular evaluation are required for ABR to confirm their
appropriateness and applicability in the relevant domain. In
this regard, several tools describing different aspects of
surveillance are available, e.g., Progressive Management
Pathway (AMR-PMP; FAO), Network for Evaluation of One
Health (NEOH; EU COST), and SURVTOOLS (FP7-EU)
(Nielsen et al., 2020).
POLITICAL RECOGNITION OF ABR AS A
ONE HEALTH CONCERN

In 2014, the first notable transcript which highlighted that a One
Health strategy is required to tackle the ABR was published by
WHO in collaboration with FAO and OIE in a report describing
the surveillance of microbial resistance (Badau, 2021). Afterward,
this formal tripartite alliance improved worldwide coordination
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
and encouraged multidisciplinary collaboration between public
and animal health in combination with food safety. The FAO-
OIE-WHO has declared the ABR as one of the prioritized
concerns for mutual action. Later in 2016, Jim O’Neill report
was placed on the agenda of the G7 and G20 international
summits, where they confirmed that the problem of ABR should
be solved through the One Health approach. In the same year,
the United Nations dedicated their 71st General Assembly 2016
meeting to the issue of ABR. The members of the house-made a
resolution the denounces that inappropriate use of antibiotics in
human health, animal health, agriculture & livestock, food, and
aquaculture as the main cause of ABR. Additionally, that
resolution designated the ABR as an urgent risk that would
need to be controlled with extreme responsiveness across the
globe (O'Neill, 2016; Badau, 2021).
ANTIBIOTICS AND THEIR RELATIONSHIP
WITH VARIOUS PILLARS OF ONE HEALTH

The usage of antibiotics, persistence of antibiotic residues, and
presence of resistant bacteria in the human-animal-environment
niches are associated with the One Health triad due to the
interdependence of these pillars in the food chain and
environment. Some antibiotic groups are reserved mainly for
FIGURE 1 | Potential One Health drivers associated with ABR.
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humans’ use, such as the drugs used for therapeutic management of
tuberculosis (e.g., isoniazid). Whereas some drugs, such as
ionophores and flavophospholipol are specifically recommended
in veterinary settings. Similarly, many antibiotic classes are regularly
prescribed at human and animal clinics (McEwen and Fedorka-
Cray, 2002; Van Boeckel et al., 2015). Furthermore, some
antibiotics, such as streptomycin, tetracyclines, etc., are used in
horticulture as prophylactic measures or to treat bacterial infections,
such as fire blight of pears and apples (Vidaver, 2002).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
In humans, antibiotics are mainly used to treat clinical
infections and for prophylactic purposes, such as post-surgery
cases. However, the application of antibiotics in veterinary
settings is different between pets and food-producing animals.
In pets, the prescription of antibiotics is generally comparable to
those in humans (McEwen and Collignon, 2018). While it is used
for treating clinical infections (Landers et al., 2012) or used as
feed additives and growth promotors in food-producing animals
(Table 1). Antibiotics in poultry are often administered to the
TABLE 1 | The global impact of antibiotic treatment on food-producing animals.

Class Trade
name

Generic name Livestock
animals

Administration
route

Purpose Side effects Ref

Penicillin Pfizerpen Benzylpenicillin
(penicillin G)

Cattle, pigs,
sheep, turkeys,
horses. Dogs,
cats, calves

SC,
IM,

Increased food intake, weight gain,
and improved herd
Health. Pneumonia in cattle, sheep
arthritis, sepsis in pigs, horses,
sheep, cats, dogs

Vomiting and
shivering, pain at
the injection site

(Liu et al.,
2015)

Sulfonamide Sulquin
Di-Methox
Injection-
40%,
Sulfasol

Sulfaquinoxaline
Sulfadimethoxine

Rabbits, dogs,
poultry
dogs, turkeys,
cats

Oral,
IV

Control liver coccidiosis, feed
additive, growth promotion

Crystallization of
sulfonamides can
occur in the
kidneys
with high doses

(Liu et al.,
2015)

Polypeptides Baciferm,
Vetropolycin

Bacitracin, Zinc,
Bacitracin

Food-producing
animals. Beef
cattle, dairy cattle,
poultry, and
swine, turkey

Topical, IM Increase the feed conversion ratio.
Improved growth, meat production
weight gain. Feed additive

Itching, burning, or
inflammation

(Page and
Gautier, 2012)

Aminoglycosides Amifuse E
Amiglyde-V,
GentaVed
50,
GentaVed
100
NeoMed
325

Amikacin
Gentamicin
Neomycin

Cattle and sheep,
chickens, goats,
lambs, piglets,
horses, turkeys

IV, IM, Oral Growth promotion, weight gain to
cure mastitis

Dehydration, renal
dysfunction,
cardiac
dysfunction,
endotoxemia, renal
necrosis

(Ziv et al.,
1982;
McGlinchey
et al., 2008)

Amphenicols Florum Florfenicol Poultry, birds Oral Shows activity against many
chloramphenicol-resistant bacteria,
growth promoter

Induces early
embryonic death

(Al-Shahrani
and Naidoo,
2015)

Tetracycline Aureomycin,
Terramycin

Chlortetracycline,
Oxytetracycline,
Doxycycline

Calves, lambs,
poultry, and swine

IV, IM Growth promoting Nausea, anorexia,
vomiting, and
diarrhea

(Angelakis,
2017;
Granados-
Chinchilla and
Rodrıǵuez,
2017)

Cephalosporins Naxcel
Cobactan

Cephalosporins
(ceftiofur),
(Cefquinome)

Chicks, turkey,
cattle, goats, pigs,
sheeps

IM, SC Growth promoter, selectively inhibit
Firmicutes allow Bacteroides

Anorexia (Chatfield
et al., 1984;
Hornish and
Kotarski,
2002)

Polymyxins Colistin
sulfate,
florfenicol

Amoxicare-Vet,
Dafull

Food-producing
animals. Beef
cattle, dairy cattle,
poultry, and swine

IV, IM Increase the feed conversion ratio.
Improved reproduction ability,
promote growth

Risks of toxicity
and neurological
disorders

(Zhou et al.,
2011)

Macrolides Tylan 40,
Tylan 100
Biaxin
Erythro-200

Tylosin,
clarithromycin,
erythromycin

Poultry, broilers,
cattle, pigs, lambs

Oral, IV Antimicrobial feed additive. Improved
performance, microbiome
modification, lipid metabolism, and
energy reaping

Can be fatal to
pregnant animals

(Dibner and
Richards,
2005; Lin
et al., 2013;
Plumb, 2018)

Streptogramins Stafac. Virginiamycin cattle, pigs
swine, turkey, and
broiler chickens

Oral Growth promotion, meat production
weight gain. Feed additive

Increase resistance (Dumonceaux
et al., 2006;
Page and
Gautier, 2012)

(Continued)
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whole group through water or feed without any clinical
indications for preventive purposes. These practices are
common among flocks of broilers, layers, and pens of pigs
(McEwen and Fedorka-Cray, 2002; McEwen and Collignon,
2018). The regular prophylactic application of antibiotics
in humans is not very common and is generally used
only to manage serious communicable infections such as
meningococcal infections. However, in those cases, antibiotics
are administered to individuals with close and prolonged contact
with the infected person. For example, in the case of
meningococcal infection in school children, prophylactic use
will be limited to those students who belong to the same
household and will not be administered to all students in a
classroom or school (Theilen et al., 2008).

