
materials

Article

Resistance to Sulfuric Acid Corrosion of Geopolymer Concrete
Based on Different Binding Materials and Alkali Concentrations

Wei Yang 1, Pinghua Zhu 1, Hui Liu 1,* , Xinjie Wang 1, Wei Ge 2,* and Minqi Hua 3

����������
�������

Citation: Yang, W.; Zhu, P.; Liu, H.;

Wang, X.; Ge, W.; Hua, M. Resistance

to Sulfuric Acid Corrosion of

Geopolymer Concrete Based on

Different Binding Materials and

Alkali Concentrations. Materials 2021,

14, 7109. https://doi.org/10.3390/

ma14237109

Academic Editor: Claudio Ferone

Received: 27 October 2021

Accepted: 17 November 2021

Published: 23 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Civil Engineering, Changzhou University, Changzhou 213164, China; cczuyw@163.com (W.Y.);
zph@cczu.edu.cn (P.Z.); wangxinjie@cczu.edu.cn (X.W.)

2 Department of Materials Science and Engineering, Anhui University of Science and Technology,
Huainan 232001, China

3 School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China;
alcestle@gmail.com

* Correspondence: liuhui@cczu.edu.cn (H.L.); gwsfxx@163.com (W.G.)

Abstract: Geopolymer binder is expected to be an optimum alternative to Portland cement due to its
excellent engineering properties of high strength, acid corrosion resistance, low permeability, good
chemical resistance, and excellent fire resistance. To study the sulfuric acid corrosion resistance of
geopolymer concrete (GPC) with different binding materials and concentrations of sodium hydroxide
solution (NaOH), metakaolin, high-calcium fly ash, and low-calcium fly ash were chosen as binding
materials of GPC for the geopolymerization process. A mixture of sodium silicate solution (Na2SiO3)
and NaOH solution with different concentrations (8 M and 12 M) was selected as the alkaline activator
with a ratio (Na2SiO3/NaOH) of 1.5. GPC specimens were immersed in the sulfuric acid solution
with the pH value of 1 for 6 days and then naturally dried for 1 day until 98 days. The macroscopic
properties of GPC were characterized by visual appearance, compressive strength, mass loss, and
neutralization depth. The materials were characterized by SEM, XRD, and FTIR. The results indicated
that at the immersion time of 28 d, the compressive strength of two types of fly ash-based GPC
increased to some extent due to the presence of gypsum, but this phenomenon was not observed
in metakaolin-based GPC. After 98 d of immersion, the residual strength of fly ash based GPC was
still higher, which reached more than 25 MPa, while the metakaolin-based GPC failed. Furthermore,
due to the rigid 3D networks of aluminosilicate in fly ash-based GPC, the mass of all GPC decreased
slightly during the immersion period, and then tended to be stable in the later period. On the contrary,
in metakaolin-based GPC, the incomplete geopolymerization led to the compressive strength being
too low to meet the application of practical engineering. In addition, the compressive strength of GPC
activated by 12 M NaOH was higher than the GPC activated by 8 M NaOH, which is owing to the
formation of gel depended on the concentration of alkali OH ion, low NaOH concentration weakened
chemical reaction, and reduced compressive strength. Additionally, according to the testing results
of neutralization depth, the neutralization depth of high-calcium fly ash-based GPC activated by
12 M NaOH suffered acid attack for 98 d was only 6.9 mm, which is the minimum value. Therefore,
the best performance was observed in GPC prepared with high-calcium fly ash and 12 M NaOH
solution, which is attributed to gypsum crystals that block the pores of the specimen and improve
the microstructure of GPC, inhibiting further corrosion of sulfuric acid.

Keywords: geopolymer concrete; fly ash; metakaolin; alkali concentration; sulfuric acid corrosion

1. Introduction

Concrete durability refers to the resistance of concrete against the action of aggressive
environmental media which threaten the normal service of concrete components [1]. The
actions of these aggressive environmental media are usually summarized as acid attack [2],
sulphate attack [3], and chloride-induced corrosion [4]. In the different forms of concrete
durability failure, acid attack is the main factor affecting the service life of concrete used in
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sewage collection systems. The lifespan of concrete used for these wastewater networks
significantly reduces to around 30–50 years from the design life of 100 years, which is
attributed to acid attack caused by bacterial activity [5–7]. In addition, the acid attack of
concrete has contributed to huge economic losses worldwide [8]. Thus, it is too impatient
to wait to improve the acid resistance durability of concrete used for wastewater networks.

