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Simple Summary: We extracted known interactions between metastasis suppressors and their
regulators from scientific studies. Next, we used publically available data of drug treatments to
identify which of them potentially perturbs these interactions. Finally, we studied the effect of several
of these drugs on a particular metastasis suppressor called RKIP and found that our model accurately
predicted its regulation in breast cancer cells. Our approach can discover alternative mechanisms of
existing cancer drugs and repurpose them in different disease types.

Abstract: Drug screening strategies focus on quantifying the phenotypic effects of different com-
pounds on biological systems. High-throughput technologies have the potential to understand
further the mechanisms by which these drugs produce the desired outcome. Reverse causal reason-
ing integrates existing biological knowledge and measurements of gene and protein abundances to
infer their function. This approach can be employed to appraise the existing biological knowledge
and data to prioritize targets for cancer therapies. We applied text mining and a manual literature
search to extract known interactions between several metastasis suppressors and their regulators.
We then identified the relevant interactions in the breast cancer cell line MCF7 using a knockdown
dataset. We finally adopted a reverse causal reasoning approach to evaluate and prioritize pathways
that are most consistent and responsive to drugs that inhibit cell growth. We evaluated this model in
terms of agreement with the observations under treatment of several drugs that produced growth
inhibition of cancer cell lines. In particular, we suggested that the metastasis suppressor PEBP1/RKIP
is on the receiving end of two significant regulatory mechanisms. One involves RELA (transcription
factor p65) and SNAI1, which were previously reported to inhibit PEBP1. The other involves the
estrogen receptor (ESR1), which induces PEBP1 through the kinase NME1. Our model was derived
in the specific context of breast cancer, but the observed responses to drug treatments were consistent
in other cell lines. We further validated some of the predicted regulatory links in the breast cancer cell
line MCF7 experimentally and highlighted the points of uncertainty in our model. To summarize, our
model was consistent with the observed changes in activity with drug perturbations. In particular,
two pathways, including PEBP1, were highly responsive and would be likely targets for intervention.

Keywords: metastasis; breast cancer; reverse-causal-reasoning; RKIP /PEBP1

1. Introduction

Several approaches for screening and identifying bioactive compounds exist and are
being used to find effective remedies for cancer. Most strategies focus on quantifying
the phenotypic effects of different biological models [1]. High-throughput technologies
like massive parallel sequencing and mass spectrometry have the potential to augment
these strategies by explaining the effect of panels of drugs on biological entities such
as gene expression and protein abundance. Reverse causal reasoning enables the use
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of quantitative measurements of entities in a given pathway to make claims about their
functions [2,3]. This method integrates existing biological knowledge and data of gene
and protein abundance to infer their function [4]. In addition to taking advantage of
prior knowledge, this approach utilizes the network structure, which is key in biological
pathways and avoids making assumptions about equating gene expression with protein
abundance or activity [5,6].

Breast cancer is the most prevalent type of cancer among women, and the vast majority
of deaths are due to metastasis [7,8]. Cancer metastasis is a complex process that involves
disseminating cancer cells from primary solid tumors to distant parts of the body, where
they form secondary tumors. Effective cancer therapies require an understanding of the
underlying mechanisms and regulatory pathways of genes involved in metastasis. A group
of genes, known as metastasis suppressor genes (MSG), prevents the formation of overt
metastases [9]. Although multiple MSGs have been discovered, the detailed mechanism by
which they overcome metastasis is not well understood. One of the metastasis suppressors
is phosphatidylethanolamine binding protein (PEBP1), also known as RAF kinase inhibitory
protein (RKIP) [10]. PEBP1 inhibits cancer metastasis at different stages, including epithelial
to mesenchymal transition (EMT), migration, and invasion [11-13]. Low expression of
PEBP1 is associated with cancer metastasis and poor prognosis [14].

Here, we attempted to integrate two sources of data in the form of biological knowl-
edge and gene expression profiles to build a functional model of metastasis in breast cancer.
We used a reverse causal reasoning approach to infer the function of crucial metastatic
proteins from the perturbation of expression of other gene products known to interact
with them. We evaluated the model for agreement in the direction of change with drug
treatments that inhibit the growth of the cancer cells. Finally, we prioritized a few key
pathways involving the anti-metastasis PEBP1 for further testing.

2. Materials and Methods
2.1. Protein-Protein Interactions, Literature Search, and Biological Expression Language

We used the String database to identify protein—protein interactions (PPI) among a list
of seventeen MSGs (Table 1), and eleven transcription factors (TFs) (Table 2) [15]. Most of
the retrieved interactions were based on text mining, where two or more entries co-occur in
published articles. We surveyed the linked studies for evidence to establish causal relations
between the entities. We encoded these interactions in the biological expression language
(BEL) and assigned at least one reference to each (Table 3) [16]. In BEL, two entities (e.g.,
r, mRNA or p, protein) interact when a subject produces an effect (increase, decrease,
directlylncrease or directlyDecrease) on the object. We used these interactions to build the
functional layer of the metastatic suppressors and their regulators.

Table 1. Metastasis suppressor genes.

Category Genes

Cell-cell adhesion Epican (CD44), Tetraspanin 27 (CD82), Cadherin 11 (CDH11), Cad-
herin 2 (CDH2), Cadherin 1 (CDH1) and Gelsolin (GSN)

Scaffolding Gravin/a-kinase anchor protein 12 (AKAP12)

MAPK Dual specificity mitogen-activated protein kinase kinase 6
(MAP2KS), 4 (MAP2K4), 7 (MAP2K7) and Mitogen-activated pro-
tein kinase 14 (MAPK14)

Transcription NME/NM23 Nucleoside Diphosphate Kinase 1 (NME1) and breast
cancer metastasis-suppressor (BRMS1)

GTP-binding Rho GDP Dissociation Inhibitor Beta (ARGHDIB) and
Developmentally-regulated GTP-biding protein 1 (DRG1)

Other Ribonucleotide Reductase Catalytic Subunit M1 (RRM1) and

Phosphatidylethanolamine-binding protein 1 (PEBP1)
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Table 2. Transcription factors targeting metastasis suppressor genes in MCF7.

TF Name Dataset ID Ref.
ESR1 Estrogen receptor 1 GSE10061 [17]
FOS Fos Proto-Oncogene AP-1 Transcription Factor Subunit GSE36586 [18]
FOXM1 Forkhead Box M1 GSE55204 [19]
GATA3  GATA Binding Protein 3 GSE39623 [20]
HIF1A Hypoxia Inducible Factor 1 Subunit Alpha GSE3188 [21]
NR5A2  Nuclear Receptor Subfamily 5 Group A Member 2 GSE47803 [22]
RARA Retinoic Acid Receptor Alpha GSE26298 [23]
SPDEF  SAM Pointed Domain Containing ETS Transcription Factor GSE40985 [24]
TFAP2C  Transcription Factor AP-2 Gamma GSE26740 [25]
YBX1 Y-Box Binding Protein 1 GSE28433 [26]
ZFX Zinc Finger Protein X-Linked ENCSRO05AHI  [27]

2.2. Knockdown of Metastasis Suppressors and Transcription Factors in MCF7

We used two datasets where each MSG and TF was knocked down in the MCF7 breast
cancer cell line. The first is a dataset that consists of 77 microarray samples [28]. Seventeen
MSGs were knocked down (siRNA) separately in MCF7 (Table 1). The control set consisted
of wild-type (0 h) and cells treated with scramble siRNA at 48 or 96 h. We obtained the
processed data using GEOquery [29]. We mapped the probe intensities to gene symbols
and applied differential expression between knockdown and control using limma [30]. We
compiled a second dataset from the KnockTF database for the eleven TFs knockdown in the
same cell line (Table 2) [31]. KnockTF curates gene expression profiles of TFs knockdown
from the gene expression omnibus (GEO) and presents the results in the form of differential
expression output (fold-change and p-values).

2.3. Pharmacological Perturbations of Breast Cancer Cell Lines

Two sources of publicly available drug perturbation data were used in this study. The
first is growth inhibition (GRmax) data of drug perturbations (n = 35) in breast cancer cell
lines (n = 71, including MCF7) [32]. Adenosine triphosphate content was measured as a
proxy for the cell count in drug treated cell cultures relative to DSMO-treated controls. We
included in the analysis only the drugs with at least one effective dose. This dataset was
used as evidence for the efficacy of these drugs in producing phenotypic effects on cancer
cells. The second data source is the library of integrated network-based cellular signatures
(LINCS), which contains gene expression profiles of multiple cells under different types of
perturbations, including compounds, gene overexpression, knockdown, or knockouts [33].
Several cell lines were profiled for gene expression using the L1000 technology, which
measures the abundance of 1000 landmark genes and infers the expression of the rest of
the genes. We used a subset of drug perturbations (1 = 35, same set of drugs as above)
in cancer cell lines (1 = 67) that were also surveyed for drug sensitivity. We obtained the
expression profiles of all genes (level 3 of the LINCS data) using Slinky [34].

2.4. Network Perturbation Amplitude (NPA)

Network perturbation amplitude (NPA) models the perturbation of a causal network
as the changes in the expression of connected downstream nodes [4]. This method assumes
that the downstream gene expression reflects the function of the entities in a biological
pathway (e.g., the activity of a given TF). The input to this method is a two-layer network
model of the pathway of interest and expression profiles of two or more conditions. First,
the functional layer (backbone) encodes the causal relations between the entities of interest.
The second is a transcription layer (terminal) with all the nodes downstream from each
node in the backbone. We used the gene expression profiles from LINCS pharmacological
perturbations to score the model. NPA is an R package that efficiently implements the
method with the same name [35].
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Table 3. Interactions of metastasis suppressor genes and their transcription factors.

Interaction

p(CD44) decreases act(p(CASP8))
p(CD82) decreases p(CD44)
p(CD82) increases r(BRMS1)
p(CD82) increases r(CDH1)
p(CDH]1) increases act(p(CASP8))
p(GSN) increases r(CDH2)

act(comp(p(MAP2K6), p(MAP2K3)), ma(kin)) directlyIncreases

p(MAPK14)

p(MAP2K4) decreases act(p(MAP2K7), ma(kin))
p(MAP2K4)
p(MAPK14) increases p(CASPS8)
p(MAP2K®6) directlyIncreases p(MAPK14)
p(MAP2K?) increases r(CDH2)
p(MAPK14) increases p(CDH1)

act(p(MAPK14), ma(kin)) directlyDecreases p(CASPS)

directlyIncreases act(p(:MAPK14), ma(kin))

act(p(MAPK14), ma(kin)) directlyIncreases p(ets-Domain Protein Elk-4)

p(MAPK14) increases r(RUNX2)
p(NMEL1) decreases r(BRMS1)
p(NME1) increases r(AKAP12)
r(NME1) increases r(PEBP1)
p(PEBP1) increases act(p(MAP2K6))
p(PEBP1) increases act(p(MAP2K3))
p(PEBP1) increases act(p(MAPK14))
p(PEBP1) increases r(CDHI)
p(RUNX2) decreases r(CDH2)
p(RUNX2) increases r(CDHI)
p(TGFB1) decreases r(CDH1)
p(TGFB1) decreases r(CDH2)

Interactions between metastasis suppressors and regulators

p(CDH1) decreases p(YBX1)

p(CDH1) decreases p(FOXM1)

p(ESR1) decreases r(CDH2)

p(ESR1) directlyIncreases r(CDH1)

p(HGNC:ESR1) directlyIncreases r(HGNC:BRMS1)

p(ESR1) increases r(MTA3)

p(ESR1) increases r(RUNX2)

p(FOS) decreases r(CDHI1)

p(FOS) decreases r(RUNX2)

p(FOS) directlyDecreases r(TGFB1)

p(FOS) increases r(CD44)

1(GATA3) directlyIncreases r(CD44)

r(GATA3) directlyIncreases r(CD44)

P(GATAB3) increases r(CD44)

p(GATAB3) increases r(CD44)

p(HIF1A) increases r(CD44)

p(MAP2K4) increases p(FOS)

act(p(MAPK14), ma(kin)) increases p(FOS)

p(MAPK14) increases act(p(GATA3))

p(MTAB3) decreases r(CDH2)

p(MTAB3) increases r(CDH1)

p(RELA) directlyDecreases r(BRMS1)

p(RUNX?2) increases act(p(HIF1A))

p(RUNX2) directlyDecreases r(SPDEF)

p(ets-Domain Protein Elk-4) directlyIncreases r(FOS)

p(SATB1) directlyDecreases r(NMEL1)
SATB1) directlyDecreases r(BRMS1)

Subject  Object Ref.
Interactions between metastasis suppressors
CD44 CASP8 [36]
CD82 CD44 [37]
CD82 BRMS1 [38]
CD82 CDH1 [39]
CDH1 CASP8 [40]
GSN CDH2 [41]
MAP2K3 MAPK14 [42]
MAP2K4 MAP2K7 [43]
MAP2K4 MAPK14 [42]
MAP2K4 CASP8 [44]
MAP2K6 MAPK14 [42]
MAP2K7 CDH2 [45]
MAPK14 CDH1 [46]
MAPK14 CASP8 [47]
MAPK14 SAP1A [48]
MAPK14 RUNX2  [49]
NME1 BRMS1 [50]
NME1 AKAP12  [50]
NME1 PEBP1 [51]
PEBP1 MAP2K6  [52]
PEBP1 MAP2K3  [52]
PEBP1 MAPK14 [52]
PEBP1 CDH1 [53]
RUNX2  CDH2 [54]
RUNX2  CDH1 [54]
TGFB1 CDH1 [55]
TGFB1 CDH2 [56]
CDH1 YBX1 [57]
CDH1 FOXM1  [58]
ESR1 CDH2 [59]
ESR1 CDH1 [60]
ESR1 BRMS1 [61]
ESR1 MTA3 [62]
ESR1 RUNX2  [63]
FOS CDH1 [55]
FOS RUNX2  [64]
FOS TGFB1 [55]
FOS CD44 [65]
GATA3  CD44 [66]
GATA3  CD44 [66]
GATA3  CD44 [66]
GATA3  CD44 [66]
HIF1A CD44 [67]
MAP2K4 FOS [68]
MAPK14 FOS [48]
MAPK14 GATA3 [69]
MTA3 CDH2 [62]
MTA3 CDH1 [62]
RELA BRMS1 [70]
RUNX2  HIF1A [71]
RUNX2  SPDEF [72]
SAP1A FOS [48]
SATB1 NME1 [73]
SATB1 BRMS1 [73]
SATB1 CD82 [73]
SATB1 CDH1 [73]

p( )
p(SATB1) directlyDecreases r(CD82)
p(SATB1) directlyDecreases r(CDH1)
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Table 3. Cont.

Subject  Object Ref. Interaction

Interactions between metastasis suppressors and regulators

SNAI1 CDH1  [74] p(SNAI1) directlyDecreases r(CDHI1)
SNAI1 PEBP1 [75] p(SNAI1) directlyDecreases r(PEBP1)
SNAI1 CASP8 [76] p(SNAI1) decreases act(p(CASPS))
TFAP2C CD44 [77]  p(TEAP2C) directlyDecreases r(CD44)

YBX1 CD44 [78]  p(YBX1) directlylncreases r(CD44)
Interactions between transcription factors

ESR1 HIF1IA [79] p(ESR1) directlyIncreases r(HIF1A)
ESR1 GATA3 [20] p(GATAS3) increases p(ESR1)

FOXM1  GATA3 [80]
MTA3 SNAIl  [81]
NR5A2  ESR1  [82]

p(FOXM1) directlyDecreases r(GATA3)
P
p
RARA FOS 3] p
P
P
P

(
(
(MTAB3) directlyDecreases r(SNAI1)
(NR5A2) directlyIncreases r(ESR1)
(RARA) decreases act(p(FOS))
(RELA) directlyIncreases r(SNAIL)
(TFAP2C) directlyIncreases r(ESR1)
(TNFSF10) increases p(CASPS)

RELA SNAIl  [84]
TFAP2C ESR1  [85]
TNFSF10 CASP8  [86]

2.5. Measures of Agreement

We defined two notions of agreement between expectations and observations of the
effects of drug perturbations on the metastasis network model. For every node (i), we
created a graph of all n nodes connected to it by an edge (¢) (subnetwork). Given a binarized
perturbation coefficient of drug treatment, we formed an expectation by multiplying +1
or —1 with the direction of interaction +1 or —1 for every edge, u x e. We compared the
expected sign to the observed perturbation coefficient of the downstream nodes (x’). The
average for every subnetwork we termed a concordance rate. We similarly computed an
agreement estimate for all possible directed graphs that lead to a particular node (path).
The difference from above is that the upstream node is not fixed, but changes as we move
one edge down the path. The average agreement between the observed and expected
effect for every path we termed a coherence rate. The following formula shows how the
agreement rates were calculated.

lfx' x = 1, if we=x" {1, if u isactivated
ne="" 7 | 0, otherwise | -1, if u isrepressed

where x is a component connecting a node u to a downstream node by an edge ¢ and x’ is
the observed effect of drug perturbation on that downstream node in the component of the
subnetworks (concordance) or paths (coherence).

In both cases, the agreement was expressed in terms of Cohen’s « [87]. This is a value
between —1 (worse) and 1 (better) while taking into account the expected agreement by
chance. The following shows how to calculate it.

k = (observed agreement — expected agreement) /(1 — expected agreement)

Finally, we compared the probability distribution of the agreement measures to ran-
domly generated values using the Kolmogorov—-Smirnov (KS) test. D" is the maximum
distance between the cumulative distribution functions (ECDF).

2.6. Reagents and Drugs

Reagents and drugs utilized in this study were purchased as follows: RPMI-1640
media (11875-119), fetal bovine serum (FBS; 16000-044), Epirubicin hydrochloride (CAS
56390-09-1), Vorinostat/SAHA (CAS 149647-78-9), Methotrexate hydrate (CAS133073-73-1),
Cisplatin (CAS 15663-27-1), Sorafenib (CAS 284461-73-0) from Sigma-Aldrich (St. Louis,
MO, USA); Imatinib (CAS 220127-57-1) from STEMCELL Technologies Inc. (Vancouver,
BC, Canada); Trizol reagent (15596026) from Invitrogen (Carlsbad, CA, USA); DNase I
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Solution (1 unit/uL), RNase-free (89836), and RevertAid First Strand cDNA Synthesis Kit
from Thermo Scientific (Waltham, MA, USA); amfiSure qGreen Q-PCR Master Mix(2X),
Without ROX (Q5600-005) from GenDEPOT (Katy, TX, USA).

2.7. Cell Culture and Drugs Treatment

MCF-7 breast cancer cells were cultured in RPMI-1640 supplemented with 10% Fetal
Bovine Serum (GIBCO) and 100 pg/mL streptomycin and incubated in a 37 °C humidified
atmosphere containing 5% CO,. For drug treatment, cells (3 x 10° cells) were plated in
a 6-well plate and further incubated for 24 h. Then, cells were treated with indicated
drugs: Epirubicin, Vorinostat, Methotrexate, Cisplatin, Sorafenib, and Imatinib at 1.5 uM
concentration and collected for assays after 24 h of treatment.

2.8. RNA Extraction, and RT-qPCR

Total RNAs were extracted from MCF7 breast cancer cells using Trizol reagent accord-
ing to the manufacture’s manual. Prior to cDNA synthesis, RNA samples were treated with
DNase I solution to remove trace amounts of DNA. The prepared RNA samples were then
used as templates for reverse transcriptase to generate First-strand cDNA using Thermo
Scientific RevertAid First Strand cDNA Synthesis Kit. The first-strand cDNA synthesis
products were used directly in qPCR using the amfiSure qGreen Q-PCR Master Mix kit.
Primers of target genes used in the assay are presented in Table 4. The expression of the
five genes was quantified in the treated samples relative to the control gene GAPDH and
the control condition of the DMSO treatment. AAC; model was applied using the pcr R
package [88]. Student t-test was used to compare the relative expression in each treatment
to the control DMSO treated cells. p-values < 0.05 were considered significant. Experiments
were performed in five or more replicates.

Table 4. RT-qPCR primers.

Gene Forward Primer Reverse Primer

ESR1 5-TGGAGTCTGGTCCTGTGAGG-3’ 5-GGTCTTTTCGTATCCCACCTTITC-3
SNAI1 5-CCAGTGCCTCGACCACTATG-3’ 5-CTGCTGGAAGGTAAACTCTGG-3’
RELA 5-CCTATAGAAGAGCAGCGTGGG-3"  5-AGATCTTGAGCTCGGCAGTG-3’
NME1 5-ACTAAGTCAGCCTGGTGTGC-3’ 5-CGCCTTGAAAGACGATCCCT-3’
PEBP1 5-GTCACACTTTAGCGGCCTGT-3’ 5-CTCTCCGATTATGTGGGCTC-3’
GAPDH 5-TGCACCACCAACTGCTTAGC-3 5-GGCATGGACTGTGGTCATGAG-3

2.9. Software Environment and Reproducibility

This analysis was performed in R and using Bioconductor packages [89,90]. The
software environment was packaged and distributed as a Docker image (https://hub.
docker.com/r/bcmslab/antimetastatic, accessed on 29 November 2021). The code to
run the analysis and reproduce the figures and tables in this manuscript is available
as open-source (GPL-3) (https://github.com/BCMSLab/antimetastatic, accessed on 29
November 2021).

3. Results
3.1. A Workflow for Building a Network of the Metastasis Suppressors and Their Regulators

In this study, we built and evaluated a network model of MSGs and their transcrip-
tional regulators in breast cancer (Figure 1A). First, we identified PPIs of seventeen MSG
and eleven TFs in the String database. Then, we vetted and supplemented every link
with information from the relevant literature to determine the type of entity, direction of
interaction, and evidence. We added a few interactions that were not present in the PPIs.

Since these causal links originated from experiments in different organisms and
conditions, we further filtered the model to keep only the interactions relevant to the
context of breast cancer. We obtained and analyzed the knockdown datasets of each of
the input genes and regulators in the MCF7 cell line. We resolved the conflicts between
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the reported interactions and fold-change from the knockdown data by prioritizing the
context of the interactions, the strength of the evidence, and the effect size (Figure 1B).
We used differential expression to identify possible links between the nodes that were
not previously reported and add them to the network. We compiled the results were in
a context-specific metastasis model using BEL. The full list of included regulatory links is
reported in Table 3 into three categories: within MSGs, within TFs, and in between the two
groups of gene products.

A B Conflicts
@ ®  Protein-protein . N
¢ o interactions P S
P (STRING) e T oo
MSG + TF E1 T ) v
Literature survey Remove if
E2 1 X  weak evidence
/.\ Possible Add if big
o \/0\:—. causal links E3 4 v effect size
o o0 (BEL) C Concordance
Knockdown matrix D1 D2 D3
Resolving conflicts . ® c ) { e
o o [ ] [
® ® Context-specific o0 60 60 e e
X \/0\ interactions \ \
Drug perturbations D Coherence
NPA & Consistancy
e © D1 D2 D3
? ? Metastasis g Q g°
® o Functional ? Q* gl (J
Model o ()  J o
L 4 Se <4 Q!
® ©o ® ® o

Figure 1. A workflow for building, refining, and evaluating a breast cancer-specific network model
of metastasis. (A) We queried the String database for protein—protein interactions for metastasis
suppressor genes (MSG) and transcription factors (TF). Next, we surveyed the relevant literature
to vet and supplement the interactions and express them as possible causal links in the biological
expression language (BEL). Finally, we filtered and evaluated the network model using knockdown
and drug perturbation datasets. (B) Conflicts between the data-driven and curated interactions were
resolved by prioritizing the context, the strength of the evidence, and the effect sizes. We scored
the metastasis model on drug perturbations using the network perturbation amplitude (NPA). We
divided the network into smaller subgraphs and measured the agreement between the expected and
the observed direction activity. We considered the consistency in (C) subnetworks of nodes connected
to an upstream by one edge (concordance) and (D) paths connecting a particular node to its upstream
by a sequence of edges (coherence).

Finally, we evaluated the context-specific model using gene expression and growth rate
data in MCF?7 treated with different compounds. The context-specific interactions served
as a backbone to a transcript layer derived from the knockdown data to form a two-layer
network. We scored the model using NPA under different conditions. We then compared
the effect of the drugs on the entire network to their impact on the growth rate. Next,
and given the expected effect of drugs on each node, we compared this predicted change
on the downstream nodes to the observed using two different measures of agreement
(Figure 1C,D). Moreover, we constructed a reliable model of highly consistent paths for
further exploration.
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3.2. Identifying Possible Interactions of Metastasis Suppressors Using Text Mining of
the Literature

We took as a starting point the known protein—protein interactions between seventeen
MSGs (Table 1) and their eleven TFs (Table 2). The initial query on the String database
resulted in 93 interactions. Most interactions were based on text mining or the proximity of
terms (gene products) in the text of one or more published study. We manually examined
the provided evidence for each interaction. We also filtered, and supplemented with
information from related studies. The interactions were coded in BEL and were used as the
functional layer for the NPA analysis (Table 3). Each pair of interacting gene products were
considered as a subject and an object. The type and direction of the relation between the
two entities was represented according to the BEL standards.

3.3. Contextualizing Metastasis Suppressor Interactions in Breast Cancer Cells

Inevitably, conflicts arise between the relations suggested in the literature and the man-
ifest changes of knocking down some genes on the expression of others. For example, not
all interactions are relevant in the biology of breast cancer because they come from studies
of different conditions. Additionally, not all interactions are reported in previous studies.
We used a data-driven approach to specify the associations that are most relevant and
augment the network with interactions based on changes in gene expression. The efficiency
of the knockdown was verified by checking the expression of the corresponding genes
(Figure 2, bottom). Most knocked down genes had a significant fold-change (log, FC < —1
and p-value < 0.05) when compared to the control cells. Similarly, a wide-ranging change
(between —4 and 2 log, FC) in expression in the metastasis suppressors and regulators
resulted from the knockdown, in most cases (Figure 2, top).

MSG TF

- : . :
N, L
| -2~ 4
(o))
]
= -
(0]
2 .
@ -4-
<
Q
° .
o
[T

i8S

0- -I- I I I- . [
.1_
,2_

3-

AKAP12 -
ARHGDIB -
BRMS1 -
CASPS -
CD44 -
CDs2-
CDH1 -
CDH2-
DRG1 -
GSN -
MAP2K4 -
MAP2K6 -
MAP2K?7 -
MAPK14 -
NME1 -
PEBP1 -
RRM1 -
ESR1 -
FOS-
FOXM1 -
GATA3 -
HIF1A -
NR5A2 -
RARA -
SPDEF -
TFAP2C -
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Figure 2. Fold-change between control and knockdown of metastasis suppressors and transcription
factors. We obtained expression profiles of seventeen metastasis suppressor genes (MSG) and eleven
transcription factor (TF) knockdowns in the MCF7 cell line. We calculated the differential expression
between the knockdown and control samples. Bottom, bars represent the fold-change (log,) of the
target gene (Self) between the control and knockdown. Top, box plots represent the distribution of
the fold-change of (Other) MSGs and TFs in the corresponding knockdown condition.

We compared the observed fold-change to the directions of previously curated inter-
actions. We kept the ones that had no evidence to the contrary as a result of the knock-
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down of the subject. We removed the links with a significant (absolute log, FC > 1 and
p-value < 0.05) change in the opposite direction of change when the upstream node was
knocked down. Finally, we coded the significant effects of the knockdown of one node (sub-
ject) on others (object) as an interaction between the mRNA to directly increase or decrease.
The resulting network contained 78 edges between the input 35 unique nodes (Table 3).
The recorded interactions included relations between the coding RNA, protein, and protein
activities. That direction of interaction was either positive (increase/directlylncrease) or
negative (decrease/directlyDecrease) (Figure 3A).

TFs seem to have extensive interactions, reflecting the hierarchical nature of the
regulator networks reported in other studies. Only a few nodes in the network had many
edges, and most nodes had, on average, only two edges (Figure 3B, top). The highly
connected nodes were either TFs that received signals from other regulators, key nodes
in signaling pathways, or effector nodes that are tightly regulated. Examples include
FOS and ESR1 as TFs, MAP Kinase subunits as signaling nodes, or CDH1 as an effector.
In addition to filtering in the relevant interactions, we used the knockdown dataset to
build a transcript layer for the functional model. The numbers of nodes connected to
those in the functional layer were more normally distributed. Similarly, the distribution
of up and down-regulation is normal but down-regulated nodes were more frequent
(Figure 3B, bottom).
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Figure 3. Network of interactions among metastasis suppressors and their regulators. (A) A network
graph of seventeen metastasis suppressors and eleven transcription factor nodes. We curated the
edges (red, repression or blue, activation) from protein—protein interactions, literature survey, and
context-specific gene expression data (Functional layer). (B) Top left, the fractions of nodes with a
given number of edges (degree). Top right, the density function of the sum of the shortest paths
between every node and all others (closeness). We built a transcript layer of significant changes in
gene expression (absolute log, fold-change > 0.5 and p-value < 0.01) as a result of knocking down
every node in the functional layer. Bottom left, the density function of the numbers of nodes in the
transcript layer connected to the nodes in the network. Bottom right, a histogram of the numbers
up-and down-regulated nodes in the transcript layer.

3.4. Evaluating the Metastasis Model Using Drug Perturbation Data

To evaluate the relevance of the metastasis network, we used a dataset of growth
inhibition rates and gene expression profiles under drug perturbations. In this dataset, the
growth rate was quantified in breast cancer cell lines (n = 71), including MCF7. Cell cultures
were treated with several compounds (1 = 35) and compared to the baseline replication
rate. We included in the analysis only the drugs with at least one effective dose in terms of
significantly (GRmax < 1) inhibiting cell growth (Figure 4A). Drug responses in most cell
lines were correlated with the response in MCF7 (Figure 4B). NPA infers the activity of the
nodes in the functional layer of the metastasis network using a transcript layer derived
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from the knockdown dataset. This method returns a perturbation coefficient that indicates
the magnitude and direction of changes (—1, inhibition, and 1, activation) for the network
as a whole and for each node in the graph (Figure 4C). The perturbation coefficients ranged
from —0.1 to 0.2, with most nodes being significantly (confidence intervals not including
zero) perturbed at least once. The perturbation amplitudes of 67 cancer cell lines correlated
well with the NPA value in MCF7 (Figure 4D).
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Figure 4. Growth inhibition of MFC7 and metastasis network perturbation under drug treatments.
We obtained growth inhibition and gene expression of breast cancer cell lines (1 = 71) treated with
different drugs (n = 35). (A) Maximum growth rate inhibition (GRmax) of MCF7 from different
does and replicates after accounting for the baseline growth rate. Values of 1 indicate no inhibition,
while —1 indicates the maximum inhibition of growth. (B) A histogram of the Pearson’s correlation
coefficients between MCF7 GRmax and other cell lines. (C) We computed the network perturbation
amplitudes (NPA) for the metastasis network model and every node in the network under drug
(n = 35) treatment in different cell lines (n = 67). Positive values indicate the drug treatment activates
the node in MCF7 and negative values indicate repression of the node. (D) A histogram of the
Pearson’s correlation coefficients between MCF7 NPA and other cell lines.

Next, we divided the metastasis graph into smaller modules and evaluated the agree-
ment between the expected direction of change and the observed coefficients for each
perturbation. We considered every node as an upstream connected to one or more nodes
by one edge (subnetwork). The effect of the drugs on the upstream node was binarized
(activation > 0, repression < 0) and used to infer the expected impact on the downstream
nodes. We compared the expectations to the observed perturbation coefficients of the
downstream node after similar binarization (concordance; see Section 2).