Some experts justify prophylactic use of antibiotics in cases of
infectious outbreaks detected on some farm or flocks of animals.
The antibiotic administration is recommended when the risk of
prophylactic bacterial infection is high due to mixing of new
animals, crowded or unsanitary conditions, the stress of
transport, and age-related factors (National Research Council
Committee on Drug Use in Food a, 1999). In animals, the use of
antibiotics as growth promoters is considered an important
factor contributing to resistance due to administration at a
sub-therapeutic level and for a prolonged time. These
conditions favor the development and spread of drug-resistant
microbes in animals and between groups of animals. These drug-
resistant microbes may enter humans either through the
environment or through the animal food chain (McEwen and
Collignon, 2018).

The antibiotics dose regime in food animals generally lasts for
more than two weeks. However, it often lasts for the whole
production period, as seen in the chickens, i.e., 36 days. However,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
the imprudent use of antibiotics in food animals has been
restricted because it may increase ABR risk in society
(Prestinaci et al., 2015; Hoelzer et al., 2017; Aslam et al., 2018).
Different studies have suggested that antibiotics may create 1 to
10% economic benefits when used as growth promoters in
poultry production. These benefits are usually derived from the
prophylaxis perspective of drugs instead of improving feed
efficiency or production benefits. Therefore, a few large poultry
production companies are now promoting their chicken or
chicken products without antibiotic use at any stage. i.e., from
the hatchery to the farms (Hao et al., 2014; Collignon and
McEwen, 2019; Hedman et al., 2020). There are increasing
concerns about the use of antibiotics as growth promoters to
compensate for poor hygienic practices, improper housing, and
the absence of proper animal health management (Singer et al.,
2016; Kirchhelle, 2018). The FAO-OIE-WHO has recommended
that antibiotics must not be used for growth promotion to tackle
the growing burden of resistance. Keeping the importance of
ABR issues in mind, the guidelines have been designed and
implemented in Europe, Canada, and the United States
(McEwen and Collignon, 2018). The OIE and WHO have
categorized drugs into three classes, i.e., critically important,
highly important, and important to animals and humans, as
shown in Figure 2.
GLOBAL DISTRIBUTION OF ABR VIA
ONE HEALTH

Although it is believed that ARGs existed in nature before the
discovery of antibiotics, the emergence and spread of ABR in
pathogenic strains occurred in response to the development and
TABLE 1 | Continued

Class Trade
name

Generic name Livestock
animals

Administration
route

Purpose Side effects Ref

Glycopeptides Coxistac G,
Sacox

Salinomycin Poultry, broilers,
turkeys, birds

Oral, IV Growth promotion, control infection
with coccidia microbiome
modification, immune regulation.
increased food intake, weight gain,
and improved herd health

Leg weakness,
diarrhea, and
depression

(Zhou et al.,
2011; Fung
et al., 2013)

Lincosamides Lincomix Lincomycin Swine Oral Modification of the small intestinal
microbiota of swine permits more
efficient intestinal and, therefore
whole-animal growth

Transient diarrhea
or loose stools

(Nielsen and
Gyrd-Hansen,
1998)

Fluoroquinolones Orbax
Baytril

Orbifloxacin
Enrofloxacin

Dogs and cat
poultry

Oral Health improvement, growth-
promoting, used for better skin, soft
tissues in pet animals.
Improves feed efficiency, thereby
increasing productivity

Diarrhea, and lack
of appetite,
cartilage,
sometimes
blindness in cats.
Reducing the
performance of
incubated eggs
and hatching
chicks

(Gouvêa et al.,
2015; Papich,
2015)

Monensin Rumensin Monovet 90 Cattle and goat Oral Increase feed efficiency and weight
gain, increase milk production, and
decrease milk fat

Adaptation of
microbiota may
occur; varies with
diet and animal

(Dubuc et al.,
2010)
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use of these agents. It is considered that the current menace of
ABR developed gradually among pathogenic bacteria through
evolution in response to various factors (Martıńez, 2011;
Hernando-Amado et al., 2019). The important One Health
factors of global ABR distribution include intensive food
production, globalization of food distribution, international
travel (e.g., the spread of drug resistance genes), changing
climate, increased population density or growth, and
urbanization. The global burden of ABR is plausibly associated
with excessive use of antibiotics in animals (food, pets, aquatic)
and humans, antibiotics sold over the counter, increased
international travel and trading, migratory birds, refugees,
climate change, poor sanitation/hygiene, and the release
of non-metabolized antibiotics or their residues into
the environment (Iskandar et al., 2020) (Figure 3). These
factors result in genetic selection pressure on bacteria (vertical
and horizontal transmission of drug resistance genes
between similar or different bacteria), ARG distribution in the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
environment, and the spread of MDR pathogens in the
community (Cycoń et al., 2019).

Regardless of many national and international regulations for
antibiotics use, a study has highlighted that global antibiotic
consumption has significantly increased (between 2000 and
2015), and its consumption will double in 2030 (Klein et al.,
2018). This increased consumption trend will be high in the low-
and middle-income economies because of development projects
and improvements in public access to health services. It is
believed that the actual quantity of antibiotics being sold in
low- and middle-income countries (LMICs) is underestimated
because the antibiotics are usually sold in these countries without
any medical prescription or sold over the counter, which favors
the emergence of antibiotic-resistant bacteria (Yong Kim
et al., 2005; Auta et al., 2019). It is also observed that the
increased availability of antibiotics together with improved
sanitation and vaccination programs have greatly contributed
to minimizing endemic diseases and mortality in African
FIGURE 2 | Priority wise classification of antibiotic classes for human and animal health recommend by the World Health Organization and World Organization for
Animal Health.
November 2021 | Volume 11 | Article 771510
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countries (Keenan et al., 2018). It is crucial to reduce the global
use of antibiotics to manage the growing burden of ABR, and
antibiotics usage may be recommended according to geography
or the burden of infectious diseases.