Geopolymer, as some novel binder materials, due to its excellent engineering proper-
ties of high strength, high temperature resistance, weather resistance, low permeability, and
acid corrosion resistance [9–11], has been studied extensively. Geopolymer concrete (GPC)
is composed of aggregates and alkali-activated aluminosilicate materials, such as alumi-
nosilicate materials including fly ash (FA), metakaolin (MK), and ground granulated blast
furnace slag (GGBS), etc. [12–14]. Under the action of an alkali activator, GPC undergoes
geopolymerization and generates an amorphous three-dimensional network structure of
silicon-oxygen tetrahedron and aluminum-oxygen tetrahedron connected through bridge
oxygen [15–17], which endows the GPC with better acid corrosion resistance when com-
pared with the OPC concrete [18]. It is reported that the acid corrosion resistance of OPC
mainly depends on the hydration product and the quality of the protective layer [19,20].
However, for GPC, it is the depolymerization of aluminosilicate polymers and the libera-
tion of silicic acid which affect its acid corrosion resistance [20,21]. Accordingly, the acid
corrosion resistance of GPC is superior to OPC concrete for its more stable cross-linked
aluminosilicate polymer structure in GPC.

In studies so far, there are a large number of scholars that have studied the acid
resistance of GPC. They found that the acid degradation of the calcium-free geopolymer
(metakaolin) begins with an ion-exchange between framework cations (i.e., sodium) and
protons from the acid solution. The protons induce an electrophilic attack, which results in
the ejection of aluminum (i.e., dealumination) from the Si-O-Al bonds of the binder [22].
Timothy et al. [23] studied the acid degradation mechanism of low-calcium fly ash binders
and demonstrated its similar destruction process with a calcium-free geopolymer. The
only difference is that the diffusing SO4

2− anions meet with counter diffusing calcium ions,
causing the deposition of gypsum crystals inside the penetrated layer. Nuaklong et al. [24]
used metakaolin as a partial substitution for high-calcium fly ash in geopolymer binders
and concluded that the mixed binders exhibited higher resistance to acid attacks than the
single binder due to the decline of calcium content of mixtures. However, Mehta et al. [25]
investigated the sulfuric acid resistance of high-calcium fly ash-based geopolymer concrete
blended with an additional calcium source (OPC). They found that the inclusion of OPC
improved the compressive strength of fly ash-based geopolymer concrete specimens sig-
nificantly and 10% OPC addition exhibited better acid resistance than 0%. Geopolymer
mixtures prepared with different binding materials show different resistance to sulfuric
acid, especially for calcium-free or calcium-based binding materials. Thus, it is significant
to investigate the sulfuric-acid resistance of geopolymers respectively prepared from dif-
ferent binding materials: metakaolin and low-calcium and high-calcium fly ash. Besides,
most scholars only take a single concentration of alkali activator into consideration [26,27],
ignoring the influence of alkali activator concentration on the acid resistance of geopoly-
mers. Different concentrations of alkali activator should be considered to prepare the
geopolymer mixtures.

The work reported herein aimed to clarify the effects of different binding materials
and concentrations of alkali activators of GPC on the sulfuric acid corrosion resistance.
Additionally, the acid corrosion resistance test in this work was carried out in samples
immersed in an acid solution of pH = 1. Wetting-drying cycle experiment was used for the
test of acid corrosion resistance. The properties were characterized by visual appearance,
compressive strength, mass loss, and neutralization depth. SEM, XRD, and FTIR were
selected to analyze the mechanism of acid corrosion resistance for GPC.
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2. Experimental Details
2.1. Raw Materials