Higher concordance supports the consistency of the suggested model. Cohen’s k was
employed to evaluate the agreement between expectations and observation (x > 0, better
and x < 0, worse), taking into account the chance agreement (50%). The average concor-
dance of each drug was higher (D" = 2.9 and p-value < 0.0001 in KS test) than expected by
chance alone (Figure 5A). The network accurately predicted the direction of drug perturba-
tions. Averaging for each node, a high concordance (D = 2.6 and p-value < 0.0001) was
also observed (Figure 5B). The correlation between the concordance of the subgraph and the
effect of the drug on its source node, a potential source of bias, was very weak (r < —0.02
and p-value > 0.9). We observed higher than chance (D" = 2.47 and p-value < 0.0001) of
consistency in other cell lines treated with the same set of drugs (Figure 5C).
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Figure 5. Concordance of expectations and observations in the subnetworks of the metastasis model.
We calculated and binarized (1 for activation or —1 for repression) the perturbation coefficients of
every node in the network. We then evaluated the agreement between the expected and observed
direction of change in the subnetworks of nodes connected to an upstream by one edge (concor-
dance). First, we multiplied the drug’s effect on the upstream node by the sign of the edges to
form expectations. Next, we compared the expectations with the actual perturbation coefficients
of the corresponding nodes. Negative Cohen’s x indicates worse and positive better agreement
than expected by chance. Finally, we compared the probability distribution of the concordance to
randomly generated values using Kolmogorov-Smirnov (KS) test. D" is the maximum distance
between the cumulative distribution functions (ECDF). (A) A histogram of the average concordances
for every drug. (B) A histogram of the average concordances for every node. (C) A similar workflow
was applied to other cancer cell lines (n = 67), and the concordance values averaged by cell lines are
shown as a histogram.

3.5. Constructing a Model of PEBP1 and Its Interaction with Other Metastasis Suppressors

To demonstrate the utility of this model, we used the same perturbation data to pri-
oritize key nodes and consistent edges between them. We isolated all paths in the graph
leading to PEPB1 (1 = 11). Paths are all interactions in the directed graph that end with the
node corresponding to a protein. We multiplied the binarized perturbation coefficients of
the upstream nodes by the sign of the edges between the nodes in every path. We compared
these expectations were the observed perturbation coefficients on the downstream nodes of
the paths (coherence; see Section 2). Not all drugs produced coherent effects on PEBP1 path-
ways, but the agreement was bigger than to be by chance (D = 2.44 and p-value < 0.0001
in KS test) (Figure 6A). Most paths were coherent (D = 1.45 and p-value < 0.0001) indicat-
ing the strong relevance of these pathways/interactions (Figure 6B). The main sources of
bias (upstream coefficients) were not strongly relevant (r < —0.1 and p-value > 0.7). The ob-
served directions of interaction were also consistent (D™ = 3.01 and p-value < 0.0001) with
predictions across different cancer cell lines when treated with the same drugs (Figure 6C).

We used the top five coherent (coherence > 0.6) PEBP1 paths to highlight interactions
that are strongly relevant to breast cancer cell metastasis and are highly responsive to treat-
ment with different drugs (Figure 7A). We constructed a model of regulatory interactions
between PEBP1 and its upstream regulators with the top five coherent paths represented
by dash-lines (Figure 7B). Interestingly, we found that the pathways flowed in two main
directions to enhance or suppress PEBP1 activity—the upstream proteins of PEBP1 func-
tion as TFs/regulators. One involves RELA (p65) and SNAI1, which were previously
reported to inhibit PEBP1 transcription. The other involves the estrogen receptor (ESR1),
which induces PEBP1 through the kinase NME1, which to our knowledge has not been
reported before.
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Figure 6. Coherence of expectations and observations in the paths to PEBP1. We calculated and
binarized (1 for activation or —1 for repression) the perturbation coefficients of every node in the
network. We then evaluated the agreement between the expected and observed direction of change in
the paths connecting a PEBP1 to its upstream by a sequence of edges (coherence). First, we multiplied
the drug’s effect on the upstream nodes by the sign of the edge connecting it to the next node to
form expectations. Next, we compared the expectations with the actual perturbation coefficients of
the corresponding nodes. Negative Cohen’s « indicates worse and positive better agreement than
expected by chance. Finally, we compared the probability distribution of the coherence to randomly
generated values using Kolmogorov-Smirnov (KS) test. D* is the maximum distance between the
cumulative distribution functions (ECDF). (A) A histogram of the average coherence for every drug.
(B) A histogram of the average coherence for every path. (C) A similar workflow was applied to other
cancer cell lines (1 = 67), and the coherence values averaged by cell line are shown as a histogram.
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Figure 7. A functional model of PEBP1 interactions with other metastasis suppressors and regulators.
We calculated the coherence of the paths leading to PEBP1 in the metastasis networks the expected to
the observed perturbations with various drug treatments. (A) Top five paths based on the average
coherence across drug treatments. (B) A network graph of the top coherent PEBP1 paths. Nodes
represent biological entities and connect to each other by activation (arrow) or repression (blunt)
edges. The thickness of the edges indicates the coherence of the path averaged by drugs.

3.6. Validating the Model Predictions

To test the validity of the predictive model of PEBP1/RKIP regulation, we selected
several drugs that activate or repress PEBP1 and tested their effect on gene expression in
MCEF?. Indeed, four out of 6 drugs conformed to the expected direction of regulation. Epiru-
bicin induced the expression of PEBP1 while Sorafenib, Cisplatin and Imatinib repressed it
(Figure 8A). One repressor (Sorafenib) seems to produce its effect on PEBP1 through either
of the two suggested pathways (Figure 8B). Sorafenib treatment induced RELA and SNAI],
which lowered PEBP1 and repressed ESR1 and NME1, which activated it. The effect size
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on NME1 was small and not significant at a cuttoff of p = 0.05. By contrast, Cisplatin
and Imatinib repressed PEBP1 through one or the other regulatory pathways. Cisplatin
induced RELA and SNAI1 which inhibited PEBP1 (Figure 8D), while Imatinib repressed
PEPB1 through ESR1 and NMET1 inhibition (Figure 8D). The activator, Epirubicin, induced
the expression of PEBP1 through activating NME1 (Figure 8E). Our model predicted the
direction of regulation of PEBP1 and the pathway by which this regulation was achieved
(Figure 8F).
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Figure 8. Activation and repression of PEBP1/RKIP and its regulatory pathways. MCF7 cells
(n > 5) were treated with three activators (Epirubicin, Methotrexate, or Vorinostat), three repressors
(Cisplatin, Imatinib, or Sorafenib), or the control DMSO for 24 h at 1.5 uM dose. Total RNA was
extracted and amplified using PCR. The amount of five mRNA (RELA, SNAI1, PEBP1, NME1, and
ESR1) was quantified relative to the control GAPDH using RT-qPCR. (A) The relative RKIP mRNA
with all six drug treatments compared to the control. The relative amount of five mRNA in three
repressors treatments (B) Sorafenib, (C) Cisplatin or (D) Imatinib, and one activator (E) Epirubicin.
(F) A model of the pathways regulating RKIP and the potential activators and repressors. Drugs are
positioned near the node they regulate with plus or minus signs to indicate activation or repression.
* indicates p < 0.05.

4. Discussion

We used text mining datasets and a manual literature search to extract evidence for
possible interactions between several metastasis suppressors and their regulators. We
filtered these interactions in the context of breast cancer using a knockdown dataset in
the cell line MCF7. The resulting interactions were coded in BEL to build a functional
metastasis model. Finally, we used a reverse causal reasoning approach to evaluate and
prioritize these interactions and extract pathways that are most consistent with drug
treatments that inhibit cell growth.

High-throughput technologies such as massive parallel sequencing and mass spec-
trometry produce simultaneous measurements on many biological entities. Interpreting
these measurements requires expert biological knowledge. An approach to formalize the
use of knowledge and data is to use causal reverse reasoning [4]. Here, we employ such an
approach to infer the function of metastatic suppressors using curated causal links and the
perturbation data. The implicit advantage of this approach is also to make claims about the
role of gene products from measurements of gene expression. Castro and colleagues used
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a similar approach to construct a model of inflammatory bowel disease (IBD). They were
able show that three pathways that contribute to the disease were regulated differently
in the two subtypes of IBD [91]. Another study identified a mechanism the mediates the
difference between the subtypes in response to environmental exposure such as cigarette
smoke [92].

Studies based on text mining or manual curation alone can suffer from several draw-
backs. Some of the identified interactions can only be relevant in a particular biological
or pathological context. In addition, inconsistencies arise with changing the context of
the interactions. Finally, inevitable biases exist in the literature toward studying specific
pathways or models. We attempted to address these issues in our study with a number of
strategies, which we will discuss next.

We took all possible interactions as defined by text mining of relevant studies and
manual curation as a prior (Figure 1A). Next, we evaluated the relevance and consistency
of these links. Interactions that were not contradicted by the knockdown of their cor-
responding nodes are likely to be present in this context (Figure 1B). This filtering step
increases the likelihood of the reported links being relevant. Similarly, consistency in the
direction of change with drug perturbations increases our confidence in the relevance
of some interactions which we initially included. We implemented intuitive consistency
measures for all possible subnetworks (Figure 1C) and for selected paths (Figure 1D) that
include PEBP1 as the target node.

In addition to filtering out irrelevant and insignificant interactions, we used the
knockdown dataset to identify regulatory links that were not previously reported in the
literature. We inferred potential edges from significant changes in gene expression as
a result of the knockdown of a given node (Figure 2). These links would augment the
model by increasing the number of edges and mitigating biases arising from tendencies
in the literature toward studying certain pathways and specific disease contexts. We
suspected that larger effect sizes (perturbation amplitudes) could bias the agreement
measures. However, neither in the case of subnetwork concordance nor the path coherence
was this bias big enough to influence the results (Figures 5C and 6C).

The value of any predictive model is to make testable hypotheses. Here, we suggested
two key pathways regulating PEBP1 (Figure 7). First, the inhibition of the zinc transcrip-
tional repressor (SNAI1) results in PEBP1 suppression [75]. In contrast to PEBP1’s role
in metastasis, SNAI1 induced breast cancer EMT and metastasis by directly repressing
the epithelial markers E-cadherin (CDH1) [74]. Martin and colleagues found SNAI1 to be
overexpressed in invasive metastatic breast cancer compared to normal breast tissue [93].
Moreover, RELA (P65), which is one of five subunits of the Nuclear factor-kappaB family,
positively regulated SNAI1 transcription. NF-xB binds directly to the SNAI1 promoter,
resulting in increased SNAII transcription [94]. Overall, NF-xB, SNAI1, and PEBP1 form a
feedback loop that regulates the development of metastasis and resistance to apoptosis [95].
MTAS3 is another upstream node of SNAI1 and suppresses its transcription. Similarly,
MTAS3 represses the transcription of a series of EMT-promoting genes such as ZEB2 and
N-cadherin [81]. Our model is consistent with the above-mentioned studies.

Another pathway to regulate PEBP1 in our model is through ESR1 and NME1. NME1
dramatically inhibits the NF-xB signaling pathway and alters the transcription of metastasis-
related genes, reducing metastatic pulmonary cells [96]. Additionally, NMEI1 regulates
gene expression in breast cancer cells. Moreover, NME1-dependent genes have a prognostic
value as they predicted survival in breast cancer patients [50]. Here, we propose for the
first time an alternative link between the ESR1 and PEBP1 induction via the kinase NME1.