The extensive use of antibiotics is also reported in the animal
health and agriculture sectors. According to estimates, two-
thirds of total antibiotic consumption is used in animal
production, but as growth promoters, their use in animal has
been restricted in several countries (Aarestrup et al., 2001).
According to estimates, the global use of antibiotics was
131,000 tons in animal production during 2013, which is
projected to increase to 200,000 tons in 2030 (Van Boeckel
et al., 2017). The increase in average individual meat
consumption due to increased per capita income in the LMICs
is the main reason for the increased demand for antibiotic use in
animal production (Van Boeckel et al., 2015). The competition
among countries regarding the production and export of meat
and meat products has also favored the increased use of
antibiotics in livestock production (Gray and Merchant, 2018).
Although antibiotic consumption has increased during the past
decade in the United States, the major proportion (around 80%)
of antibiotics were purchased for use in fish farming and
livestock production during 2011 (Van Boeckel et al., 2015;
Done et al., 2015). Generally, previous waste treatment
procedures used in the livestock sector are inadequate to
eliminate resistant superbugs and ARGs, which may be
disseminated through water and soil. Different contact routes
of ARGs from the contaminated environment to humans include
ingestion or inhalation of resistant superbugs, which may be
attributed to the rise in multi-drug-resistant human infections.
The etiology/reason for ARG dissemination and acquisition from
animal waste to human gut microbiota has yet to be proved
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
(Manaia, 2017). Detailed investigations are needed to explain the
maintenance, persistence, and survival mechanisms of superbugs
and ARGs at farm/waste levels and their transfer to humans. It
will help to understand the spread of ARGs in new hosts and
environments and the emergence of ABR at the environmental-
human nexus (He et al., 2020).

Themost abundant pollutants in developed and underdeveloped
countries are heavy metals, which are also being used as feed
additives in food animal production (Dowling et al., 2016). Heavy
metals and many biocides can co-select for ABR, stimulate
horizontal gene transfer, and can alter the antibiotics dynamics in
a particular natural ecosystem. Environmental selection of ARGs is
caused by antibiotic or metal residues which are frequently used in
livestock, resulting in selection pressure; mobile genetic elements
(MGEs) mediate horizontal transfer of ARGs. Therefore, it is
important to explore the role of various metals and biocides in
the selection and spread of antibiotic resistance via the environment
(Fang et al., 2016; Jutkina et al., 2018; Hernando-Amado et al.,
2019). Stringent measures are required to decrease the risk of metal-
induced co-selection of ARGs, ABR, and maintenance of microbial
communities in metal-rich environments of public health concern.

The increased economic activity in the LMICs is associated with
the increased consumption of antibiotics. Consequently, the risk of
developing ABR microbes has increased. The ABR pathogens
excrete through human and animal stools can accumulate in the
natural ecosystems and spread throughout the environment (Walsh
et al., 2011; Karkman et al., 2019; Agramont et al., 2020). It is
suggested that public health interventions should be implemented to
improve water and food quality in the emerging economies and
better sewage disposal.

Wastewater treatment plants, drinking water, and coastal
water are reservoirs for disseminating ABR genes or microbes,
FIGURE 3 | Illustration showing the ABR in a One Health One World perspective.
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and it is difficult to control their dissemination or risk
management (Ma et al., 2017; Leonard et al., 2018). Different
studies have shown that the pattern of ABR genes present in
wastewater treatment plants is similar to clinical settings
(Pärnänen et al., 2019). The genetic relatedness and
metagenomics tools are used to predict and continuous
surveillance of ABR microbes (Hendriksen et al., 2019). The
guidelines for a threshold level of antibiotic-resistant bacteria
and genes need to be defined to ensure a better quality of
drinking water, the release of sewage water, and safer recycling
of water for domestic and agricultural use (Moura et al., 2010;
Yang et al., 2017).

The drug residues can cause water pollution upon their
release into the sewage water; therefore, rapidly degradable
antibiotics should be developed, along with better waste-water
treatment techniques to decrease antibiotic residues in water
systems, natural ecosystems, and environmental selection
pressure (Chin et al., 2018; Rodrıǵuez-Chueca et al., 2019). The
on-site waste-water treatment plants are important since they
can decrease the level of antibiotics, antibiotic-resistant bacteria,
and genes in the downstream water systems (Paulus et al., 2019).

Natural or artificial alterations in the ecosystem can play an
important role in spreading antibiotic resistance due to the
interaction of humans, animals, vectors (flies, fleas, or birds),
and the environment (Fuller et al., 2012; Beugnet and Chalvet-
Monfray, 2013). Weather patterns and variations in the oceans
can alter the distribution of bacterial pathogens, including
antibiotic-resistant bacteria in various continents (Martinez-
Urtaza et al., 2016). Pathogenic bacterial species and antibiotic
resistance genes were observed during flooding and natural
disasters (Yu et al., 2018). However, these phenomena need
attention to explore their role in the dissemination of ABR and
MDR pathogens.
ANTIBIOTIC RESISTANCE MECHANISMS
IN BACTERIA

Generally, there are two resistance mechanisms which a
bacterium may use to resist the antibiotics (A) intrinsic
mechanism of resistance (2) acquired mechanism of resistance.
Resistance mechanism in which bacteria resist the action of the
antibiotics through functional characteristics or in-built
structural component is termed as intrinsic resistance. For
example, Pseudomonas has the ability to resist a broad
spectrum antibiotic named Triclosan, it displays this resistance
due to the presence of an insensitive target (fabI) site for triclosan
(Chuanchuen et al., 2003; Blair et al., 2015). Another example is
related to daptomycin (Lipopeptide) that is unsuccessful against
enterobactrales, because anionic phospholipids are present in
lower proportion in the cytoplasmic membrane of Gram-
negative bacteria. So, Ca2+-mediated insertion of daptomycin
into the membrane is reduced (Miller et al., 2016). Moreover,
some antibiotics are usually unable to go across the bacterial
membrane, which is considered as intrinsic mechanism of
resistance as well. For instance, vancomycin targets d-Ala-d-
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Ala peptides and impedes the peptidoglycan network in Gram-
positive bacteria, whereas it cannot cross the outer membrane in
Gram-negative bacteria (Kim et al., 2015). There are certain
genes e.g. AmpC, blaSHV, TrxA (thioredoxin), TrxB (thioredoxin
reductase) etc. which are also considered as liable for intrinsic
resistance against various antibioitcs like b-lactams,
aminoglycosides, rifampicin, triclosan and flouroquinolones etc
(Kakoullis et al., 2021).

In addition to intrinsic, bacteria may also exhibit the acquired
resistance mechanism to restrain the action of antibioitcs. There
are different mechanisms that help the pathogen to acquire the
resistance such as inadequate penetration of the antibioitcs, drug
efflux which results in decreased concentration of antibiotics
inside the cell, target modification and antibiotic inactivation/
hydrolysis (Blair et al., 2015).

At present, incidence of MDR pathogens harboring acquired
resistance determinants is mounting across the globe. The reason
behind this health concern is the production of different enzymes
like extended spectrum b-lactamases (ESBLs), metallo-b-lactamases
(MBLs), carbapenemases, which are associated with the resistance
against cephalosporins and carbapenems. Well know ARGs such as
blaTEM, blaCTXM, blaKPC, blaNDM, blaVIM, and mcr-1 are responsible
for the emergence of MDR strains of E. coli, P. aeruginosa etc
(Aslam et al., 2018). Themcr-1 (plasmidmediated colistin-resistant)
is a striking example of One Health dissemination of ARGs, as first
isolation of mcr-1 was reported in China from raw meat (Liu et al.,
2016). Moreover, From Pakistan, E. coli harboring mcr-1 was
detected in specimens collected from migratory birds and human
isolates (Lv et al., 2018).
ESTIMATION OF ABR IN A ONE
HEALTH CONTEXT

Human-animal-environment interfaces create chances for one or
the other population to be a reservoir of ARG bacteria, which can
be disseminated in any direction (Hassell et al., 2017). Two
theoretical models have been presented which depict the ABR
transmission route between these interfaces. One is the clonal
transfer of resistant bacteria and the second one is horizontal
gene transfer (HGT) (Chang et al., 2015). Each of these interfaces
would have variable transmitting levels of resistance, which has
been studied to comprehend the interface between resistant
bacteria, host, environment, and MGEs (Hoelzer et al., 2017).

One of the promising tools currently used to estimate the
level of ABR in these interfaces is WGS. It has been recognized
in a study with large genomic data sets that revealed that
most E. coli O157 outbreaks were related to the consumption
of contaminated animal food, plant food products, and
contaminated abattoir processing (Dallman et al., 2015;
Butcher et al., 2016; Rowell et al., 2016). To understand the
exact undertones of the problem, we have to improve our
understanding of human-animal-environment interfaces by
employing high-resolution genomics.

Conventional microbiological procedures like culturing
bacterial pathogens or sequencing isolates need extra logistics
November 2021 | Volume 11 | Article 771510

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Aslam et al. Antibiotic Resistance: One Health Prospective
and may not be practicable in the field. An alternative approach
to address this problem a pathogen-independent strategy may be
used, i.e., metagenome sequencing, which is good enough to
detect whole genetic material in a sample (Bragg and Tyson,
2014; Lanza et al., 2018; Guitor et al., 2019). However, this tool
may have less sensitivity as it depends upon the sample
composition and sequencing procedure. The solution to this
problem is to use a target-based sequencing procedure with
specific probes for different ARGs (Lanza et al., 2018; Guitor
et al., 2019). Metagenomics enables us to assess the pathogen
variation and dissemination of ARGs between different niches of
One Health. Additionally, innovative strategies like metagenome
Hi-C provide insights into pathogen association with various
ARGs (Pehrsson et al., 2016; Stalder et al., 2019). The WGS-
based genetic relatedness among the isolates from various sample
sources is helpful in understanding the possible transmission
routes between these One Health niches. Lastly, an accurate
metadata record is extremely crucial, and it should be done
according to the harmonized procedures and metadata
management guidelines (Griffiths et al., 2017).
MAINTENANCE AND DISSEMINATION OF
DRUG-RESISTANT BACTERIAL CLONES
AT THE HUMAN-ANIMAL-ENVIRONMENT
INTERFACE

The emergence of methicillin-resistant S. aureus (MRSA)
demonstrated a well-known evolutionary line by which ABR
clones are disseminated globally (Lakhundi and Zhang, 2018).
The emergence of resistant mutants results from continued
exposure of susceptible bacteria to antibiotics and their
dissemination at the human-animal-environment interface
(Munita and Arias, 2016). The underlying mechanisms associated
with ABR clonal expansion are progressive antibiotic exposure or a
potentially a genetic background. These factors direct the fitness
cost, such as chromosomal variations that enhance ABR plasmid
carriage or compensatory mutations in the case of a rifampicin-
resistant strain of Mycobacterium tuberculosis (Hughes and
Andersson, 2017). Once established, the ABR clones may find
new opportunities for broad geographical dissemination and spill-
over into other host populations, depending on transmission modes
and the degree of antibiotic selection they encounter (Ward et al.,
2016; Baker et al., 2018).

Mobile genetic elements (MGEs) are considered to serve as a
vehicle for the dissemination of resistance at the human-animal-
environment interface. K. pneumoniae is considered a host of
different mobile ABR genes and has played a significant role in
disseminating different extended-spectrum b lactamases and
Carbapenemases across the globe (Tzouvelekis et al., 2012).
This link can be associated with the dissemination of MDR K.
pneumoniae from and between different domains of One Health.
Horizontal gene transfer in K. pneumoniae provides a channel
for ABR gene trafficking from a massive genetic pool into small
subpopulations of bacteria.
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The presence of other resistance mechanisms, like
fluoroquinolone resistance (Fuzi, 2016), is likely to be
determined by extensive antibiotic use followed by selective
pressure and MDR clonal expansion, e.g., Enterobacteriaceae
(Davies and Davies, 2010; Prestinaci et al., 2015). It is evident in
the evolution of a clonal strain of Mycobacterium tuberculosis
through katGmutation that may proceed with further mutations
resulting in isoniazid resistance (Jagielski et al., 2014).

ABR among animals can impact human well-being if human
microbiomes and animal microbiomes share similar antibiotic-
resistant genes (Marshall and Levy, 2011). It has been shown that
the risk of cross-species ABR transmission is rare (Cheng et al.,
2019). However, it is difficult to discriminate between pathogens
arising from foods or from animal origins. In the context of
“exclusive mutual” bacterial colonization of either animals or
humans via adapted clones, the chance of ABR transmission
(from animals to humans) seems connected to specific clones,
acting as shuttles of ABR through infecting and colonizing both
kinds of hosts (Delahoy et al., 2018). However, high-risk ABR
clones are usually spread through food (animal-human contact)
and via farm animal diversity. For example, the S.aureus CC97
strain has jumped from livestock to humans. Likewise, human-
animal spread has also been reported, such as the MRSA CC398
lineage jumping into livestock due to high selection pressure
(Aires-de-Sousa, 2017).

Some studies have revealed limited relatedness of MDR bacterial
pathogens at the human-animal interface. A cross-sectional study in
East England (Ludden et al., 2019) compared the core genome of E.
coli isolated from livestock farms and retail meat. Overall, 41
different resistance genes were detected in different proportions in
the isolates from livestock. Significantly sharedgenes include ESBLs,
sul1, sul2, strA, strB, tetA, and tetB. It was observed that E. coli
associated with human infections does not originate from livestock
sources directly as they found genetically distinct isolates from
livestock and human. While it has also been observed that the same
animal species from different animals have significant microbiome
relatedness. It has been reported that E. coli phylogroup B2 is
significantly (68%) associated with human infection as compared to
animal infection (1%) (Nash et al., 2010). The ubiquitous
distribution of various ARGs at the human-livestock interface
may be linked with transmission via MGEs as described
previously for ESBL genes (de Been et al., 2014). A similar study
was reported from East England last year (Ludden et al., 2019),
which showed no evidence for livestock as a dissemination source of
MDR K. pneumoniae to humans. However, the study results
revealed that the hospital environment is a significant source of
MDR K. pneumoniae associated with severe human infections and
pan-genome analysis of the isolates showed significant genetic
diversity in K. pneumoniae. Another previous study has reported
that K. pneumoniae has higher transmissibility between different
domains of One Health as compared to E. coli (Gurieva et al., 2018).

The Vancomycin-resistant Enterococcus faecium (VREfm) is
listed among the global priority list of antibiotic-resistant
bacterial pathogens by the WHO (WHO, 2017). Previously,
livestock was suggested as a possible disseminating source of
VREfm or vancomycin resistance genes to humans, which was
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related to vancomycin (Avoparcin), used as a growth promoter
in Europe. Later on, that drug was banned in 1997 in Europe. A
decade ago, the increased incidence of VREfm among broilers
was reported ST10, ST13, and ST370. Contrary to this fact, a
study conducted in the recent past has reported limited strain
sharing of VREfm among livestock and humans from the UK
(Gouliouris et al., 2018). Genetic relatedness was observed
by comparing livestock isolates and human isolates associated
with bloodstream infections. No VREfm was detected in
livestock in that study. Overall, 26 different resistance genes
were identified in human and livestock isolates, while the depth
analysis revealed limited sharing of ARGs between livestock and
humans. Additionally, a limited overlap was observed between
the isolates of hospital and livestock origin (Gouliouris
et al., 2018).

Salmonella typhimurium (S. typhimurium) and Campylobacter
contributed a lot to acquiring antibiotic resistance, leading to food
safety and lower livestock production issues. The S. Typhimurium
strain 104 became MDR with the acquisition of a 43kb genome,
showing high resistance against five of the first-line antibiotics
(Leekitcharoenphon et al., 2016). The presence of MGEs
among various types of bacteria also seems to be a leading
determinant of ARG’s between different bacterial clones or
species and between different hosts, such as the plasmid coding
for ESBL (plasmid IncI2) carries the MCR-1 gene, which is
responsible for encoding resistance to Beta-lactamase and
colistin. Similarly, MDR plasmid p60006 can be found in
Enterobacteriaceae shuttle clones, and the Inc18 plasmid caries
the vanA gene in enterococci species (Partridge et al., 2018;
Klemm et al., 2018). The chain of infection in the human-
animal-environment can be broken by preventing the
dissemination of drug-resistant bacterial clones, MGEs, and
ARGs through the One Health approach.
RISKS OF ABR FOR PUBLIC, ANIMAL,
AND ENVIRONMENTAL HEALTH

The ABR lowers the efficacy of antibiotics at clinics and leads to
an increased incidence of infection and severity (O’Neill, 2018).
the extensive use of antibiotics in animals significantly
contributes to ABR among human microbes, primarily, enteric
microbes like E. coli, Campylobacter spp., Enterococcus spp., and
Salmonella spp (O’Neill, 2015). The exposure of pathogens to
biocides like antiseptics, disinfectants, and heavy metals both in
environmental niches and in animals may co-select for ABR
(Wales and Davies, 2015). Among foodborne pathogens, non-
typhoidal Salmonella is a well-known pathogen associated with
gastroenteritis in humans and is responsible for about 94 million
cases, including 155000 deaths every year (Organization WH,
2014a). This ABR pathogen is generally spread by transporting
animals, contaminating poultry and animal meat products
through carrier animal feces (Organization WH, 2004).
Fluoroquinolone and cephalosporin-resistant Salmonella is a
leading public health problem in the world (Dutil et al., 2010).
Therefore, therapeutic options for different groups, such as
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pregnant women and children, are limited due to drug toxicity
issues. Cephalosporins are used to treat very serious infections.
Further, it has been reported that fluoroquinolones used against
Salmonella infections in food animals are a leading cause of
quinolone resistance development (CVMP E, 2006). The
surveillance data of the WHO revealed a low fluoroquinolone
resistance rate among non-typhoidal Salmonella in the European
region (2-3%), a wide range in Americas (0-96%), and higher rate
in the Eastern Mediterranean (up to 40-50%) (OrganizationWH,
2014a). ABR continues to emerge in Salmonella strains and has
been related to certain other life-threatening infections in
humans (Helms et al., 2004).

Among different water and food-borne infections,
Campylobacter infection is usually regarded as a self-limiting
infection. Fluoroquinolone-resistant Campylobacter severe
infection has also been reported due to prolonged antibiotic
use (Helms et al., 2005). Fluoroquinolones are usually given as a
mass antibiotic through drinking water in animals. In countries
like Australia, this type of antibiotic has never been approved for
use in poultry. Therefore, quinolone resistance against
Campylobacter in Australia is low (Cheng et al., 2012).
Similarly, macrolides are usually given as growth promoters,
but resistance to macrolides has also been reported in
Campylobacter (FDA U, 2013). In animals, E.coli causes many
infections, such as enteritis, salpingitis, omphalitis, septicemia,
synovitis, mastitis, and cellulitis (Mellata, 2013). Some bacterial
strains are considered as gut commensals of humans and
animals, while others behave as donors resistance genetic
elements and opportunistic pathogens (Collignon, 2015).

The increasing incidence of E.coli infections in humans and
animals is a serious health concern and is well documented in
developing countries due to contaminated food and drinking
water (Graham et al., 2014). Travelers may also acquire MDR E.
coli from inadequate food/water or other people. ESBL
producing E.coli is also well-documented as a source of
infection in humans in developed and developing countries
(Lazarus et al., 2015). By recognizing the One Health
approach, the FAO-OIE-WHO alliance is trying to create an
integrated surveillance system for food-borne ABR bacteria, to
accurately calculate public health risks (Organization WH,
2017). The WHO has estimated the prevalence of E. coli
resistance to third-generation antibiotics for the American
population (48%) and Southeast Asia and Africa (70%). The
health burden from 3rd generation fluoroquinolone and
cephalosporin-resistant E.coli infections revealed a 2-fold
increase in 30-day and all-cause mortality (Organization
WH, 2014b).

MRSA may cause different infections, such as bloodstream,
wound, and skin in hospital and community settings (Lakhundi
and Zhang, 2018). According to WHO estimates, the MRSA
prevalence is 60% in Europe, 80-100% in Africa, and up to 90%
in America. Health burden analysis of MRSA revealed a
significant increase in all-cause, intensive care, and bacterium
attributable mortality in patients with healthcare-related MRSA
infections (Organization WH, 2014b). However, mortality rates
for community-acquired MRSA bacteremia are generally
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reported to be lower than for sensitive strains of S. aureus. The
MRSA strains that are pathogenic for humans have been
expressed in many different animal species, and their spread to
humans is mainly thought to occur via carrier animal contact.
The major leading factors in MRSA transmission in animals are
the use of antibiotics in food, livestock, international trade of
animals, and lapses in biosecurity within/or between farms
(Mehndiratta and Bhalla, 2014; Davis et al., 2017).

