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Abstract

Gaussian accelerated molecular dynamics (GaMD) is a robust computational method for 

simultaneous unconstrained enhanced sampling and free energy calculations of biomolecules. 

It works by adding a harmonic boost potential to smooth biomolecular potential energy 

surface and reduce energy barriers. GaMD greatly accelerates biomolecular simulations by 

orders of magnitude. Without the need to set predefined reaction coordinates or collective 

variables, GaMD provides unconstrained enhanced sampling and is advantageous for simulating 

complex biological processes. The GaMD boost potential exhibits a Gaussian distribution, 

thereby allowing for energetic reweighting via cumulant expansion to the second order (i.e., 

“Gaussian approximation”). This leads to accurate reconstruction of free energy landscapes 

of biomolecules. Hybrid schemes with other enhanced sampling methods, such as the replica 

exchange GaMD (rex-GaMD) and replica exchange umbrella sampling GaMD (GaREUS), 

have also been introduced, further improving sampling and free energy calculations. Recently, 

new “selective GaMD” algorithms including the ligand GaMD (LiGaMD) and peptide GaMD 

(Pep-GaMD) enabled microsecond simulations to capture repetitive dissociation and binding 

of small-molecule ligands and highly flexible peptides. The simulations then allowed highly 

efficient quantitative characterization of the ligand/peptide binding thermodynamics and kinetics. 

Taken together, GaMD and its innovative variants are applicable to simulate a wide variety of 

biomolecular dynamics, including protein folding, conformational changes and allostery, ligand 

binding, peptide binding, protein-protein/nucleic acid/carbohydrate interactions, and carbohydrate/

nucleic acid interactions. In this review, we present principles of the GaMD algorithms and recent 

applications in biomolecular simulations and drug design.

Graphical Abstract

Gaussian accelerated molecular dynamics (GaMD) and its applications to a wide range of 

biological systems.

1. Introduction

Biological processes are mediated by biomolecules such as proteins, nucleic acids, lipids, 

and carbohydrates. Biomolecules often visit different functional conformations during 
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various biological functions, including cellular signaling, protein folding, gene translation/

editing, and biomolecular recognition1–4. The underlying free energy landscapes of 

biomolecules determine their conformations5, 6. Molecular dynamics (MD) is an advanced 

technique that allows us to simulate biomolecular dynamics at an atomistic level7. It is now 

possible to run longer and cheaper MD simulations with remarkable advances in computing 

hardware (e.g., the Anton supercomputer and GPUs) and software developments8. Even 

so, conventional MD (cMD) is often limited to typically hundreds of nanoseconds to 

tens of microseconds9–12. On the other hand, many biological processes of interest take 

place over milliseconds or even longer timescales, due to high energy barriers (e.g., 8–12 

kcal/mol)1, 13, 14. Due to this gap, it remains challenging to sufficiently sample different 

conformations and accurately calculate free energy profiles of biomolecules through cMD 

simulations.

To overcome the above challenges, numerous enhanced sampling techniques have been 

introduced since the dawn of MD as reviewed in a number of previous articles15–18. One 

class of these methods use predefined collective variables (CVs) or reaction coordinates, 

including umbrella sampling (US)19, 20, metadynamics21, 22, adaptive biasing force 

(ABF)23, 24, steered MD (SMD)25, conformational flooding26, 27, and so on. Typical CVs 

include root-mean square deviation (RMSD) relative to a reference conformation, dihedrals, 

atom distances, eigenvectors of principal component analysis (PCA)27, etc. These methods 

greatly improve the sampling of biomolecular dynamics and the accuracy of free energy 

calculations along the chosen CVs. However, it is rather challenging to define proper CVs 

in prior because the system needs to be studied in detail beforehand. Furthermore, the 

predefined CVs could largely limit sampling of the conformational space during the biasing 

simulations. This usually slows convergence of the simulations and suffers from the “hidden 

energy barrier” problem once crucial CVs are missing in the simulation setup22.

Another kind of enhanced sampling techniques have been introduced without using 

predefined CVs, including replica exchange molecular dynamics (REMD)28, 29 or parallel 

tempering30, self-guided Langevin or molecular dynamics31–34, essential energy space 

random walk35–37 and accelerated molecular dynamics (aMD)38. In particular, Voter 

introduced aMD by adding a boost potential in non-barrier regions to accelerate infrequent 

transitions in solids39. Hamelberg et al. further developed this technique to perform 

biomolecular simulations38. The boost potential in aMD enables simulations to sample 

different low-energy conformational states by smoothing the system potential energy surface 

and reducing the energy barriers38, 40. Despite the advantage of unconstrained enhanced 

sampling, aMD can suffer from high statistical noise, affecting the description of the correct 

statistical ensemble41. In detail, the ensemble canonical average is reached by reweighting 

each point in the configuration space on the modified potential by the strength of the 

Boltzmann factor of the bias energy, at that particular point. By using the early aMD 

method, this has shown to lead to high statistical noise, since the points with the largest 

biases dominate the reweighted result42–45. In comparison with the CV-biasing methods, 

aMD has typically much higher boost potential with wider distributions (tens to hundreds 

of kcal/mol)43, making it very challenging to accurately reweight free energies from aMD 

simulations, especially for biological macromolecules44, 46, 47. This issue can be severe for 

large biomolecular systems, such as transmembrane proteins and ribonucleoproteins, where 

Wang et al. Page 3

Wiley Interdiscip Rev Comput Mol Sci. Author manuscript; available in PMC 2022 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the standard reweighting procedure has often been prohibitive, given the large statistical 

noise43.

Gaussian accelerated molecular dynamics (GaMD) has been developed to smooth the 

surface of potential energy with a harmonic boost potential, following three newly 

formulated enhanced sampling principles48. Similar to the previous aMD, no predefined 

CV is needed for GaMD simulations. Furthermore, the new harmonic boost potential in 

GaMD exhibits a Gaussian distribution, which enables us to accurately recover the original 

biomolecular free energy landscapes by Gaussian approximation, i.e., cumulant expansion 

to the second order. This useful scheme substantially reduces the statistical noise, thereby 

overcoming the limitations of the early aMD methodology (vide supra). Therefore, GaMD 

simultaneously enables enhanced sampling without any constraints and accurately calculates 

free energy landscapes of biomolecules. As previously reported49, 50, GaMD has been 

successfully applied to simulate ligand binding48, 51, 52, protein folding48, 52, activation of 

G-protein-coupled receptors (GPCRs)51, human dystonia related protein53, ion channels54, 

agonist and antagonist binding in the μ-OR55, 56, virus enzymes57, 58, bacterial effector 

proteins59, etc.

In addition, GaMD has been combined with REMD to further improve conformational 

sampling and free energy calculations60, 61. More recently developed “selective GaMD” 

algorithms, including ligand GaMD (LiGaMD)62 and peptide GaMD (Pep-GaMD)63, 

have enabled unprecedented microsecond simulations to capture repetitive binding and 

dissociation of small-molecule ligands and highly flexible peptides. Accurate ligand/peptide 

binding free energies and kinetic rate constants are thus calculated through the selective 

GaMD simulations.

In this review, we will present the principles and the most recent applications of 

GaMD. Robust GaMD has been established for advanced simulation studies of a 

wide range of biomolecular systems, especially the protein-nucleic acid interactions64–66 

such as the CRISPR (clustered regularly interspaced short palindromic repeats)-

Cas9 gene editing system67, 68, protein-protein/peptide interactions69–73, protein-ligand 

binding56, 57, 74–77, protein folding78, protein enzymes53, 59, 79–93, membrane proteins 

(including GPCRs69, 70, 74, 77, 94–96, ion channels54, 97 and γ-secretase98) and 

carbohydrates99–101, as well as drug design102, 103.

2. Theory

2.1. Gaussian Accelerated Molecular Dynamics (GaMD)

A harmonic boost potential is added in GaMD to smooth the system potential energy surface 

and enhance the conformational sampling of biomolecules (Fig. 1)48. Consider a system 

with N atoms at positions r ⃑ = r ⃑1, ⋯r ⃑N , when the system potential V (r ⃑) is lower than a 

threshold energy E, a boost potential is added as:

ΔV (r ⃑) = 1
2k(E − V (r ⃑))2, V (r ⃑) < E, (1)
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where k is the harmonic force constant. The modified system potential, V *(r ⃑) = V (r ⃑) + ΔV (r ⃑)
is given by:

V *(r ⃑) = V (r ⃑) + 1
2k(E − V (r ⃑))2, V (r ⃑) < E . (2)

Otherwise, when the system potential is above the threshold energy, i.e., V (r ⃑) ≥ E, the boost 

potential is set to zero and V *(r ⃑) = V (r ⃑).

Three enhanced sampling principles are applied to the boost potential in GaMD to smooth 

the potential energy surface. First, for any two arbitrary potential values V 1(r ⃑) and V 2(r ⃑)
found on the original energy surface, if V 1(r ⃑) < V 2(r ⃑), ΔV should be a monotonic function 

that does not change the relative order of the biased potential values, i.e., V 1*(r ⃑) < V 2*(r ⃑). By 

replacing V *(r ⃑) with Equation (2) and isolating E, we then obtain:

E < 1
2 V 1(r ⃑) + V 2(r ⃑) + 1

k . (3)

Second, if V 1(r ⃑) < V 2(r ⃑), the potential difference observed on the smoothened energy surface 

should be smaller than that of the original, i.e., V 2*(r ⃑) − V 1*(r ⃑) < V 2(r ⃑) − V 1(r ⃑). Similarly, by 

replacing V *(r ⃑) with Equation (2), we can derive:

E > 1
2 V 1(r ⃑) + V 2(r ⃑) . (4)

With V min ≤ V 1(r ⃑) < V 2(r ⃑) ≤ V max, we need to set the threshold energy E in the following 

range by combining Equations (3) and (4):

V max ≤ E ≤ V min + 1
k, (5)

where Vmin and Vmax are the system minimum and maximum potential energies. To ensure 

that Equation (5) is valid, V max ≤ V min + 1
k  and k have to satisfy:

k ≤ 1
V max − V min

. (6)

Let us define k ≡ k0 • 1
V max − V min

, then 0 < k0 ≤ 1. As illustrated in Fig. 1, k0 determines 

the magnitude of the applied boost potential. With higher k0, larger boost potential is added 

to the potential energy surface, which facilitates enhanced sampling of biomolecules across 

decreased energy barriers.

Third, in order to ensure accurate reweighting using cumulant expansion to the second 

order43, the standard deviation of ΔV needs to be small enough (i.e., narrow distribution):
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σΔV = ∂ΔV
∂V V = V avg 

2
σV

2 = k E − V avg  σV ≤ σ0, (7)

where Vavg and σV are the average and standard deviation of the system potential energies, 

σΔV is the standard deviation of ΔV with σ0 as a user-specified upper limit (e.g., 10kBT) for 

accurate reweighting.

Provided Equation (5) that gives the range of threshold energy E, when E is set to the lower 

bound E = Vmax, we substitute in E and k, and obtain:

k0 ≤ σ0
σV

• V max − V min
V max − V avg

. (8)

Let us define the right-hand side in Equation (8) as k0′ =
σ0
σV

•
V max − V min
V max − V avg 

. For efficient 

enhanced sampling with the highest possible acceleration, k0 can then be set to its upper 

bound as:

k0 = min 1.0, k0′ = min 1.0, σ0
σV

• V max − V min
V max − V avg

. (9)

The larger σΔV is obtained from the original potential energy surface (particularly for 

large biomolecules), the smaller k0 may be applicable to allow for accurate reweighting. 

Alternatively, when the threshold energy E is set to its upper bound E = V min + l
k  according 

to Equation (5), we substitute in E and k in Equation (7) and obtain:

k0 ≥ 1 − σ0
σV

• V max − V min
V avg − V min

. (10)

Let us define the right-hand side in Equation (10) as k0″ ≡ 1 −
σ0
σV

•
V max − V min
V avg − V min

. Note 

that a smaller k0 will give higher threshold energy E, but smaller force constant k. When 

0 < k0″ ≤ 1, k0 can be set to either k0″ for the highest threshold energy E or its upper bound 

1.0 for the greatest force constant k. In this regard, k0 = k0″ is applied in the current GaMD. 

Otherwise, k0 is calculated using Equation (9).

Given E and k0, we can calculate the boost potential as:

ΔV (r ⃑) = 1
2k0

1
V max − V min

(E − V (r ⃑))2, V (r ⃑) < E . (11)

GaMD provides different options to add only the total potential boost ΔVp, only dihedral 

potential boost ΔVD, or the dual potential boost (both ΔVP and ΔVD). The dual-boost GaMD 

generally provides higher acceleration than the other two types of simulations for enhanced 

sampling40. The simulation parameters comprise of the threshold energy values and the 

effective harmonic force constants, k0P and k0D for the total and dihedral potential boost, 

respectively.
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2.2. Energetic Reweighting of GaMD for Free Energy Calculations

For simulations of a biomolecular system, the probability distribution along a selected 

reaction coordinate A(r) is written as p*(A), where r denotes the atomic positions 

{r1,…,rN}. Given the boost potential ΔV(r) of each frame, p*(A) can be reweighted to 

recover the canonical ensemble distribution, p(A), as:

p Aj = p* Aj
eβΔV (r) j

∑i = 1
M p* Ai eβΔV (r)

i
, j = 1, ⋯, M, (12)

where M is the number of bins, β = kBT and 〈eβΔV(r)〉j is the ensemble-averaged Boltzmann 

factor of ΔV(r) for simulation frames found in the jth bin. In order to reduce the energetic 

noise, the ensemble-averaged reweighting factor can be approximated using cumulant 

expansion104, 105:

eβΔV = exp ∑
k = 1

∞ βk

k!Ck , (13)

where the first three cumulants are given by:

C1 = ΔV ,
C2 = ