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Abstract: S100A9, a pro-inflammatory alarmin, is up-regulated in inflamed tissues. However, the role
of S100A9 in regulating neutrophil activation, inflammation and lung damage in sepsis is not known.
Herein, we hypothesized that blocking S100A9 function may attenuate neutrophil recruitment in
septic lung injury. Male C57BL/6 mice were pretreated with the S100A9 inhibitor ABR-238901
(10 mg/kg), prior to cercal ligation and puncture (CLP). Bronchoalveolar lavage fluid (BALF) and
lung tissue were harvested for analysis of neutrophil infiltration as well as edema and CXC chemokine
production. Blood was collected for analysis of membrane-activated complex-1 (Mac-1) expression
on neutrophils as well as CXC chemokines and IL-6 in plasma. Induction of CLP markedly increased
plasma levels of S100A9. ABR-238901 decreased CLP-induced neutrophil infiltration and edema
formation in the lung. In addition, inhibition of S100A9 decreased the CLP-induced up-regulation of
Mac-1 on neutrophils. Administration of ABR-238901 also inhibited the CLP-induced increase of
CXCL-1, CXCL-2 and IL-6 in plasma and lungs. Our results suggest that S100A9 promotes neutrophil
activation and pulmonary accumulation in sepsis. Targeting S100A9 function decreased formation
of CXC chemokines in circulation and lungs and attenuated sepsis-induced lung damage. These
novel findings suggest that S100A9 plays an important pro-inflammatory role in sepsis and could
be a useful target to protect against the excessive inflammation and lung damage associated with
the disease.
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1. Introduction

Abdominal sepsis is a fatal condition triggered by systemic spread of microbial
pathogens, resulting in wide-spread stimulation of the innate immune system. Neu-
trophils are a key component in the innate immune system and excessive activation of
neutrophils is known to cause organ dysfunction in sepsis [1,2]. The lung is the most
vulnerable organ in abdominal sepsis and the most feared complication of septic lung dam-
age is compromised exchange of oxygen and nutrients in the pulmonary microcirculation.
Pulmonary infiltration of neutrophils is known to be a rate-limiting step in sepsis-induced
lung injury [3,4]. Targeting specific adhesion molecules has been shown to reduce not only
neutrophil recruitment but also tissue damage in septic lungs. Extravascular accumulation
of neutrophils is coordinated by secretion of CXC chemokines, including CXCL1 and
CXCL2 [5,6].

Neutrophils cause tissue injury via secretion of reactive oxygen species, proteolytic
enzymes and expulsion of neutrophil extracellular traps (NETs) [7–10]. In addition,
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neutrophils contain calprotectin, a S100A8/A9 heterodimer protein with numerous pro-
inflammatory effects [11,12]. S100A9 constitute up to 45% of all cytoplasmic proteins in
neutrophils [13,14]. The protein is also expressed in monocytes and dendritic cells, but
at much lower levels [15,16]. S100A9 is up-regulated in various models of inflammation
and infection [17–19]. S100A9 is an alarmin which serves to warn the host of imminent
danger [20]. Increased formation of S100A9 is observed in patients with sepsis [21] and
severe COVID-19 infection [22]. Notably, convincing data have shown that calprotectin can
stimulate neutrophil migration and accumulation at sites of inflammation [23,24]. However,
the role of S100A9 in abdominal sepsis is elusive.

Based on the considerations above, we hypothesized that targeting S100A9 might
reduce secretion of pro-inflammatory mediators, accumulation of neutrophils and tissue
damage in sepsis-induced lung damage.

2. Results
2.1. Septic Levels of S100A9

Plasma and lung levels of S100A9 were undetectable or low in sham animals (Figure 1A,B).
Induction of CLP increased plasma levels of S100A9 to 4.6 ng/mL (Figure 1A). Moreover,
CLP elevated lung levels of S100A9 to 24.7 µg/g tissue, which corresponds to a 3.6-fold
increase compared to sham animals (Figure 1B). Administration of ABR-238901 decreased
CLP-induced levels of S100A9 in plasma and lungs by 26% and 95%, respectively (Figure 1A,B).
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Figure 1. Levels of S100A9 in plasma and lung. Mice were pre-treated with intraperitoneal injections of the vehicle or
ABR-238901 (10 mg/kg) 1 h before Sham or CLP operation. Levels of S100A9 in (A) plasma and (B) lung were determined
24 h after CLP induction. Data are presented as box plots with median (25–75 percentile) and the whiskers extend from the
minimum to the maximum levels and dots represent sample values. # p < 0.05 vs. Sham, and * p < 0.05 vs. Vehicle, n = 5.