Three types of binding materials, including as low-calcium fly ash, high-calcium fly
ash, and metakaolin, were adopted to prepare the GPC. The low-calcium fly ash was
Class-F, whose content of CaO was less than 10%. The high calcium fly ash was Class-C,
and its content of CaO was more than 10%. Metakaolin was purchased from Gongyi,
Henan Province. The chemical compositions of the low-calcium fly ash, high-calcium fly
ash, and metakaolin were measured by X-ray fluorescence (XRF), as shown in Table 1.
The coarse aggregate was natural limestone with the size of 4.75–9.5 mm. Washed river
sand was chosen as fine aggregate. The reagents of sodium hydroxide (NaOH ≥ 96.0%,
AR), sulfuric acid (H2SO4 ≥ 95.0%, AR), and phenolphthalein (1%) were purchased from
Sinopharm Chemical Reagent Co., Ltd., Shanghai, China. Sodium silicate liquid (Na2SiO3
with 29.9 wt% SiO2, 13.75 wt% Na2O, and 56.35 wt% H2O) and the distilled water were
used in the experiments.

Table 1. Chemical compositions of binding materials (wt.%).

Chemical
Compositions SiO2 Al2O3 Fe2O3 SO3 TiO2 CaO K2O MgO Na2O LOI a

Class F fly ash 44.94 32.15 5.14 2.07 1.49 9.90 1.13 1.04 0.81 1.33
Class C fly ash 44.18 26.92 9.34 1.53 1.34 11.02 1.39 1.88 1.29 1.11

Metakaolin 48.88 43.39 3.77 0.04 2.45 0.98 0.14 - - 0.35
a LOI: Loss on ignition.

2.2. Mix Proportions and Preparation of Specimens

The GPC were prepared with binding materials and an alkaline solution which was
a combination of Na2SiO3 and different concentrations of NaOH (8 M and 12 M) pre-mixed
with a ratio (Na2SiO3/NaOH) of 1.5. The mix proportions for all GPC mixtures are listed
in Table 2.

Table 2. Proportions of mixtures (kg/m3).

Mixes
Binding Materials

NA Sand
NaOH

Na2SiO3 Free Water
Class F Class C Metakaolin 8 M 12 M

F-8 377 - - 1150 500 108 - 162 -
F-12 377 - - 1150 500 - 108 162 -
C-8 450 1150 500 108 - 162 -

C-12 450 1150 500 - 108 162 -
MK-8 - - 399 1150 500 108 162 60

MK-12 - - 399 1150 500 108 162 60

The preparation process of GPC is shown in Figure 1. The cylindrical specimens with
Φ50 × 100 mm in dimension were prepared for tests. It should be noted that the GPC
specimens needed to be filled in three layers. After filling, the specimens were vibrated
on the vibrating table for 30 s to remove the bubbles inside. Then, they were put into
hermetic bags and cured at 60 ◦C for 48 h. Subsequently, the GPC specimens cooled for 1 h
were demolded and preserved in a standard curing room (20 ± 2 ◦C, RH ≥ 95%) until the
age of 7 d. According to the types of binding materials and concentrations of NaOH, the
GPC specimens prepared with low-calcium and high-calcium fly ash and metakaolin were
marked as F-8, F-12, C-8, C-12, MK-8, and MK-12 respectively.
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Figure 1. Preparation diagram of GPC.

2.3. Measurements
2.3.1. Sulfuric Acid Corrosion Resistance Test

Before the sulfuric acid corrosion resistance test, all the GPC specimens were polished
manually on surface using sandpaper to clean up the grease. Then, GPC were coated with
vinyl ester resin on the top and bottom face to ensure that only their side faces were exposed
to the acid solution. To simulate the actual working environment, all the specimens were
immersed in the sulfuric acid solution with pH = 1 for 6 days, and then taken out to dry
for 1 day. The whole cycle lasted for 98 days. In addition, it is important to note that
the sulfuric acid solution was renewed every week to maintain a relatively stable pH for
the solution.

After all types of specimens soaked in the acid solution for 7, 14, 28, 63, and 98 days,
the neutralization depth of specimens was tested by spraying 1% phenolphthalein indicator
on the section of specimens. The distance between the edge of specimen and discoloration
boundary was measured by a vernier caliper. Eight points on each section were selected
for measurement, and the arithmetic mean value was taken as the neutralization depth.

The mass loss of GPC specimens in different soaking periods was calculated by
the formula:

W =
m0 − m1

m0
× 100% (1)

where, W represents the mass loss rate; m0, m1 represents the mass of specimens before
and after the immersion of sulfuric acid respectively, in g. The time points of measurement
were 0, 7, 14, 28, 63, and 98 days.