We experimentally tested the effect of several drugs on PEBP1/RKIP and its regulators.
In addition to verifying the predicted interactions, we wanted to highlight the uncertainty
associated with this model. The model had three points of uncertainty. The first is whether
a given drug produces the predicted effect on the terminal node of interest. Four out of the
six tested drugs conformed to the expectations. The second uncertainty is whether that
effect is achieved through both, either or a third unspecified pathway. Sorafenib inhibited
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PEBP1 by activating the inhibitory pathway of RELA/SNAI1 and inhibiting the other
activation pathway of ESR1/NME. By contrast, Cisplatin and Imatinib repressed PEBP1
through only one of the two pathways. The third uncertainty stems from the fact that the
farther back in the pathway we travel, the less accurate the predictions are. For example,
Epirubicin activated PEBP1 by inducing NME1, but the effect on ESR1 was not as expected.

The validity of this model is limited to how much the included interactions represent
the underlying biology. Another limitation is the amount of gene expression signal captured
by the knockdown and perturbation data. We carefully curated existing studies to have
as many and as accurate as possible links between metastasis suppressors. This model
is guaranteed to evolve with the rapidly accumulating biomedical literature. As there is
no existing high-throughput method to measure the activity of diverse biological entities
in parallel, we relied on a reverse engineering approach to infer the activity from gene
expression changes in their downstream nodes. The reverse reasoning approach assumes
that the changes in gene expression of a group of nodes reflect the activation or inhibition
of their upstream proteins.

The regulatory links in the final model were derived from the literature and prioritized
by our analysis. However, further validation of these interactions is necessary first to test
their relevance and the reliability of this approach. We supported our observations by
devising two notions of consistency, concordance, and coherence. The first of the two
shows the general agreement between expectations and observations in the subgraphs
and the response to drug treatment. On the other hand, coherence shows consistency
in particular pathways and can be thought of as a measure of the relevance of specific
links. We elected to use those two measures of agreement for ease of interpretation rather
than more sophisticated notions of consistency. We carried out experimental validation
and found that our model is most reliable in predicting the drug effect on a target node,
but uncertainty increases as to through which pathway and how many upstream nodes
are regulated.

5. Conclusions

In conclusion, we suggested that the metastasis suppressor PEBP1 is on the receiving
end of two key regulatory mechanisms. One inhibitory pathway involves RELA (NFKB
P65 subunit) and SNAI1, previously reported to interact with PEBP1. The other pathway
involves the estrogen receptor (ESR1), which induces PEBP1 through the kinase NMEL.
Those two pathways were highly responsive to pharmacological perturbations and would
be likely targets for intervention against metastatic breast cancer.
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Abbreviations

The following abbreviations are used in this manuscript:

MSG Metastasis suppressor genes

TF Transcription factor

EMT Epithelial to mesenchymal transition

BEL Biological expression language

GEO Gene expression omnibus

LINCS  Library of network-based integrated cellular signatures
NPA Network perturbation amplitude

PPI Protein-protein interactions

KS Kolmogorov-Smirnov test

GRmax Maximum growth-rate inhibition
ECDF Empirical cumulative distribution function

References

1.  Moffat, J.G,; Vincent, E; Lee, J.A; Eder, J.; Prunotto, M. Opportunities and challenges in phenotypic drug discovery: An industry
perspective. Nat. Rev. Drug Discov. 2017, 16, 531-543, [CrossRef]

2. Martin, F; Thomson, T.M.; Sewer, A.; Drubin, D.A.; Mathis, C.; Weisensee, D.; Pratt, D.; Hoeng, J.; Peitsch, M.C. Assessment of
network perturbation amplitudes by applying high-throughput data to causal biological networks. BMC Syst. Biol. 2012, 6, 1-18.
[CrossRef] [PubMed]

3.  Catlett, N.L.; Bargnesi, A.J].; Ungerer, S.; Seagaran, T.; Ladd, W.; Elliston, K.O.; Pratt, D. Reverse causal reasoning: Applying
qualitative causal knowledge to the interpretation of high-throughput data. BMC Bioinform. 2013, 14, 340. [CrossRef] [PubMed]

4. Martin, F; Sewer, A.; Talikka, M.; Xiang, Y.; Hoeng, ].; Peitsch, M.C. Quantification of biological network perturbations for
mechanistic insight and diagnostics using two-layer causal models. BMC Bioinform. 2014, 15, 238, [CrossRef] [PubMed]

5. Barabasi, A.L.; Oltvai, Z.N. Network biology: Understanding the cell’s functional organization. Nat. Rev. Genet. 2004, 5, 101-113.
[CrossRef]

6. Shankavaram, U.T.; Reinhold, W.C.; Nishizuka, S.; Major, S.; Morita, D.; Chary, KK.; Reimers, M.A.; Scherf, U.; Kahn, A.;
Dolginow, D.; et al. Transcript and protein expression profiles of the NCI-60 cancer cell panel: An integromic microarray study.
Mol. Cancer Ther. 2007, 6, 820-832. [CrossRef] [PubMed]

7.  Ayala delaPefia, F; Andrés, R.; Garcia-Sdenz, J.A.; Manso, L.; Margeli, M.; Dalmau, E.; Pernas, S.; Prat, A.; Servitja, S.; Ciruelos, E.
SEOM clinical guidelines in early stage breast cancer (2018). Clin. Transl. Oncol. 2019, 21, 18-30. [CrossRef]

8. Kogure, A.; Yoshioka, Y.; Ochiya, T. Extracellular vesicles in cancer metastasis: Potential as therapeutic targets and materials. Int.
J. Mol. Sci. 2020, 21, 4463, [CrossRef] [PubMed]

9. Khan, I; Steeg, P.S. Metastasis suppressors: Functional pathways. Lab Investig. 2018, 98, 198-210. [CrossRef] [PubMed]

10. Keller, E.T. Metastasis suppressor genes: A role for raf kinase inhibitor protein (RKIP). Anticancer Drugs 2004, 15, 663—-669.
[CrossRef] [PubMed]

11. Park, S.; Yeung, M.L.; Beach, S.; Shields, ] M.; Yeung, K.C. RKIP downregulates B-Raf kinase activity in melanoma cancer cells.
Oncogene 2005, 24, 3535-3540. [CrossRef] [PubMed]

12. Zou, Q.; Wu, H; Fu, F; Yi, W,; Pei, L.; Zhou, M. RKIP suppresses the proliferation and metastasis of breast cancer cell lines
through up-regulation of miR-185 targeting HMGAZ2. Arch. Biochem. Biophys. 2016, 610, 25-32. [CrossRef] [PubMed]

13. Feng, L.; Zhang, C; Liu, G.; Wang, E. RKIP negatively regulates the glucose induced angiogenesis and endothelial-mesenchymal
transition in retinal endothelial cells. Exp. Eye Res. 2019, 189, 107851. [CrossRef] [PubMed]

14. Chatterjee, D.; Bai, Y.; Wang, Z.; Beach, S.; Mott, S.; Roy, R.; Braastad, C.; Sun, Y.; Mukhopadhyay, A.; Aggarwal, B.B.; et al.
RKIP Sensitizes Prostate and Breast Cancer Cells to Drug-induced Apoptosis. J. Biol. Chem. 2004, 279, 17515-17523. [CrossRef]
[PubMed]

15. Szklarczyk, D.; Morris, ]. H.; Cook, H.; Kuhn, M.; Wyder, S.; Simonovic, M.; Santos, A.; Doncheva, N.T.; Roth, A.; Bork, P; et al.
The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids
Res. 2017, 45, D362-D368. [CrossRef] [PubMed]

16. Hoyt, C.T,; Domingo-Fernandez, D.; Hofmann-Apitius, M. BEL Commons: An environment for exploration and analysis of
networks encoded in Biological Expression Language. Database J. Biol. Databases Curation 2018, 2018, bay126. [CrossRef] [PubMed]

17.  Yau, C.; Benz, C.C. Genes responsive to both oxidant stress and loss of estrogen receptor function identify a poor prognosis group
of estrogen receptor positive primary breast cancers. Breast Cancer Res. BCR 2008, 10, R61. [CrossRef]

18. Dahlman-Wright, K.; Qiao, Y.; Jonsson, P.; Gustafsson, J.A.; Williams, C.; Zhao, C. Interplay between AP-1 and estrogen receptor
« in regulating gene expression and proliferation networks in breast cancer cells. Carcinogenesis 2012, 33, 1684-1691. [CrossRef]

19. Bergamaschi, A.; Madak-Erdogan, Z.; Kim, Y.J.; Choi, Y.L.; Lu, H.; Katzenellenbogen, B.S. The forkhead transcription factor

FOXM1 promotes endocrine resistance and invasiveness in estrogen receptor-positive breast cancer by expansion of stem-like
cancer cells. Breast Cancer Res. BCR 2014, 16, 436. [CrossRef] [PubMed]


http://doi.org/10.1038/nrd.2017.111
http://dx.doi.org/10.1186/1752-0509-6-54
http://www.ncbi.nlm.nih.gov/pubmed/22651900
http://dx.doi.org/10.1186/1471-2105-14-340
http://www.ncbi.nlm.nih.gov/pubmed/24266983
http://dx.doi.org/10.1186/1471-2105-15-238
http://www.ncbi.nlm.nih.gov/pubmed/25015298
http://dx.doi.org/10.1038/nrg1272
http://dx.doi.org/10.1158/1535-7163.MCT-06-0650
http://www.ncbi.nlm.nih.gov/pubmed/17339364
http://dx.doi.org/10.1007/s12094-018-1973-6
http://dx.doi.org/10.3390/ijms21124463
http://www.ncbi.nlm.nih.gov/pubmed/32585976
http://dx.doi.org/10.1038/labinvest.2017.104
http://www.ncbi.nlm.nih.gov/pubmed/28967874
http://dx.doi.org/10.1097/01.cad.0000136877.89057.b9
http://www.ncbi.nlm.nih.gov/pubmed/15269597
http://dx.doi.org/10.1038/sj.onc.1208435
http://www.ncbi.nlm.nih.gov/pubmed/15782137
http://dx.doi.org/10.1016/j.abb.2016.09.007
http://www.ncbi.nlm.nih.gov/pubmed/27651238
http://dx.doi.org/10.1016/j.exer.2019.107851
http://www.ncbi.nlm.nih.gov/pubmed/31655041
http://dx.doi.org/10.1074/jbc.M313816200
http://www.ncbi.nlm.nih.gov/pubmed/14766752
http://dx.doi.org/10.1093/nar/gkw937
http://www.ncbi.nlm.nih.gov/pubmed/27924014
http://dx.doi.org/10.1093/database/bay126
http://www.ncbi.nlm.nih.gov/pubmed/30576488
http://dx.doi.org/10.1186/bcr2120
http://dx.doi.org/10.1093/carcin/bgs223
http://dx.doi.org/10.1186/s13058-014-0436-4
http://www.ncbi.nlm.nih.gov/pubmed/25213081