2.2. Neutrophil Recruitment and Mac-1 Expression

Four hours after CLP, lung levels of MPO, a marker of neutrophil activation, increased
by more than 5.6-fold to 27.9 U/g tissue (Figure 2A, p < 0.05 vs. sham, n = 4). Administration
of 10 and 30 mg/kg of ABR-238901 decreased MPO levels by 81% and 74%, respectively
(Figure 2A, p < 0.05 vs. Vehicle + CLP, n = 4) in septic mice. CLP increased Mac-1 expression
on neutrophils at 4 h compared with sham-operated animals (Figure 2B,C, p < 0.05 vs. sham,
n = 4). Sepsis-induced Mac-1 up-regulation was significantly attenuated by treatment with
10 or 30 mg/kg of ABR-238901 (Figure 2B,C, p < 0.05 vs. sham, n = 4). Administration of
10 and 30 mg/kg ABR-238901 decreased MFI values of Mac-1 on neutrophils from 22,330
(20,096–29,286) to 14,087 (12,834–15,323) and 16,193 (13,415–16,581), respectively, in CLP
mice (Figure 2C, p < 0.05 vs. PBS + CLP, n = 4). Thus, 10 and 30 mg/kg of ABR-238901
exerted similar anti-inflammatory effects on MPO levels in the lungs and Mac-1 expression
on neutrophils in CLP animals and therefore 10 mg/kg of ABR-238901 was used for the
remaining experiments. Cell analysis of BALF revealed a clear increase in the number
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of neutrophils, which increased by 3.5-fold 24 h after CLP (Figure 3A, p < 0.05 vs. sham,
n = 5). Treatment with ABR-238901 (10 mg/kg) decreased pulmonary neutrophils from 3.0
(2.7–3.2) × 105 down to 1.6 (1.3–1.6) × 105, corresponding to a 68% reduction (Figure 3A,
p < 0.05 vs. Vehicle + CLP, n = 5).
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Figure 2. S100A9 regulates neutrophil recruitment. Mice were pre-treated with intraperitoneal injections of vehicle or
ABR-238901 (10 mg/kg and 30 mg/kg) 1 h before CLP. (A) Lung MPO was determined 4 h after CLP. (B) Blood was collected
4 h after CLP and Mac-1 expression (MFI) on neutrophils was determined by flow cytometry. (C) Aggregate data on Mac-1
expression. Statistical comparisons were performed using non-parametrical tests (Kruskal–Wallis on ranks followed by
Dunn’s multiple comparisons). Data are presented as box plots with median (25–75 percentile) and the whiskers extend from
the minimum to the maximum levels and dots represent sample values. # p < 0.05 vs. Sham, and * p < 0.05 vs. Vehicle, n = 4.
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Figure 3. S100A9 regulates neutrophil recruitment. (A) BALF neutrophils were quantified in Bronchoalveolar lavage fluid
(BALF) collected 24 h after CLP induction. Levels of (B) CXCL-1, (C) CXCL-2 and (D) IL-6 in the lungs were determined
24 h after CLP induction. Data are presented as box plots with median (25–75 percentile) and the whiskers extend from the
minimum to the maximum levels and dots represent sample values. # p < 0.05 vs. Sham, and * p < 0.05 vs. Vehicle, n = 5.
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2.3. CXC Chemokines and IL-6 in the Lung

Pulmonary levels of CXC chemokines in control mice were low (Figure 3B,C, n = 5).
In contrast, CLP enhanced lung levels of CXCL1 and CXCL2 from 1.1 (0.4–2.0) ng/g
and 0 ng/g up to 219.8 (205.2–272.8) ng/g and 83.1 (71.6–152.1) ng/g tissue, respectively
(Figure 3B,C, p < 0.05 vs. Sham, n = 5). Treatment with ABR-238901 (10 mg/kg) reduced
CLP-induced generation of CXCL1 and CXCL2 down to 110.8 (44.9–155.5) ng/g and 51.8
(41.1–61.4) ng/g lung tissue, respectively (Figure 3B,C, p < 0.05 vs. PBS + CLP, n = 5). Thus,
ABR-238901 decreased CXCL1 and CXCL2 secretion in the lungs by more than 50% and
38% in septic mice. In addition, administration of ABR-238901 decreased CLP-induced
formation of IL-6 by 63% in the lungs (Figure 3D, p < 0.05 vs. PBS + CLP, n = 5).

2.4. Lung Edema and Tissue Injury

Examination of H&E-stained cross sections of the lungs from sham mice exhibited
normal pulmonary microarchitecture (Figure 4A), whereas CLP mice demonstrated severe
destruction of the lung tissue architecture with interstitial edema, capillary congestion,
necrosis and massive infiltration of neutrophils (Figure 4B). Administration of ABR-238901
reduced sepsis-provoked tissue destruction and inflammation (Figure 4C). Quantification
of the histological damage revealed that CLP significantly increased the lung injury score
(Figure 4D, p < 0.05 vs. sham, n = 5). Notably, treatment with ABR-238901 reduced the lung
injury score in CLP animals by 63% (Figure 4E, p < 0.05 vs. PBS + CLP, n = 5). Pulmonary
edema formation greatly increased in animals subjected to CLP. Thus, we found that lung
wet/dry ratio increased by 10%, i.e., from 4.6 (4.5–4.7) to 5.1 (5.0–5.4) in septic animals
(Figure 4E, p < 0.05 vs. sham, n = 5). Administration of 10 mg/kg ABR-238901 reduced
decreased wet/dry ratio down to 4.3 (4.2–4.5), in CLP mice, corresponding to an edema
reduction of more than 99% (Figure 4E, p < 0.05 vs. PBS + CLP, n = 5).
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(B) vehicle or (C) 10 mg/kg of ABR-238901 for 1 h before CLP operation. (D) Lung injury score was evaluated by using a
predefined scoring system in a double-blinded manner, as described in the method sections. Lung weight wet/dry ratio was
used to determine edema formation (E). Data are presented as box plots with median (25–75 percentile) and the whiskers
extend from the minimum to the maximum levels and dots represent sample values. # p < 0.05 vs. Sham, and * p < 0.05 vs.
Vehicle, n = 5. Scale bars = 100 µm.
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2.5. Systemic Inflammation

CLP triggered increases of plasma levels of CXCL1 by 18.3-fold, CXCL2 by 4.7-fold
and IL-6 by 6.5-fold (Figure 5A–C, p < 0.05 vs. sham, n = 5). Treatment with 10 mg/kg of
ABR-238901 reduced plasma levels of IL-6, CXCL1 and CXCL2 by more than 77%, 87% and
61%, respectively in septic animals (Figure 5A–C, p < 0.05 vs. PBS + CLP, n = 5). As part of
a systemic inflammatory response in sepsis, the number of circulating leukocytes decreases.
Indeed, it was found that CLP caused leukocytopenia (Table 1) and that administration of
ABR-238901 antagonized CLP-induced leukocytopenia in septic mice (Table 1).
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Figure 5. S100A9 regulates systemic inflammation. Mice were pre-treated with intraperitoneal injections of the vehicle or
ABR-238901 (10 mg/kg) 1 h before Sham or CLP operation. Levels of (A) CXCL-1, (B) CXCL-2 and (C) IL-6 in plasma were
determined 24 h after CLP induction. Data are presented as box plots with median (25–75 percentile) and the whiskers
extend from the minimum to the maximum levels and dots represent sample values. # p < 0.05 vs. Sham, and * p < 0.05 vs.
Vehicle, n = 5.

Table 1. Systemic leukocyte counts.

PMNL MNL Total Leukocytes

Sham 1.2 ± 0.2 5.3 ± 1.9 6.5 ± 1.8
Vehicle + CLP 0.6 ± 0.3 # 2.0 ± 0.8 # 2.6 ± 1.1 #

ABR + CLP 1.3 ± 0.5 * 3.2 ± 0.7 4.6 ± 0.9 *
Mice were pre-treated with intraperitoneal injections of the vehicle or ABR-238901 (10 mg/kg) 1 h before Sham or
CLP operation. Blood was collected from animals 24 h after CLP induction and leukocytes were identified as
polymorphonuclear leukocytes (PMNL) and monomorphonuclear (MNL). Data are presented with mean ± SEM,
106 cells/mL. # p < 0.05 vs. Sham, * p < 0.05 vs. Vehicle, n = 5.