The compressive strengths of specimens were tested by electro-hydraulic servo uni-
versal testing machine (YNS 300) at 0, 7, 14, 28, 63, and 98 days to acid exposure in accor-
dance with ASTM C39/C39M [28]. The value of compressive strength was the average of
three specimens.

2.3.2. Microscopic Analysis

For further analysis, all samples were taken from the GPC before and after sulfuric
acid exposure.

The morphologies of GPC before and after sulfuric acid exposure were observed using
Scanning electron microscopy with energy dispersive X-ray (SEM/EDX, SUPRA55, Zeiss,
Oberkochen, Germany) at the accelerating voltage of 15 kV.

An X-ray diffractometer (XRD, D/MAX2500, Rigaku, Tokyo, Japan) was used to
analyze the component and crystalline phase variations of GPC. The parameters were set
as a voltage of 40 kV, a current of 30 mA, and Cu Kα radiation (k = 0.15418 nm).

Fourier transform infrared spectroscopy (FT-IR) was adopted to characterize the phase
compositions of GPC, which was performed on a Thermo Fisher Scientific Nicolet IS50
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FT-IR analyzer by using KBr pellet techniques. The resolution and scanning times were
2.0 cm−1 and 16 cm−1, respectively.

3. Results and Discussion
3.1. Macroscopic Properties
3.1.1. Visual Appearance

Figure 2 shows the visual appearance variation of GPC specimens when exposed in
sulfuric acid solution for 0 day, 49 days, and 98 days. The surfaces of all GPC specimens
were smooth and flat before the specimens were immersed in the acid solutions. With the
increase of exposure time, the damage of specimens became increasingly serious. After
49 days of immersion, the specimens of F-8 and F-12 were almost intact, and minor damage
appeared in specimens C-8 and C-12. Macroscopic observations of Mk-8 and MK-12
showed that their structures were visibly loose, and some cracks appeared on the surface
and some aggregates were bared, as shown in Figure 2. When the exposure time was up to
98 days, all specimens suffered from varying degrees of damage. The surface of specimens
marked with C-8, F-8, and F-12 were rougher due to the spalling of mortar matrix and
aggregates, while the MK-8 and MK-12 specimens failed after 98 days of acid corrosion.
The observed structure of sample C-12 was intact and dense, in which only a little mortar
split away from the surface of the specimen. As it is shown in Figure 2, the structure of
metakaolin-based GPC was unconsolidated and showed poorer acid resistance than the
fly ash-based ones when they possessed the same mix proportions. On the contrary, the
high-calcium fly ash-based GPC activated by a high concentration of alkali showed good
acid resistance.
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3.1.2. Neutralization Depth

The GPC specimen is alkaline and its section turns fuchsia when confronted with
the phenolphthalein solution, but it will not display purple where the acid solution
penetrates [29,30]. Figure 3 presents the variation of cross-section area of GPC speci-
mens subjected to sulfuric acid after the immersion periods of 7 days, 14 days, 28 days,
63 days, and 98 days. When the phenolphthalein solution was sprayed on the cut surface
of specimens, the portion of specimens in which there is residual alkalinity was revealed
by a fuchsia color, as shown in Figure 3. It can be seen that the neutralization depths of
C-8, C-12, F-8, and F-12 specimens were enlarged as their exposure time in acid solution
increased. On the contrary, the specimens of MK-8 and MK-12 do not undergo the chro-
mogenic reaction, indicating that MK specimens in this study were not resistant to sulfuric
acid penetration.
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The neutralization depth variation of all GPC specimens with the increase of exposure
time is displayed in Figure 4. The specimens marked with MK-8 and MK-12 were pene-
trated entirely by sulfuric acid at the immersion time of 7 days. This phenomenon, however,
did not appear in the fly ash-based GPC specimens. This indicates that metakaolin-based
GPC has a poor resistance to the acid penetration, which is consistent with the results in
Figure 2. For fly ash-based GPC specimens, their neutralization depths increased with the
growth of exposure time. During the first 28 days of immersion, the neutralization depths
of specimens prepared with low-calcium fly ash which, is marked as F, were higher than
others. After 28 days, neutralization depth of the high-calcium fly ash-based GPC specimen
(C-8) dramatically increased. However, the specimen C-12 showed a slow growth depth
for the neutralization depth. The neutralization depth of C-12 specimen exposed in acid
solution for 98 days was only 6.9 mm, which is the minimum value. Therefore, in the light
of the results of neutralization depth, the high-calcium fly ash-based GPC showed the best