Cancers 2021, 13, 6098 17 of 20

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Theodorou, V; Stark, R.; Menon, S.; Carroll, ].S. GATA3 acts upstream of FOXA1 in mediating ESR1 binding by shaping enhancer
accessibility. Genome Res. 2013, 23, 12-22. [CrossRef]

Elvidge, G.P; Glenny, L.; Appelhoff, R.].; Ratcliffe, PJ.; Ragoussis, J.; Gleadle, ]. M. Concordant regulation of gene expression by
hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: The role of HIF-1alpha, HIF-2alpha, and other pathways. J. Biol.
Chem. 2006, 281, 15215-15226. [CrossRef] [PubMed]

Lai, C.F; Flach, K.D.; Alexi, X.; Fox, S.P; Ottaviani, S.; Thiruchelvam, P.T.R.; Kyle, EJ.; Thomas, R.S.; Launchbury, R.; Hua, H.; et al.
Co-regulated gene expression by oestrogen receptor « and liver receptor homolog-1 is a feature of the oestrogen response in
breast cancer cells. Nucleic Acids Res. 2013, 41, 10228-10240. [CrossRef] [PubMed]

Salazar, M.D.; Ratnam, M.; Patki, M.; Kisovic, I.; Trumbly, R.; Iman, M.; Ratnam, M. During hormone depletion or tamoxifen
treatment of breast cancer cells the estrogen receptor apoprotein supports cell cycling through the retinoic acid receptor a1l
apoprotein. Breast Cancer Res. BCR 2011, 13, R18. [CrossRef]

Buchwalter, G.; Hickey, M.M.; Cromer, A.; Selfors, L.M.; Gunawardane, R.N.; Frishman, J.; Jeselsohn, R.; Lim, E.; Chi, D.;
Fu, X,; et al. PDEF promotes luminal differentiation and acts as a survival factor for ER-positive breast cancer cells. Cancer Cell
2013, 23, 753-767. [CrossRef]

Tan, S.K.; Lin, Z.H.; Chang, C.W.; Varang, V.; Chng, K.R.; Pan, Y.F; Yong, E.L.; Sung, WK.; Sung, WK.; Cheung, E. AP-2y
regulates oestrogen receptor-mediated long-range chromatin interaction and gene transcription. EMBO ]. 2011, 30, 2569-2581.
[CrossRef] [PubMed]

Lasham, A.; Samuel, W.; Cao, H.; Patel, R.; Mehta, R; Stern, J.L.; Reid, G.; Woolley, A.G.; Miller, L.D.; Black, M.A_; et al. YB-1, the
E2F pathway, and regulation of tumor cell growth. J. Natl. Cancer Inst. 2012, 104, 133-146. [CrossRef] [PubMed]

Dunham, I.; Kundaje, A.; Aldred, S.F,; Collins, PJ.; Davis, C.A.; Doyle, E; Epstein, C.B.; Frietze, S.; Harrow, J.; Kaul, R;; et al. An
integrated encyclopedia of DNA elements in the human genome. Nature 2012, 489. [CrossRef]

Marino, N.; Collins, J.W.; Shen, C.; Caplen, N.J.; Merchant, A.S.; Gokmen-Polar, Y.; Goswami, C.P.; Hoshino, T.; Qian, Y,;
Sledge, G.W.,; et al. Identification and validation of genes with expression patterns inverse to multiple metastasis suppressor
genes in breast cancer cell lines. Clin. Exp. Metastasis 2014, 31, 771-786. [CrossRef] [PubMed]

Sean, D.; Meltzer, P.S. GEOquery: A bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 2007,
23,1846-1847. [CrossRef]

Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W,; Shi, W.; Smyth, G.K. Limma powers differential expression analyses for
RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [CrossRef] [PubMed]

Feng, C.; Song, C.; Liu, Y,; Qian, F; Gao, Y;; Ning, Z.; Wang, Q.; Jiang, Y.; Li, Y;; Li, M.; et al. KnockTF: A comprehensive human
gene expression profile database with knockdown/knockout of transcription factors. Nucleic Acids Res. 2019, 48, D93-D100.
[CrossRef]

Hafner, M.; Niepel, M.; Chung, M.; Sorger, PK. Growth rate inhibition metrics correct for confounders in measuring sensitivity to
cancer drugs. Nat. Methods 2016, 13, 521-527. [CrossRef] [PubMed]

Koleti, A.; Terryn, R.; Stathias, V.; Chung, C.; Cooper, D.J.; Turner, ].P.; VidoviA, D.; Forlin, M.; Kelley, T.T.; D'Urso, A.; et al. Data
Portal for the Library of Integrated Network-based Cellular Signatures (LINCS) program: Integrated access to diverse large-scale
cellular perturbation response data. Nucleic Acids Res. 2018, 46, D558-D566. [CrossRef] [PubMed]

Kort, E. Slinky: Putting the Fun in LINCS L1000 Data Analysis. Available online: https://bioconductor.org/packages/release/
bioc/html/slinky.html (accessed on 29 November 2021).

Martin, F.; Gubian, S.; Talikka, M.; Hoeng, J.; Peitsch, M.C. NPA: An R package for computing network perturbation amplitudes
using gene expression data and two-layer networks. BMC Bioinform. 2019, 20, 1-9. [CrossRef] [PubMed]

Baaten, B.J.; Li, C.R.; Bradley, L.M. Multifaceted regulation of T cells by CD44. Commun. Integr. Biol. 2010, 3, 508-512. [CrossRef]
Wei, Q.; Zhang, F; Richardson, M.M.; Roy, N.H.; Rodgers, W.; Liu, Y.; Zhao, W.; Fu, C.; Ding, Y.; Huang, C.; et al. CD82
restrains pathological angiogenesis by altering lipid raft clustering and CD44 trafficking in endothelial cells. Circulation 2014,
130, 1493-1504. [CrossRef]

Tang, Y,; Cheng, Y.; Martinka, M.; Ong, C.J.; Li, G. Prognostic significance of KAI1/CD82 in human melanoma and its role in cell
migration and invasion through the regulation of ING4. Carcinogenesis 2014, 35, 86-95. [CrossRef]

Lee, M.S.; Byun, H.J.; Lee, J.; Jeoung, D.I; Kim, Y.M.; Lee, H. Tetraspanin CD82 represses Spl-mediated Snail expression and the
resultant E-cadherin expression interrupts nuclear signaling of B-catenin by increasing its membrane localization. Cell. Signal.
2018, 52, 83-94. [CrossRef] [PubMed]

Lu, M,; Marsters, S.; Ye, X,; Luis, E.; Gonzalez, L.; Ashkenazi, A. E-cadherin couples death receptors to the cytoskeleton to
regulate apoptosis. Mol. Cell 2014, 54, 987-998. [CrossRef] [PubMed]

Kim, J.C.; Ha, Y.J.; Tak, K.H.; Roh, S.A.; Kwon, Y.H.; Kim, C.W.; Yoon, Y.S.; Lee, ].L.; Park, Y.; Kim, S.K,; et al. Opposite functions
of GSN and OAS?2 on colorectal cancer metastasis, mediating perineural and lymphovascular invasion, respectively. PLoS ONE
2018, 13, €0202856. [CrossRef] [PubMed]

Raingeaud, J.; Whitmarsh, A J; Barrett, T.; Dérijard, B.; Davis, R.J. MKK3- and MKKé6-regulated gene expression is mediated by
the p38 mitogen-activated protein kinase signal transduction pathway. Mol. Cell. Biol. 1996, 16, 1247-1255. [CrossRef] [PubMed]
Haeusgen, W.; Tueffers, L.; Herdegen, T.; Waetzig, V. Map2k44-identification and functional characterization of a novel Map2k4
splice variant. Biochim. Biophys. Acta 2014, 1843, 875-884. [CrossRef] [PubMed]


http://dx.doi.org/10.1101/gr.139469.112
http://dx.doi.org/10.1074/jbc.M511408200
http://www.ncbi.nlm.nih.gov/pubmed/16565084
http://dx.doi.org/10.1093/nar/gkt827
http://www.ncbi.nlm.nih.gov/pubmed/24049078
http://dx.doi.org/10.1186/bcr2827
http://dx.doi.org/10.1016/j.ccr.2013.04.026
http://dx.doi.org/10.1038/emboj.2011.151
http://www.ncbi.nlm.nih.gov/pubmed/21572391
http://dx.doi.org/10.1093/jnci/djr512
http://www.ncbi.nlm.nih.gov/pubmed/22205655
http://dx.doi.org/10.1038/nature11247
http://dx.doi.org/10.1007/s10585-014-9667-0
http://www.ncbi.nlm.nih.gov/pubmed/25086928
http://dx.doi.org/10.1093/bioinformatics/btm254
http://dx.doi.org/10.1093/nar/gkv007
http://www.ncbi.nlm.nih.gov/pubmed/25605792
http://dx.doi.org/10.1093/nar/gkz881
http://dx.doi.org/10.1038/nmeth.3853
http://www.ncbi.nlm.nih.gov/pubmed/27135972
http://dx.doi.org/10.1093/nar/gkx1063
http://www.ncbi.nlm.nih.gov/pubmed/29140462
https://bioconductor.org/packages/release/bioc/html/slinky.html
https://bioconductor.org/packages/release/bioc/html/slinky.html
http://dx.doi.org/10.1186/s12859-019-3016-x
http://www.ncbi.nlm.nih.gov/pubmed/31481014
http://dx.doi.org/10.4161/cib.3.6.13495
http://dx.doi.org/10.1161/CIRCULATIONAHA.114.011096
http://dx.doi.org/10.1093/carcin/bgt346
http://dx.doi.org/10.1016/j.cellsig.2018.09.001
http://www.ncbi.nlm.nih.gov/pubmed/30189244
http://dx.doi.org/10.1016/j.molcel.2014.04.029
http://www.ncbi.nlm.nih.gov/pubmed/24882208
http://dx.doi.org/10.1371/journal.pone.0202856
http://www.ncbi.nlm.nih.gov/pubmed/30148861
http://dx.doi.org/10.1128/MCB.16.3.1247
http://www.ncbi.nlm.nih.gov/pubmed/8622669
http://dx.doi.org/10.1016/j.bbamcr.2014.01.028
http://www.ncbi.nlm.nih.gov/pubmed/24487067

Cancers 2021, 13, 6098 18 of 20

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

El Mchichi, B.; Hadji, A.; Vazquez, A.; Leca, G. p38 MAPK and MSK1 mediate caspase-8 activation in manganese-induced
mitochondria-dependent cell death. Cell Death Differ. 2007, 14, 1826-1836. [CrossRef] [PubMed]

Shintani, Y.; Fukumoto, Y.; Chaika, N.; Svoboda, R.; Wheelock, M.].; Johnson, K.R. Collagen I-mediated up-regulation of
N-cadherin requires cooperative signals from integrins and discoidin domain receptor 1. ]. Cell Biol. 2008, 180, 1277-1289.
[CrossRef]

Ventura, ].J.; Tenbaum, S.; Perdiguero, E.; Huth, M.; Guerra, C.; Barbacid, M.; Pasparakis, M.; Nebreda, A.R. p38alpha MAP
kinase is essential in lung stem and progenitor cell proliferation and differentiation. Nat. Genet. 2007, 39, 750-758. [CrossRef]
[PubMed]

Alvarado-Kristensson, M.; Melander, F; Leandersson, K.; Rénnstrand, L.; Wernstedt, C.; Andersson, T. p38-MAPK signals
survival by phosphorylation of caspase-8 and caspase-3 in human neutrophils. ]. Exp. Med. 2004, 199, 449-458. [CrossRef]
[PubMed]

Janknecht, R.; Hunter, T. Convergence of MAP kinase pathways on the ternary complex factor Sap-1a. EMBO |. 1997, 16, 1620-1627.
[CrossRef] [PubMed]

Hutchison, M.R. Mice with a conditional deletion of the neurotrophin receptor TrkB are dwarfed, and are similar to mice with a
MAPK14 deletion. PLoS ONE 2013, 8, €66206. [CrossRef]

McCorkle, J.R.; Leonard, M.K,; Kraner, S.D.; Blalock, EIM.; Ma, D.; Zimmer, S.G.; Kaetzel, D.M. The metastasis suppressor NME1
regulates expression of genes linked to metastasis and patient outcome in melanoma and breast carcinoma. Cancer Genom.
Proteom. 2014, 11, 175-194.