2.6. Late Treatment with ABR-238901

In separate experiments, ABR-238901 (10 mg/kg) was administered after CLP induc-
tion. However, late administration of ABR-238901 had no effect on neutrophil recruitment,
edema and CXC chemokines formation in the lungs of CLP animals (Figures S1 and S2).

3. Discussion

Management of patients with sepsis poses a huge challenge to clinicians. Therapy is
largely limited to supportive care and novel ways to ameliorate pathological inflammation
in abdominal sepsis. This investigation demonstrates that targeting S100A9 reduces septic
lung damage. Blocking S100A9 decreased neutrophil activation and pulmonary infiltration
and attenuated lung damage in abdominal sepsis. Our findings suggest that S100A9
regulates lung accumulation of neutrophils via both Mac-1 up-regulation on neutrophils
and induction of CXC chemokines in the lungs. Thus, this study suggest that S100A9 plays
an important role in abdominal sepsis and that targeting S100A9 may be useful to protect
against septic lung injury.

S100A9 is best known as a dimerization partner of S100A8, forming calprotectin,
which is used as an effective marker of gut inflammation in patients with Crohn’s disease
and ulcerative colitis [25,26]. Nonetheless, accumulating data suggest that S100A9 exerts
a functional role in several inflammatory conditions, including arthritis [27], myocardial
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infarction [17,28], endotoxin-induced lung injury [29] and acute pancreatitis [30]. In the
present study, it was observed that induction of abdominal sepsis greatly enhanced plasma
and lung levels of S100A9. This finding is in line with observation in patients with sepsis
and COVID-19 disease [21,22] and supports the notion of S100A9 as an active mediator
in severe infections. Notably, our data demonstrate that treatment with ABR-238901, a
specific S100A9 inhibitor, markedly decreased CLP-induced elevations of S100A9 in plasma
and lungs, also attenuated systemic neutrophil activation, pulmonary chemokines and
edema formation as well as tissue damage, suggesting that S100A9 plays an important
role in regulating inflammation and lung damage associated with abdominal sepsis. These
findings are in line with a previous study, which shows that inhibition of S100A9 inhibits
endotoxin-induced lung injury [29]. However, it should be mentioned that another study
reported that administration of S100A9 reduced endotoxin-induced lung injury [31]. The
reasons for this discrepancy in the endotoxin-based model of lung injury is not known but
could be related to different experimental protocols. Interestingly, our present findings
extend a previous study demonstrating that mice lacking S100A9 have improved survival
and decreased liver damage, in a model based on intraperitoneal injection of Escherichia
coli [32]. Together, these results support the concept that targeting S100A9 might be of
beneficial value in lung damage triggered by systemic spread of bacteria. Although late
treatment with ABR-238901 did not reduce CLP-induced lung inflammation and damage,
future studies should evaluate the role of late inhibition of S100A9 in septic animals treated
with antibiotics. Nonetheless, several studies have established neutrophil infiltration as a
key component in the pathophysiology of septic lung injury [33,34]. In the present study,
we observed that administration of ABR-238901 decreased lung levels of MPO by 74% in
abdominal sepsis. Moreover, our results reveal that ABR-238901 reduces sepsis-provoked
pulmonary neutrophilia by 68%. Together, these findings suggest that S100A9 is a key
regulator of neutrophil trafficking in septic lung injury.