Materials 2021, 14, 7109 7 of 15

sulfuric acid corrosion resistance, which suggests that the increase in the Ca-content of
GPC results in a higher susceptibility to the attack of sulfuric acid [31,32].
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3.1.3. Mass Loss

When the structural concrete is exposed in the acid erosion medium for a long time,
its mortar will peel off from the matrix and the aggregates will be bared, leading to the
mass loss of concrete and thus causing structural damage. Figure 5 shows the mass loss
rate of all GPC when exposed to the sulfuric acid solution for 7, 14, 28, 63, and 98 days.
As we can see from the figure, the mass loss rates of all GPC specimens sharply increased
when the immersion time was up to 63 days. Before 63 days, the mass of fly ash-based
GPC specimens decreased within 2%. While, the mass of metakaolin-based GPC specimens
decreased more than 5%, which amounts to more than twice as much as fly ash-based GPC
ones. Under the conditions of this experiment, the phenomenon illustrates that the acid
resistance of the metakaolin-based GPC was far less than fly ash-based GPC. After 63 days,
the mass of all GPC specimens showed a dramatic decrease when the exposure time
increased. Additionally, the mass loss rate of metakaolin-based GPC reached more than
15% when the exposure time was 98 days. This result corresponds with the phenomenon
in Figure 2. For the fly ash-based GPC, the mass loss rate of specimens kept within 8% at
the exposure time of 98 days. However, the mass loss rate of C-12 specimen exposed in
acid solution for 98 days was only 4.44%, which is the minimum value. Thus, according to
the results of mass loss rate, the GPC specimen marked with C-12 showed the best sulfuric
acid corrosion resistance.

3.1.4. Compressive Strength

Figure 6 reveals the evolution of compressive strength for GPC before and after expo-
sure to the sulfuric acid solution. Initially, the compressive strengths of GPC alkali-activated
by high concentration of alkaline liquor mixture (Na2SiO3 and 12 M of NaOH) were greater
than that of low concentration (Na2SiO3 and 8 M of NaOH). It is attributed to the fact that
the formation of geopolymeric gel depends on the concentration of alkali OH ion, but low
NaOH concentration weakens the chemical reaction and reduces the compressive strength
of GPC [33,34]. In addition, the compressive strength of metakaolin-based GPC specimens
is too low to meet the practical engineering application, which is owing to the alkaline
solution failing to promote the geopolymerization reaction thoroughly [35,36].
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When the GPC specimens were exposed to sulfuric acid solution, all their compressive
strength showed a tendency of rising up before coming down, except for MK-8. This is
owing to that the existence of calcium that initiates the hydration mechanism, which results
in the formation of calcium-based hydrated products C-S-H [25]. The co-existence of C-S-H
with geopolymeric products N-A-S-H and C-A-S-H increases the compressive strength,
which has been reported in previous studies [37–39]. The reduction in the compressive
strength of GPC specimens is due to the destruction of oxy-aluminum bridge (-Al-Si-O) of
geopolymeric gel when GPC suffers from sulfuric acid attack [40]. Additionally, the oxy-
aluminum bridge (-Al-Si-O) is the main factor in the concrete matrix, which is responsible
for strengthening the gel and increasing the bond between matrix compositions [41–43].
After the exposure time of 98 day, the metakaolin-based GPC specimens failed. However,
the fly ash-based GPC specimens still retained partial compressive strength. In the light
of the results of compressive strength, it can be found that the compressive strength of
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specimens made up of high-calcium fly ash and activated by high concentrations of alkaline
liquor undergoing the corrosion of sulfuric acid is higher than others. This is attributed to
the fact that a higher content of calcium promotes the generation of gypsum, which tends
to block the pores of specimens, thus inhibiting further corrosion [44].