In the environmental health context, the ABR is associated
with transmitting MDR pathogens and ARGs of public health
concern (Banerji et al., 2019). Most drug resistance genes,
pathogenic microbes, and antibiotics have environmental
origins, such as soil and water (Berkner et al., 2014). Resistance
to most drugs has already been demonstrated in bacteria during
the pre-antibiotic time, but important evidence suggests that the
activities of humans have a great impact on the development of
“global resistome” (Gaze et al., 2013). Since antibiotics are
produced in massive amounts annually, environmental niches
play an important role in the persistence and spread of ABR
microbes (Kraemer et al., 2019). Inadequate sewage and
pharmaceutical waste treatment results in the release of many
antibiotics into the water, which serves as a major source for the
transmission of resistance genes/or resistant bacteria (Davies and
Davies, 2010; Kraemer et al., 2019). Poor sanitation and
international travelers, globalized trade in food as well as in
animals serve as sources of global dissemination of resistance. In
this regard, possible measures to address drug resistance include
risk assessment, environmental monitoring, and proper control
measures to reduce pollution from agricultural, industrial, and
residential sources (Pruden et al., 2013).
ABR AND ONE HEALTH IN LOWAND
MIDDLE-INCOME COUNTRIES

The global emergence and re-emergence of MDR bacteria or
superbugs pose a serious threat to public health (disease burden,
mortality, economic losses) in developing and LMICs. The
dissemination and spillover of MDR pathogens is a consequence
of excessive antibiotic use in animals and humans due to non-
metabolized antibiotics or their residues in the environment (water,
soil). The MDR pathogens persist across the animal, human, and
environmental triangle or niche, and there is interlinked sharing of
the animal-human-environment interface. In LMICs, animals and
animal origin foods act as a reservoir of MDR pathogens due to
misuse of antibiotics in veterinary practice as prophylaxis or growth
promoters (Cleaveland et al., 2017). Resistant microbes are
consistently present in our food chains, and they are shared
between animals and humans directly and indirectly through our
environment. The occupational risk of transmission of these MDR
bacteria is very high for veterinarians, slaughterhouse workers,
hatchery retailers, or handlers. Therefore, ABR is a trans-sectoral
problem necessitating a trans-disciplinary, coordinated, and
collaborative “One Health Approach” to tackle the public health
issue. Since human and animal health, food/feed and animal
production systems, and agro-ecological environments are directly
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associated with ABR. Therefore, a multidimensional One Health
approach is direly needed to circumvent ABR globally (Gitaka et al.,
2020). In this regard, the FAO-OIE-WHO alliance took the
initiative in collaboration with public and private organizations to
mitigate the global menace of ABR at the animal-human-
environment nexus. The FAO-OIE-WHO action plan is based
upon evidence (eco-epidemiology, integrated surveillance, and
reporting), communication of the masses, good practices
(biosecurity, agro-ecology, and the alternative to antibiotics), and
legal framework (policy and codex Alimentarius) through the
implementation of the One Health or food chain approach. A
global initiative named the Global Antibiotic Resistance Partnership
(GARP) was launched in 2009 to form an action plan for the control
of ABR in LMICs. Under the Tripartite’s Commitment FAO-OIE-
WHO initiative, regional, local, and global efforts have been
launched to report ABR and implement action plans by different
countries (Bank, 2010; Gitaka et al., 2020).
ONE HEALTH AND ECONOMICS

The distribution of ABR in various regions of the globe is influenced
by economic development and technology (Ruppé and Chappuis,
2017; Ruppé et al., 2019). The World Economic Forum can play a
pivotal role in decreasing the burden of global ABR through
infrastructure, regulations, human resource development, and
public health interventions. From an economic perspective, the
One Health approach can coordinate, communicate, and
collaborate with various sectors, stakeholders, and policy makers
to improve the interlinked health of humans, animals, and the
environment. Policymakers take different corrective measures,
including travel and tourism regulations, food and agriculture
regulations, public health interventions, and monitoring and
surveillance strategies to control ABR (Prestinaci et al., 2015).

It is challenging to shift from the current health paradigm to
the One Health model based on diverse ecologies and
geographies. To establish the One Health paradigm, a strong
and considerable assessment of net benefits is essential. As a
discipline, economics has two significant features to help us think
about One Health: efficient resource usage and the marginal
value of approach substitution. A substantial comparison of
marginal benefits against marginal costs is necessary to
transform the conventional health approach into a holistic One
Health approach. For instance, a reduction in the disease burden
is a potential outcome of the One Health paradigm. It may be
determined in practical terms, like the decreased incidence/
prevalence rate of the disease and further interpreted using
different economic standard methods like a contingent valuation.
ONE HEALTH SCHEME TO COPE
WITH ABR

The WHO has launched a Global Action Plan based on the One
Health approach to fight against ABR, and it demands all the
members around the world to follow the same guidelines while
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preparing their national action plans (McEwen and Collignon,
2018). Improved awareness and understanding of ABR is
necessary and can be done through effective communication,
education, and training. Every stakeholder of One Health should
understand the One Health domains of ABR, including clinicians,
veterinarians, farmers, industrialists, and policymakers. These
components could minimize antibiotic usage in humans and
animals/farms and contain ABR dissemination through the
environment (McEwen and Collignon, 2018). The recognition,
appraisal, awareness, and advocacy of ABR-related One Health
dimensions include seminars by public and animal health
organizations, local and global outreach programs for farmers,
curriculum development, and linkage between various
stakeholders of One Health (McEwen and Collignon, 2018;
Manyi-Loh et al., 2018).

Evidence-based research and surveillance are essential to
enhance awareness of the One Health dimension of ABR because
they recognize the problems and drivers of ABR and plans for the
control of ABR dissemination (Aarestrup et al., 2008; Perry and
Wright, 2014; O’Neill, 2018). At present, specified and targeted
research is indispensable to determine the drug resistance
mechanisms, estimate the incidence rate of ABR in various
ecologies, find cost-effective and appropriate alternatives to
antibiotics, and support antibiotic stewardship (Laxminarayan
et al., 2013; Huijbers et al., 2015; O’Neill, 2015; O’Neill, 2018).

Adequate sanitation and hygiene are crucial for infection control
in healthcare settings, especially in hospitals, reducing the
dissemination of ABR or ARGs from hospitals into the
environment (Collignon, 2015). In the case of veterinary and farm
settings, in addition to biosecurity, prudent use of antibiotics as
therapeutics (Figure 4) or prophylaxis needs to be followed (Murphy
et al., 2010). Dissemination of resistant pathogens and ARGs from
the environment to humans may be reduced by implementing
control measures to improve food and water quality, especially in
LMICs (Gaze et al., 2013; Collignon, 2015; Singer et al., 2016).