Berger, J.C.; Vander Griend, D.J.; Robinson, V.L.; Hickson, J.A.; Rinker-Schaeffer, C.W. Metastasis suppressor genes: From gene
identification to protein function and regulation. Cancer Biol. Ther. 2005, 4, 805-812. [CrossRef] [PubMed]

Lai, R.; Gu, M,; Jiang, W.; Lin, W.; Xu, P; Liu, Z.; Huang, H.; An, H.; Wang, X. Raf Kinase Inhibitor Protein Preferentially Promotes
TLR3-Triggered Signaling and Inflammation. J. Immunol. 2017, 198, 4086—4095. [CrossRef]

Wu, Y.; Chen, K;; Xing, G.; Li, L.; Ma, B.; Hu, Z.; Duan, L.; Liu, X. Phospholipid remodeling is critical for stem cell pluripotency
by facilitating mesenchymal-to-epithelial transition. Sci. Adv. 2019, 5, eaax7525. [CrossRef] [PubMed]

Saito, K.; Takahashi, K.; Huang, B.; Asahara, M.; Kiso, H.; Togo, Y.; Tsukamoto, H.; Mishima, S.; Nagata, M.; lida, M.; et al. Loss of
Stemness, EMT, and Supernumerary Tooth Formation in Cebpb-/-Runx2+/— Murine Incisors. Sci. Rep. 2018, 8, 5169. [CrossRef]
[PubMed]

Mishra, A.K,; Parish, C.R.; Wong, M.L.; Licinio, J.; Blackburn, A.C. Leptin signals via TGFB1 to promote metastatic potential and
stemness in breast cancer. PLoS ONE 2017, 12, e0178454. [CrossRef]

Wang, H.; Leinwand, L.A.; Anseth, K.S. Roles of transforming growth factor-f1 and OB-cadherin in porcine cardiac valve
myofibroblast differentiation. Faseb J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2014, 28, 4551-4562. [CrossRef] [PubMed]

Liu, X;; Su, L.; Liu, X. Loss of CDH1 up-regulates epidermal growth factor receptor via phosphorylation of YBX1 in non-small
cell lung cancer cells. FEBS Lett. 2013, 587, 3995-4000. [CrossRef] [PubMed]

Chen, Z; Li, L.; Xu, S.; Liu, Z.; Zhou, C.; Li, Z; Liu, Y.; Wu, W,; Huang, Y.; Kuang, M,; et al. A Cdh1-FoxM1-Apc axis controls
muscle development and regeneration. Cell Death Dis. 2020, 11, 180. [CrossRef] [PubMed]

Fujita, N.; Kajita, M.; Taysavang, P.; Wade, P.A. Hormonal regulation of metastasis-associated protein 3 transcription in breast
cancer cells. Mol. Endocrinol. 2004, 18, 2937-2949. [CrossRef] [PubMed]

Cardamone, M.D.; Bardella, C.; Gutierrez, A.; Di Croce, L.; Rosenfeld, M.G.; Di Renzo, M.F,; De Bortoli, M. ERalpha as ligand-
independent activator of CDH-1 regulates determination and maintenance of epithelial morphology in breast cancer cells. Proc.
Natl. Acad. Sci. USA 2009, 106, 7420-7425. [CrossRef] [PubMed]

Ma, H.; Gollahon, L.S. ERa Mediates Estrogen-Induced Expression of the Breast Cancer Metastasis Suppressor Gene BRMSI. Int.
J. Mol. Sci. 2016, 17, 158. [CrossRef] [PubMed]

Fujita, N.; Jaye, D.L.; Kajita, M.; Geigerman, C.; Moreno, C.S.; Wade, P.A. MTA3, a Mi-2/NuRD complex subunit, regulates an
invasive growth pathway in breast cancer. Cell 2003, 113, 207-219. [CrossRef]

Kammerer, M.; Gutzwiller, S.; Stauffer, D.; Delhon, I.; Seltenmeyer, Y.; Fournier, B. Estrogen Receptor & (ERx) and Estrogen
Related Receptor a (ERRx) are both transcriptional regulators of the Runx2-I isoform. Mol. Cell. Endocrinol. 2013, 369, 150-160.
[CrossRef] [PubMed]

Hovhannisyan, H.; Zhang, Y.; Hassan, M.Q.; Wu, H.; Glackin, C.; Lian, J.B.; Stein, J.L.; Montecino, M.; Stein, G.S.; van Wijnen, A J.
Genomic occupancy of HLH, AP1 and Runx2 motifs within a nuclease sensitive site of the Runx2 gene. |. Cell. Physiol. 2013,
228,313-321. [CrossRef]

Dong, C.; Ye, D.X,; Zhang, W.B.; Pan, H.Y.; Zhang, Z.Y.; Zhang, L. Overexpression of c-fos promotes cell invasion and migration
via CD44 pathway in oral squamous cell carcinoma. J. Oral Pathol. Med. Off. Publ. Int. Assoc. Oral Pathol. Am. Acad. Oral Pathol.
2015, 44, 353-360. [CrossRef]

Chen, H].; Huang, R.L.; Liew, PL.; Su, PH.; Chen, L.Y.; Weng, Y.C.; Chang, C.C.; Wang, Y.C.; Chan, M.W.Y,; Lai, H.C. GATA3 as a
master regulator and therapeutic target in ovarian high-grade serous carcinoma stem cells. Int. . Cancer 2018, 143, 3106-3119.
[CrossRef] [PubMed]

Krishnamachary, B.; Penet, M.F,; Nimmagadda, S.; Mironchik, Y.; Raman, V.; Solaiyappan, M.; Semenza, G.L.; Pomper, M.G.;
Bhujwalla, Z.M. Hypoxia regulates CD44 and its variant isoforms through HIF-1« in triple negative breast cancer. PLoS ONE
2012, 7, €44078. [CrossRef]


http://dx.doi.org/10.1038/sj.cdd.4402187
http://www.ncbi.nlm.nih.gov/pubmed/17585337
http://dx.doi.org/10.1083/jcb.200708137
http://dx.doi.org/10.1038/ng2037
http://www.ncbi.nlm.nih.gov/pubmed/17468755
http://dx.doi.org/10.1084/jem.20031771
http://www.ncbi.nlm.nih.gov/pubmed/14970175
http://dx.doi.org/10.1093/emboj/16.7.1620
http://www.ncbi.nlm.nih.gov/pubmed/9130707
http://dx.doi.org/10.1371/journal.pone.0066206
http://dx.doi.org/10.4161/cbt.4.8.1865
http://www.ncbi.nlm.nih.gov/pubmed/16082183
http://dx.doi.org/10.4049/jimmunol.1601672
http://dx.doi.org/10.1126/sciadv.aax7525
http://www.ncbi.nlm.nih.gov/pubmed/31807705
http://dx.doi.org/10.1038/s41598-018-23515-y
http://www.ncbi.nlm.nih.gov/pubmed/29581460
http://dx.doi.org/10.1371/journal.pone.0178454
http://dx.doi.org/10.1096/fj.14-254623
http://www.ncbi.nlm.nih.gov/pubmed/25008089
http://dx.doi.org/10.1016/j.febslet.2013.10.036
http://www.ncbi.nlm.nih.gov/pubmed/24211838
http://dx.doi.org/10.1038/s41419-020-2375-6
http://www.ncbi.nlm.nih.gov/pubmed/32152291
http://dx.doi.org/10.1210/me.2004-0258
http://www.ncbi.nlm.nih.gov/pubmed/15358836
http://dx.doi.org/10.1073/pnas.0903033106
http://www.ncbi.nlm.nih.gov/pubmed/19383788
http://dx.doi.org/10.3390/ijms17020158
http://www.ncbi.nlm.nih.gov/pubmed/26821020
http://dx.doi.org/10.1016/S0092-8674(03)00234-4
http://dx.doi.org/10.1016/j.mce.2013.01.024
http://www.ncbi.nlm.nih.gov/pubmed/23403054
http://dx.doi.org/10.1002/jcp.22109
http://dx.doi.org/10.1111/jop.12296
http://dx.doi.org/10.1002/ijc.31750
http://www.ncbi.nlm.nih.gov/pubmed/30006927
http://dx.doi.org/10.1371/journal.pone.0044078

Cancers 2021, 13, 6098 19 of 20

68.

69.
70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.
90.

91.

92.

Xue, Z.; Vis, D.J.; Bruna, A,; Sustic, T.; van Wageningen, S.; Batra, A.S.; Rueda, O.M.; Bosdriesz, E.; Caldas, C.; Wessels, L.EA.; et al.
MAP3K1 and MAP2K4 mutations are associated with sensitivity to MEK inhibitors in multiple cancer models. Cell Res. 2018,
28,719-729. [CrossRef]

Wan, Y.Y. GATA3: A master of many trades in immune regulation. Trends Immunol. 2014, 35, 233-242. [CrossRef] [PubMed]
Liu, Y.; Mayo, M.W.; Nagji, A.S.; Smith, PW.; Ramsey, C.S.; Li, D.; Jones, D.R. Phosphorylation of RelA /p65 promotes DNMT-
1 recruitment to chromatin and represses transcription of the tumor metastasis suppressor gene BRMS1. Oncogene 2012,
31, 1143-1154. [CrossRef]

Lee, S.H.; Che, X,; Jeong, ].H.; Choi, ].Y.; Lee, Y.J.; Lee, Y.H.; Bae, S.C.; Lee, YM. Runx2 protein stabilizes hypoxia-inducible
factor-1a through competition with von Hippel-Lindau protein (pVHL) and stimulates angiogenesis in growth plate hypertrophic
chondrocytes. J. Biol. Chem. 2012, 287, 14760-14771. [CrossRef] [PubMed]

Shi, N.; Zhang, J.; Chen, S.Y. Runx2, a novel regulator for goblet cell differentiation and asthma development. Faseb J. Off. Publ.
Fed. Am. Soc. Exp. Biol. 2017, 31, 412-420. [CrossRef]

Han, H.J.; Russo, J.; Kohwi, Y.; Kohwi-Shigematsu, T. SATB1 reprogrammes gene expression to promote breast tumour growth
and metastasis. Nature 2008, 452, 187-193. [CrossRef] [PubMed]

Very, N.; Lefebvre, T.; El Yazidi-Belkoura, I. Drug resistance related to aberrant glycosylation in colorectal cancer. Oncotarget 2018,
9, 1380-1402. [CrossRef]

Beach, S.; Tang, H.; Park, S.; Dhillon, A.S.; Keller, E.T.; Kolch, W.; Yeung, K.C. Snail is a repressor of RKIP transcription in
metastatic prostate cancer cells. Oncogene 2008, 27, 2243-2248. [CrossRef]

Vega, S.; Morales, A.V.; Ocafia, O.H.; Valdés, F; Fabregat, I.; Nieto, M.A. Snail blocks the cell cycle and confers resistance to cell
death. Genes Dev. 2004, 18, 1131-1143. [CrossRef]

Spanheimer, PM.; Askeland, R.W.; Kulak, M.V.; Wu, T.; Weigel, R.J. High TEAP2C/low CD44 expression is associated with
an increased rate of pathologic complete response following neoadjuvant chemotherapy in breast cancer. J. Surg. Res. 2013,
184, 519-525. [CrossRef] [PubMed]

Hsieh, A.C; Liu, Y.; Edlind, M.P,; Ingolia, N.T.; Janes, M.R.; Sher, A.; Shi, E.Y.; Stumpf, C.R.; Christensen, C.; Bonham, M.].; et al.
The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature 2012, 485, 55-61. [CrossRef]
[PubMed]

Yang, J.; AlTahan, A.; Jones, D.T.; Buffa, EM.; Bridges, E.; Interiano, R.B.; Qu, C.; Vogt, N.; Li, ].L.; Baban, D.; et al. Estrogen
receptor-a directly regulates the hypoxia-inducible factor 1 pathway associated with antiestrogen response in breast cancer. Proc.
Natl. Acad. Sci. USA 2015, 112, 15172-15177. [CrossRef]

Carr, J.R; Kiefer, M.M.; Park, H.J.; Li, J.; Wang, Z.; Fontanarosa, J.; DeWaal, D.; Kopanja, D.; Benevolenskaya, E.V,;
Guzman, G.; et al. FoxM1 regulates mammary luminal cell fate. Cell Rep. 2012, 1, 715-729. [CrossRef]

Du, L.; Ning, Z.; Zhang, H.; Liu, F. Corepressor metastasis-associated protein 3 modulates epithelial-to-mesenchymal transition
and metastasis. Chin. J. Cancer 2017, 36, 28. [CrossRef]

Thiruchelvam, PT.R.; Lai, C.F; Hua, H.; Thomas, R.S.; Hurtado, A.; Hudson, W.; Bayly, A.R.; Kyle, EJ.; Periyasamy, M.;
Photiou, A.; et al. The liver receptor homolog-1 regulates estrogen receptor expression in breast cancer cells. Breast Cancer Res.
Treat. 2011, 127, 385-396. [CrossRef] [PubMed]

Pfahl, M. Nuclear receptor/AP-1 interaction. Endocr. Rev. 1993, 14, 651-658. [CrossRef] [PubMed]

Julien, S.; Puig, I.; Caretti, E.; Bonaventure, J.; Nelles, L.; van Roy, F.; Dargemont, C.; de Herreros, A.G.; Bellacosa, A.; Larue, L.
Activation of NF-kappaB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene 2007,
26, 7445-7456. [CrossRef] [PubMed]

Woodfield, G.W.; Chen, Y.; Bair, T.B.; Domann, EE.; Weigel, R.]. Identification of primary gene targets of TFAP2C in hormone
responsive breast carcinoma cells. Genes Chromosom. Cancer 2010, 49, 948-962. [CrossRef] [PubMed]

Mizamtsidi, M.; Nastos, C.; Mastorakos, G.; Dina, R.; Vassiliou, I.; Gazouli, M.; Palazzo, F. Diagnosis, management, histology
and genetics of sporadic primary hyperparathyroidism: Old knowledge with new tricks. Endocr. Connect. 2018, 7, R56-R68.
[CrossRef] [PubMed]

Ranganathan, P.; Pramesh, C.; Aggarwal, R. Common pitfalls in statistical analysis: Measures of agreement. Perspect. Clin. Res.
2017, 8. [CrossRef]

Ahmed, M.; Kim, D.R. pcr: An R package for quality assessment, analysis and testing of qPCR data. Peer] 2018, 6, e4473.
[CrossRef]

R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2021.

Huber, W,; Carey, V].; Gentleman, R.; Anders, S.; Carlson, M.; Carvalho, B.S.; Bravo, H.C.; Davis, S.; Gatto, L.; Girke, T.; et al.
Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods 2015, 12, 115-121. [CrossRef]

Ruiz Castro, P.A.; Yepiskoposyan, H.; Gubian, S.; Calvino-Martin, F,; Kogel, U.; Renggli, K.; Peitsch, M.C.; Hoeng, J.; Talikka, M.
Systems biology approach highlights mechanistic differences between Crohn’s disease and ulcerative colitis. Sci. Rep. 2021, 11,
11519. [CrossRef]

Lo Sasso, G.; Phillips, B.W.; Sewer, A.; Battey, ].N.; Kondylis, A.; Talikka, M.; Titz, B.; Guedj, E.; Peric, D.; Bornand, D.; et al. The
reduction of DSS-induced colitis severity in mice exposed to cigarette smoke is linked to immune modulation and microbial
shifts. Sci. Rep. 2020, 10, 3829. [CrossRef]


http://dx.doi.org/10.1038/s41422-018-0044-4
http://dx.doi.org/10.1016/j.it.2014.04.002
http://www.ncbi.nlm.nih.gov/pubmed/24786134
http://dx.doi.org/10.1038/onc.2011.308
http://dx.doi.org/10.1074/jbc.M112.340232
http://www.ncbi.nlm.nih.gov/pubmed/22351759
http://dx.doi.org/10.1096/fj.201600954r
http://dx.doi.org/10.1038/nature06781
http://www.ncbi.nlm.nih.gov/pubmed/18337816
http://dx.doi.org/10.18632/oncotarget.22377
http://dx.doi.org/10.1038/sj.onc.1210860
http://dx.doi.org/10.1101/gad.294104
http://dx.doi.org/10.1016/j.jss.2013.04.042
http://www.ncbi.nlm.nih.gov/pubmed/23764310
http://dx.doi.org/10.1038/nature10912
http://www.ncbi.nlm.nih.gov/pubmed/22367541
http://dx.doi.org/10.1073/pnas.1422015112
http://dx.doi.org/10.1016/j.celrep.2012.05.005
http://dx.doi.org/10.1186/s40880-017-0193-8
http://dx.doi.org/10.1007/s10549-010-0994-9
http://www.ncbi.nlm.nih.gov/pubmed/20607599
http://dx.doi.org/10.1210/edrv-14-5-651
http://www.ncbi.nlm.nih.gov/pubmed/8262011
http://dx.doi.org/10.1038/sj.onc.1210546
http://www.ncbi.nlm.nih.gov/pubmed/17563753
http://dx.doi.org/10.1002/gcc.20807
http://www.ncbi.nlm.nih.gov/pubmed/20629094
http://dx.doi.org/10.1530/EC-17-0283
http://www.ncbi.nlm.nih.gov/pubmed/29330338
http://dx.doi.org/10.4103/picr.PICR_123_17
http://dx.doi.org/10.7717/peerj.4473
http://dx.doi.org/10.1038/nmeth.3252
http://dx.doi.org/10.1038/s41598-021-91124-3
http://dx.doi.org/10.1038/s41598-020-60175-3

Cancers 2021, 13, 6098 20 of 20

93.

94.

95.

96.

Martin, T.A.; Goyal, A.; Watkins, G.; Jiang, W.G. Expression of the transcription factors snail, slug, and twist and their clinical
significance in human breast cancer. Ann. Surg. Oncol. 2005, 12, 488—496. [CrossRef] [PubMed]

Barbera, M.].; Puig, I.; Dominguez, D.; Julien-Grille, S.; Guaita-Esteruelas, S.; Peir6, S.; Baulida, ].; Franci, C.; Dedhar, S.;
Larue, L.; et al. Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells. Oncogene 2004,
23,7345-7354. [CrossRef]

Wu, K.; Bonavida, B. The activated NF-kappaB-Snail-RKIP circuitry in cancer regulates both the metastatic cascade and resistance
to apoptosis by cytotoxic drugs. Crit. Rev. Immunol. 2009, 29, 241-254. [CrossRef] [PubMed]

You, D.J.; Park, C.R.; Lee, H.B.; Moon, M.].; Kang, ].H.; Lee, C.; Oh, S.H.; Ahn, C.; Seong, ].Y.; Hwang, ].I. A splicing variant
of NMEI1 negatively regulates NF-«B signaling and inhibits cancer metastasis by interacting with IKKp. J. Biol. Chem. 2014,
289,17709-17720. [CrossRef] [PubMed]


http://dx.doi.org/10.1245/ASO.2005.04.010
http://www.ncbi.nlm.nih.gov/pubmed/15864483
http://dx.doi.org/10.1038/sj.onc.1207990
http://dx.doi.org/10.1615/CritRevImmunol.v29.i3.40
http://www.ncbi.nlm.nih.gov/pubmed/19538137
http://dx.doi.org/10.1074/jbc.M114.553552
http://www.ncbi.nlm.nih.gov/pubmed/24811176

	Introduction
	Materials and Methods
	Protein-Protein Interactions, Literature Search, and Biological Expression Language
	Knockdown of Metastasis Suppressors and Transcription Factors in MCF7
	Pharmacological Perturbations of Breast Cancer Cell Lines
	Network Perturbation Amplitude (NPA)
	Measures of Agreement
	Reagents and Drugs
	Cell Culture and Drugs Treatment
	RNA Extraction, and RT-qPCR
	Software Environment and Reproducibility

	Results
	A Workflow for Building a Network of the Metastasis Suppressors and Their Regulators
	Identifying Possible Interactions of Metastasis Suppressors Using Text Mining of the Literature
	Contextualizing Metastasis Suppressor Interactions in Breast Cancer Cells
	Evaluating the Metastasis Model Using Drug Perturbation Data
	Constructing a Model of PEBP1 and Its Interaction with Other Metastasis Suppressors
	Validating the Model Predictions

	Discussion
	Conclusions
	References