3.2. Microstructural Properties
3.2.1. SEM

Figure 7 presents the SEM images of different GPC specimens exposed to the sulfuric
acid solution for 0 day and 98 days. According to the results obtained from the visual
appearance, neutralization depth, mass loss, and compressive strength, the maximum
deterioration of all specimens was observed at 98 days of immersion. Hence, the specimens
exposed to sulfuric acid solution for 98 days were observed as micrographs, and compared
with the similar type of unexposed GPC. As seen from Figure 7a–d, partial unreacted fly
ash particles as well as some voids and microcracks were observed in the specimens of C-8,
C-12, F-8, and F-12, but the microstructures of all specimens were compact. However, the
cracks of metakaolin-based GPC specimens were much larger than fly ash-based GPC ones,
the microstructures were unconsolidated, and the bond between aggregate and mortar
was poor (Figure 7e,f). Among the six SEM images, the fewest unreacted fly ash particles,
voids, and cracks were observed in the specimens of C-12 and F-12, contributing to their
higher compressive strength relative to others. This indicates that the high-concentration
alkaline solution has a better activation effect in the fly-ash based geopolymerization.
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Similarly, it can be seen that the specimens exposed to the sulfuric acid solution
deteriorated significantly, as shown Figure 7. For the specimens exposed to sulfuric
acid solution, the microstructures were looser than unexposed specimens. In general,
the corrosion mechanism of OPC concrete is that sulfuric acid reacts with Ca(OH)2 in
concrete to form gypsum, promoting the production of ettringite under certain conditions.
When ettringite accumulates to a certain amount, it will expand and destroy concrete [45].
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Bakharev [20] reported that the acid corrosion degradation of geopolymer materials was
due to the formation of zeolites and depolymerization of geo-polymeric products. However,
when comparing the morphologies of GPC specimens attacked by sulfuric acid, gypsum
is found to be the most important corrosion product, except for the matrix of metakaolin.
Because calcium content of high-calcium fly ash is more than low-calcium fly ash, the
product of gypsum increases correspondingly. The gypsum crystals block the pores of
specimens [46] and compacts the microstructure of GPC, inhibiting further corrosion of
sulfuric acid [44]. The gypsum crystals in high-calcium fly ash are relatively uniform and
compact, and the stress generated uniformly acts on the surrounding pore walls. On the
contrary, the gypsum crystals generated by low-calcium fly ash are bulky and unevenly
dispersed, which makes it easy to produce stress concentration and cause structural damage.
Therefore, the high-calcium fly ash-based GPC has a better acid resistance than low-calcium
fly ash-based GPC. Additionally, the acid resistance of GPC activated by 12 M NaOH is
superior to the concentration of 8 M.

3.2.2. X-ray Diffraction

XRD patterns of six kinds of GPC before immersion are revealed in Figure 8a. The
characteristic diffraction peaks at approximately 2θ = 20.9◦, 26.6◦, and 68.1◦ correspond to
the crystal planes of quartz [47]. However, quartz was in an inert phase and generally did
not react with acid solution [48]. The diffraction peak belonging to calcite was identified
at 2θ = 29.5◦, which was formed due to the carbonation reaction in calcium-rich binding
binders [49]. Additionally, the phase of gismondite [20] was also found in the XRD spectra.
By comparing the XRD patterns of unexposed GPC, the calcite [50] only existed in the
matrix of high-calcium fly ash and low-calcium fly ash. It can be attributed to a certain
amount of calcium oxide that existed in fly ash.
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Figure 8b shows the XRD spectra of GPC exposed to the sulfuric acid solution for
98 days. The phases such as quartz, gismondite, N-A-S-H, and gypsum were identified in
the XRD patterns, indicating the specimens underwent significant changes by immersion
in sulfuric acid solution for 98 days. It can be seen that the peaks for calcite phases
disappeared, and the new crystal phase of gypsum was generated. This can be attributed
to the calcium carbonate reacting with sulfuric acid to form gypsum [51]. The diffraction
peak belonging to gypsum was identified at 2θ = 11.5◦ and 29.2◦, which has been reported
in previous works [49,52]. The diffraction peak ranging from 20◦ to 31◦ was corresponding
to the amorphous geopolymer phase [48], representing N-A-S-H gels. The strength of
amorphous N-A-S-H gels was stronger than gismondite. Due to the intensity of peak for
N-A-S-H gels appearing in metakaolin-based GPC being lower than that in fly ash-based
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GPC, and the metakaolin-based GPC with the higher gismondite peak, it is suggested that
more gismondite than N-A-S-H gel was generated in the geopolymerization of metakaolin,
contributing to the low compressive strength of metakaolin-based GPC [52,53]. In addition,
the intensity of gypsum in high-calcium fly ash-based GPC was obviously higher than
low-calcium fly ash based GPC, indicating the system of high calcium fly ash generated
more gypsum, which is consistent with the former macro phenomenon. Besides, the peak
for gypsum of GPC activated by 12 M NaOH was higher than the concentration of 8 M,
which is in accordance with the results in Figure 7.