For antibiotic usage, monitoring of antibiotic consumption,
and various mechanisms for persistent upgrading of antibiotic
utilization may be introduced to decrease ABR (Aarestrup et al.,
2008). In this context, the European Union has banned antibiotics
as a growth promoter in food-producing animals. The USA has
banned extra-label use of 3rd generation cephalosporins and
fluoroquinolones in animals, and many countries around the
globe ensure the use of antibiotics in animals with veterinarian
prescriptions (Aarestrup et al., 2008; Scott et al., 2019). Antibiotic
stewardship plans should be directed to ensure that antibiotics are
used only for therapeutic purposes in health care settings for both
humans and animals (Landers et al., 2012; Scott et al., 2019). The
world forum may play its role in promoting and advocating the
One Health approach to cope with global ABR.
ALTERNATIVES TO ANTIBIOTICS-ONE
HEALTH PERSPECTIVE

Antibiotics are the central players in controlling bacterial
pathogens, but decreasing their usage is vital because of the
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emergence of resistant pathogens and transmissible ARGs. The
latest research findings enabled us to understand the gene
exchange and pathogen interactions in various One Health
niches, which is important for developing alternative antibiotic
approaches (Aslam et al., 2018).

Microbiota Modulation
Microbiota modulation through probiotics, fecal transplantation,
or improved nutrition has been studied extensively in human
and animal health contexts. Further, the dynamics of host-
microbe interactions need to be improved through advanced
genomics assays. Genomic tools may be very helpful in detecting
the mechanisms and reservoirs of ABR in various niches of One
Health. Additionally, these may also be useful for developing and
testing novel interventions to be made to reduce the
dissemination of ABR and ARGs. Specifically, microbial
taxonomy and the presence of genes encoding for resistance,
virulence, and toxin production can be determined through
metagenomic sequencing. It also identifies various MGEs that
may be transferred between various niches (Young, 2016;
Brugman et al., 2018; Relman and Lipsitch, 2018).

Gene Editing Techniques
Gene editing and transgenic techniques unwrap more options to
control resistant bacterial pathogens (Proudfoot et al., 2019). It
has been used to control bacteria responsible for mastitis, which
requires significant antibiotic therapy, e.g., engineered lysozyme
and lysostaphin (Oliver et al., 2005). Though these methods are
still under regulatory procedures, such methods can provide a
suitable alternative to antibiotics (Waltz, 2017). WGS-based
mutagenesis to recognize the viral genes which influence
replication is used to find novel targets for gene-editing (Han
et al., 2018; McCormick et al., 2018).

Vaccines
Vaccines also play a crucial role in controlling ABR because they
reduce the need for antibiotic therapy (Lipsitch and Siber, 2016).
Advanced genomic tools like functional and comparative
genomics would be helpful in vaccine development. These
tools may predict the conserved pathogen factors accessible to
antibodies through secretion signals, which may be tested as a
subunit vaccine, known as reverse vaccinology. This has been
used to develop vaccines against mastitis, brucellosis, and E. coli
infections. Moreover, transcriptional analysis of the pathogen
inside the host may also be very helpful in selecting the targets.
Recent advancement in this regard is transposon sequencing,
which is useful in assigning phenotypes to variants. Although
genomics is currently applied to discover antigens as vaccine
candidates, genomic-wide host response investigations relevant
to specific vaccines are required for comprehensive
understanding (Seib et al., 2012).

AV Inhibitors
Genome-based tools like RNAseq could find out the regulons,
regulators, and various virulence factors required for the onset of
infection and endurance of the pathogen inside the host. A
promising alternative approach to disarming the pathogen using
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AV (anti-virulence) may also be used in which the infection’s
expression of virulence genes required for the infection can be
controlled. For example, a potential AV inhibitor known as
virstatin, impedes gene expression in V. cholerae through ToxT
(regulator) downregulation (Hung et al., 2005).

Bacteriophages
Bacteriophages are the natural enemies of bacteria and destroy
them during their life cycle. The emergence of ABR shifted the
research interest towards the use of phages and engineered phage
proteins like endolysins and depolymerases, etc. (Jault et al.,
2019; Aslam et al., 2021; Patel et al., 2021),. Bacteriophages may
be used in animal health systems to improve the health status of
food-producing animals. It may also be used to decrease bacterial
contamination during food processing and packaging.
Bacteriophages may be used in aquaculture and the veterinary
health system to control E. coli O157: H7, especially in food-
producing animals (Sabouri et al., 2017; Almeida et al., 2019).
Some issues related to bacteriophage therapy, such as safety and
stability, need to be addressed before their use in health care
settings. Another concern related to bacteriophages is that they
may introduce virulence or ARG alleles into the bacteria, so they
should be sequenced before use. Recently, bioinformatics tools
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have been developed to solve this problem, e.g., PHANOTATE,
GeneMarks, Glimmers, etc. (Tzouvelekis et al., 2012),. It can
specifically analyze the genome of bacteriophages for various
factors by using available databases (Cui et al., 2017).
RECENT ADVANCEMENTS

The ABR is recognized as an expanding and dynamic health
concern globally11, thus specifying the significance of advanced
tools to delineate its undercurrents and to discover the diversity
in detail. Novel computational and sequencing tools like Whole-
genome sequencing (WGS) or Next-generation sequencing
(NGS) have enhanced the applications of advanced tools for
studies of ABR in different domains of One Health (Van Camp
et al., 2020).

Available Databases
In this regard, several databases are available online, like
ResFinder, AMRFinder, CARD, and ARG-ANNOT, etc., a few
databases that work for a single pathogen are also available, such
as Kleborate for Klebsiella and MUBII-TB-DB or Dream TB
for Mycobacterium tuberculosis (Flandrois et al., 2014;
FIGURE 4 | Therapeutic approaches to reduce the burden of antibiotic resistance.
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McDermott and Davis, 2021). Recently, a summary describing
different free online resources for ARG identification in bacterial
pathogens has been published (Hendriksen et al., 2019).
Moreover, NCBI has published a database that has about 5000
resistance genes identified from across the globe.

Metagenomics
At present, a sequence-based approach to studying genomes
from a mixed microbial community known as metagenomics is
being applied to understand and decipher the complexity of ABR
in different niches of One health sector. Generally, bacteria take
on HGT to acquire ARGs. So it is important to decipher the
HGTs, which may offer a comprehensive understanding of ABR
dissemination in and among different One Health niches. Since
metagenomics is a high-throughput DNA sequencing tool, it
made the ARG analysis achievable and practicable. It is a suitable
tool which permits the right to use the genome data available in
environment without culturing the specimens for the isolation of
bacteria (de Abreu et al., 2020).

Metagenomics helps to delineate the microbial diversity by
finding the genes and through reconstruction of complete
genomes of microbial community (Chen and Pachter, 2005;
De, 2019). One of the benefits this tool possesses is its
sensitivity, because it detects species abundance and identifies
ARGs of microbial community. Presently, metagenomics is
considered as an alternative tool to rRNA sequencing and has
been used to study microbial diversity in clinical and
environmental specimens (Escobar-Zepeda et al., 2018).

Over the last decade, a few sequence-based tools like shotgun
metagenomics, amplicon sequencing, and functional genomics
have been used to study ABR. Functional genomics is used
extensively to detect and identify ARG variants and novel
ARGs (Mendes et al., 2017; Collignon and McEwen, 2019; de
Abreu et al., 2020). The SmartChip real-time PCR system
(Takara, Japan) is a high-throughput tool used frequently to
study ABR, especially in environmental sources (Franklin
et al., 2021).

On the other hand, there are few challenges which disturb the
efficiency of metagenomic analysis. Firstly, less sensitivity
towards microbial population present in minority which may
also harbor ARGs (Lynch and Neufeld, 2015). Secondly, lower
specificity to detect the bacterial variants that may have
significant impact, because variants may develop diverse
phenotypic traits (Forslund et al., 2013). These shortcomings
may be resolved by combining the metagenomics sequencing
with functional genomics (Chistoserdovai, 2010; Lam
et al., 2015).

WGS
On the other hand, at the bacterial level, WGS is considered a
powerful tool to study ABR and predict the strains’ resistance
profile, but the inconsistency between culture-based testing and
WGS must improve. Classification of ARGs and different sources
of One Health is crucial because of the complexity of microbial
communities present in different domains. In this regard, some
recent investigations by employing these techniques have been
conducted to categorize specific ARGs that may pose health
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threats, revealing that MGEs are associated with the
dissemination of ABR among different sectors of One Health
(Su et al., 2019; Mackenzie and Jeggo, 2019). In coming times,
these advanced tools will be vital for understanding the
dissemination and transmission of ABR and ARGs in different
domains of One-Health.
Diagnostics
Prompt and precise diagnosis has a significant impact on
antibiotic susceptibility and consumption. Currently, novel
techniques have been developed that allow a quick pathogen
identification process and its susceptibility to various antibiotics.
Various tools which may be helpful in this regard include rapid
immunochromatography, automated time-lapse microscopy,
and Matrix-assisted Laser Desorption Ionization (time of
fight)-Mass Spectrometry (MALDI-TOF MS) (Lau et al., 2014;
Ghosh et al., 2015; Singhal et al., 2015; Florio et al., 2020).
However, there are some limitations to using these techniques,
like running costs, as the reagents used in these tools are highly
expensive, especially for researchers from developing countries.
Additionally, these tools require a considerable number of
qualified and trained personnel. A few molecular biological
techniques are also available as diagnostic tools to identify
ARGs, e.g., Xpert Carba-R and FilmArray BC-ID (Maurer
et al., 2017; Baer et al., 2021). The PCR/electrospray
ionization-mass spectrometry platform is a substantial
advancement in the field; it may detect over 500 pathogens
and various ARGs in a few hours (Wolk et al., 2012; Kailasa et al.,
2019). The main advantage of these tools is that they may be
executed on samples, directly reducing the time for pathogen
detection or susceptibility testing. According to the available
literature, such methods will be routine laboratory procedures in
the coming future.
RESEARCH GAPS

It is now well understood that different ecological niches play a
crucial role in the evolution and dissemination of ABR and ARGs
among various One Health domains. Given that, stakeholders
and scientists are looking for further explanations regarding the
drivers and mechanisms involved in ABR distribution across the
globe. Additionally, they seek to estimate the risk burden and to
identify appropriate interventions. In 2017, renowned scientists
from various parts of the world gathered in a workshop held in
Sweden, arranged by the University of Gothenburg Center for
Antibiotic Resistance Research and the Swedish Research
Council (SRC), where they defined the main research gaps in
the One Health scenario to tackle ABR.

They categorized four imperative research directions, which
include; a) quantified contribution of various sources of ABR and
ARGs to the environment; b) evolution of resistance-related with
human-environment interface; c). Impact of resistant
environmental pathogens on human and animal health; d) the
practicability and efficiency of various economic, technological,
behavioral, and social interventions to fight ABR. Delineating all
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these four research domains is vital to comprehending the
mounting concerns related to ABR. For that reason, we should
encourage funding agencies, policy makers, and all stakeholders
to help researchers do multidisciplinary research, which would
be very effective in bridging the knowledge and research gaps in
this field.
CHALLENGES AND THE WAY FORWARD

Many countries across the globe have made their own national
action plan to cope with ABR based on the One Health approach.
It has been established that One Health is essential to the fight
against ABR (White and Hughes, 2019). It fosters linkage among
different domains/sectors, which operated separately in the past,
and plays a potential role in better coordination among various
sectors. Some countries are practicing integrated surveillance
systems for antibiotic usage and ABR. Implementing regulations
regarding the use of antibiotics in veterinary practice as growth
promoters and the role of industries in restricting the use of
antibiotics in food-producing animals has been initiated. Despite
these advancements, reported data revealed that antibiotic usage
both in humans and animals is still on the rise across the globe,
and resistant pathogens are re-emerging (Van Boeckel et al.,
2015; O’Neill, 2018). Significant measures and implementation
of regulations are required to address global human, animal, and
environmental health security.

There are many challenges to improving antibiotic
stewardship in One Health, like motivation inadequacy, limited
awareness, and malpractices in antibiotic usage, and inadequate
regulatory or policy measures in various countries (Aarestrup
et al., 2008; O’Neill, 2018). The developing world is slow in
adopting scientific advancement and accepting the evidence of
public and animal health impacts posed by excessive antibiotic
use in food-producing animals (Bengtsson and Greko, 2014).
Advanced molecular techniques like whole genome sequencing,
metagenomics, metadata analysis, and phylogenetic studies are
indispensable for a better understanding of global ABR. These
advanced techniques will support us in understanding the
transmission dynamics of resistant superbugs and ARGs
among humans, animals, insects, plants, water, and soil
(Oniciuc et al., 2018; Kraemer et al., 2019; Wee et al., 2020).
One Health is a subject that promotes health via interdisciplinary
collaboration by collecting data across various domains of One
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 15
Health to explain the route of ABR transmission at the human-
animal-environment interface. In the future, microbiome
analysis of various domains of One Health will be vast and
challenging. Antibiotic stewardship plans must be practical
towards the reduction of antibiotic use. Additional antibiotic
stewardship obstacles such as over-the-counter availability of
antibiotics, particularly in LMICs, lack of authentic data on
antibiotic usage, and inadequate therapeutic guidelines in
different countries need to be addressed (Edwards et al., 2018;
Larsson et al., 2018).
CONCLUSION

The global emergence and spread of ABR necessitates promoting
a coordinated and multidisciplinary One Health approach
to reduce human, animal, and environmental health risks.
The global spread of ABR pathogens and ARGs due to
misuse of antibiotics, inadequate sanitation facilities, and
insufficient control measures negatively impacts global public
health. The global assessment of the One Health approach
and the FAO-OIE-WHO commitment would help ABR
prevention through awareness programs, education about
antibiotic usage, advocacy with political commitment, and
antimicrobial stewardship.
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Rodrıǵuez-Chueca, J., Varella Della Giustina, S., Rocha, J., Fernandes, T., Pablos,
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