Numerous studies have shown that neutrophil recruitment into the lungs is a multi-
step process involving microvascular trapping and active adhesion on the endothelium,
followed by transendothelial extravasation [35,36]. Leukocyte–endothelial cell interac-
tions are supported by specific adhesion molecules [37]. For example, convincing results
have documented that P-selectin glycoprotein ligand-1 (PSGL-1), LFA-1 and Mac-1, on
neutrophils, mediate alveolar accumulation in septic lung injury [3,38]. Previous data
has also shown that S100A9 triggers Mac-1-dependent neutrophil adhesion to fibrinogen
in vitro [39]. We therefore asked whether ABR-238901 could regulate Mac-1 expression on
neutrophils in sepsis. We observed that CLP caused a clear increase in Mac-1 expression
on circulating neutrophils. Treatment with ABR-238901 significantly decreased neutrophil
up-regulation of Mac-1 in septic animals, suggesting that S100A9 indeed regulates Mac-1
expression on neutrophils in abdominal sepsis. Secreted chemokines regulate accumula-
tion of leukocytes at extravascular sites [40,41]. CXC chemokines CXCL1 and CXCL2 are
especially effective in attracting neutrophils [42,43]. Notably, it has been documented that
S100A9 can activate and promote secretion of CXC chemokines from macrophages [44]
and epithelial cells [45,46]. In the present study, we found that ABR-238901 attenuated
sepsis-associated CXCL1 and CXCL2 formation by more than 50% and 38% in the lung.
A previous study showed that blocking CXCR2, the main receptor of CXCL1 and CXCL2,
effectively decreased alveolar accumulation of neutrophils in the CLP model of sepsis [4],
demonstrating that CXC chemokines are important regulators of pulmonary infiltration
of neutrophils in septic lung injury. We observed that treatment with ABR-238901 greatly
decreased lung generation of CXCL1 and CXCL2, suggesting that S100A9 regulates CXC
chemokine formation in the inflamed lung. Thus, inhibition of S100A9 reduces both Mac-1
up-regulation on neutrophils and CXC chemokine formation in tissues, which helps to ex-
plain part of the inhibitory impact of ABR-238901 on neutrophil recruitment in septic lung
injury. It should be mentioned that S100A9 could also regulate other aspects of leukocyte
recruitment and further investigation is required to explore the exact role of S100A9 and
other alarmins in sepsis and lung injury.
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Leukocytopenia is a key hallmark of systemic inflammation [33]. Herein, we observed
that ABR-238901 antagonized CLP-induced leukocytopenia, indicating that S100A9 also
controls systemic inflammation in sepsis. This notion is also supported by our finding
demonstrating that ABR-238901 reduced plasma levels of IL-6, CXCL1 and CXCL2 in
septic mice.

Taken together, our results indicate that S100A9 is a potent stimulator of neutrophil
trafficking to the lung, by enhancing Mac-1 expression and CXC chemokine generation
in abdominal sepsis. Blocking S100A9 reduces neutrophil infiltration and activation and
protects against edema formation and tissue damage in septic lungs. Thus, our study
reveals an important role of S100A9 in septic lung damage and suggests that S100A9 could
be a useful target to attenuate lung inflammation and tissue damage in abdominal sepsis.

4. Materials and Methods
4.1. Animals

All experimental procedures were performed according to suggestions from the Re-
gional Ethics Committee for animal experimentation at Lund University, Sweden (Permit
number: 5.8.18-08769/2019). Male C57BL/6 mice (weight, 20–25 g) were housed under
standardized 12 h light–dark cycle conditions at 22 ◦C, fed a laboratory diet, and had
water accessible ad libitum. Animals were anesthetized by intraperitoneal (i.p.) injec-
tion of 75 mg/kg of ketamine hydrochloride (Hoffman-La Roche, Basel, Switzerland) and
25 mg/kg of xylazine (Janssen Pharmaceutica, Beerse, Belgium). Buprenophin hydrochlo-
ride (0.5 mg/kg; Schering-Plough, Berkeley Heights, NJ, USA) was subcutaneously injected
for analgesia. Mice were randomly assigned to different groups in all experiments.

4.2. Induction of CLP and Experimental Design

Induction of polymicrobial sepsis was performed as described previously [3]. For
preparation, a midline incision was made to expose the cecum on the anesthetized mice.
Subsequently, 75% of the cecum was ligated with a suture and soaked with phosphate-
buffered saline (PBS; PH 7.4), and then was punctured twice with a 21-gauge needle. A
small amount of feces from the perforation sites was gently squeezed out. The cecum was
then returned to the abdominal cavity. Finally, the incision on the peritoneum was closed
with 5-0 suture. In the sham group, the cecum was exposed but no ligation or puncture
was performed. In experiments involving anti-S100A9 treatment, mice were randomly
chosen and pre-treated with intraperitoneal (i.p.) injections of vehicle or a specific S100A9
blocker, ABR-238901 (10 mg/kg or 30 mg/kg, a gift from Active Biotech, Lund, Sweden),
1 h before induction of CLP or Sham. In separate experiments, ABR-238901 was given 4 h
after CLP induction. Mice were re-anesthetized for sample collection. Blood collection,
lung harvesting, and bronchoalveolar lavage fluid (BALF) collection were performed 6 h
or 24 h after CLP induction.

4.3. Myeloperoxidase Activity

Lung tissues were pre-weighed and homogenized in 1 mL of phosphate-buffered
saline (PBS) by a TissueLyser (Qiagen, Hilden, Germany). MPO activity of the supernatants
were determined spectrophotometrically as the MPO catalyzed the change in absorbance
in the redox reaction of H2O2 (450 nm, with a reference filter 540 nm, 25 ◦C). Results are
interpreted as MPO units per gram of tissue.

4.4. Enzyme-Linked Immunosorbent Assay

Lung tissues were homogenized by a TissueLyser. Blood was collected from the
inferior vena cava with acid citrate dextrose, centrifuged 2000× g for 10 min at room
temperature, and the plasma was collected. Plasma and lung levels of S1009A were
detected using Mouse S100A9 ELISA Kit (Abcam, Amsterdam, The Netherlands). Levels of
CXCL-1, CXCL-2 and IL-6 in the lung were determined in supernatants by use of ELISA kits
(R&D Systems Europe, Abingdon, Oxon, UK) according to the manufacturers’ instructions.



Int. J. Mol. Sci. 2021, 22, 12923 8 of 11

4.5. Histology

Samples of the lung were fixed in 4% formaldehyde for 24–48 h at 4 ◦C, then dehy-
drated with ethanol. Tissues were embedded in paraffin and 5 µm-thick sections were
sliced and subsequently stained with hematoxylin and eosin. Histological evaluation was
performed in a double-blinded manner based on a pre-established scoring system, as
described previously (5). Briefly, four parameters were assessed, including size of alveolar
spaces, thickness of alveolar septa, alveolar haemorrhage, and neutrophil infiltration. Each
parameter was scored from 0 (absent) to 4 (extensive).

4.6. Bronchoalveolar Lavage Fluid (BALF) and Lung Edema

Animals were anesthetized and the trachea was exposed, a transparent PE50 catheter
was placed into the trachea and fixed with suture. BALF was collected by washing five
times with 0.8 mL cold PBS containing 1% EDTA. For counting leukocytes in BALF, BALF
was centrifuged 1400 rpm for 5 min and the supernatant was discarded, and the pellet was
resuspended in 200 µL PBS. Leukocytes were classified as monomorphonuclear (MNL)
and polymorphonuclear (PMNL) leukocytes and counted in a Burker chamber. The left
lung was excised, all other extrapulmonary tissues were removed and gently dried with
blotting paper, and wet weight was measured. Samples from the lung of each animal were
placed in a dish and dried at 60 ◦C for 3 days and weighed again at the dry weight. Lung
edema was interpreted as a wet-to-dry weight (wet/dry) ratio.

4.7. Systemic Leukocytes Differential Counts

Blood was collected from a tail vein and directly mixed with Turks solution (1:20 dilu-
tion). Leukocytes were classified as monomorphonuclear (MNL) and polymorphonuclear
(PMNL) leukocytes and counted in a Burker chamber.

4.8. Flow Cytometry

For analysis of Mac-1 expression, freshly isolated bone marrow neutrophils were fixed
with 4% formaldehyde and then washed twice with PBS containing 2% FBS. To reduce
nonspecific binding, FcγRIII/FcγRII was blocked with anti-CD16/CD32 (553124, BD
Bioscience, San Diego, CA, USA), and continued labeling with FITC-conjugated anti-CD11b
(553310, BD Biosciences, San Diego, CA, USA) and APC-conjugated anti-Ly6G (127614,
Biolegend, London, UK). Flow cytometric detection was performed using the CytoFLEX
Flow Cytometer (Beckman Coulter, Indianapolis, IN, USA) and data was analyzed by
CytExpert 2.0 software (Beckman Coulter, Indianapolis, IN, USA).

4.9. Statistics

Graphpad Prism 8 was used for data analysis. Data are presented as box plots with
median (25–75 percentile) and the whiskers extend from the minimum to the maximum
levels and dots represent sample values. Statistical comparisons were performed using
non-parametrical tests (Mann–Whitney or Kruskal–Wallis on ranks followed by Dunn’s
multiple comparisons). p < 0.05 was considered significant and n represents the number of
animals or experiments.
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