3.2.3. Fourier Transform Infrared Spectroscopy

Figure 9 reveals the FT-IR spectra of different GPC specimens immersed in sulfuric
acid solution for 0 day and 98 days. Before immersion, the high characteristic absorption
peaks at about 3448 cm−1 were correlated to the asymmetric stretching vibration of O–H
groups in bound water [54]. It can be attributed to the fact that free water took part in the
hydration during the process of geopolymerization and then turned into bound water [55].
The bands detected at 1425 cm−1 are attributed to tensile vibration of O–C–O bond due to
the carbonation reaction [56]. This is because the geopolymer produced by NaOH activator
readily absorbed CO2 from the atmosphere to form carbonates [55]. The geopolymerization
of metakaolin -ased GPC was incomplete, resulting in an excessive amount of alkali,
which is more favorable for the production of carbonates. The strongest vibration at
1007–1031 cm−1 is attributed to the asymmetric stretching and bending vibration of the
Si–O–Si and the Al–O–Si bonds [57]. After the exposure of sulfuric acid solution, the FT-IR
spectra of GPC exhibited significant changes compared with the unexposed specimens. The
water component at 3448 cm−1 changed to 3405 cm−1, which was caused by the presence
of gypsum [21]. After sulfuric acid attack, the vibration band at 1007–1031 cm−1 shifted
to higher wavenumbers (1084–1122 cm−1). This may be attributed to the dealumination
occurring in the formed gel when exposed to the acid environment [58], contributing to the
decrease of intensity. Moreover, with the increase of exposure time, the vibrational bands
narrowed and the area shrunk as well. However, the peak of high-calcium fly ash was still
supreme. Therefore, high-calcium fly ash-based GPC suffering the corrosion of sulfuric
acid solution can retain the good crystallinity of N-A-S-H gel and high residual strength.
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4. Conclusions 
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zation of the metakaolin-based geopolymer. In light of the spectra of FT-IR, high-
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high residual strength. In general, the high-calcium fly ash is more suitable to act as 
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4. Conclusions

Based on the results of our research, we clarified the effects of different binding
materials and alkali activators of GPC on the sulfuric acid corrosion resistance. The main
conclusions can be summarized as follows:

(1) Among the six kinds of GPC, the compressive strength of GPC activated by 12 M
NaOH was higher than the GPC activated by 8 M NaOH, which is owing to the
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formation of gel depended on the concentration of alkali OH ion. The 8 M concen-
tration of NaOH was so low that it weakened the chemical reaction and reduced the
compressive strength.

(2) According to the testing results of GPC unexposed to sulfuric acid, for metakaolin-
based GPC, no matter the concentration of NaOH, 8 M or 12 M, the alkali-activator
will not stimulate the geopolymerization of GPC completely.

(3) Slight deterioration was observed for specimen C-12 exposed to sulfuric acid solution
in terms of visual appearance, neutralization depth, and mass loss. This can be
attributed to the fact that gypsum crystals block the pores of specimen and improve
the microstructure of GPC, inhibiting further corrosion of sulfuric acid.

(4) From a microscopic perspective, the compressive strength of fly ash-based GPC was
superior to that of metakaolin-based GPC, which can be explained from the XRD anal-
ysis, i.e., more gismondite than N-A-S-H gel was generated in the geopolymerization
of the metakaolin-based geopolymer. In light of the spectra of FT-IR, high-calcium fly
ash-based GPC suffering the corrosion of sulfuric acid solution can still keep the obvi-
ous peak intensity, illustrating its good crystallinity of N-A-S-H gel and high residual
strength. In general, the high-calcium fly ash is more suitable to act as a binding
material to prepare GPC for practical engineering.
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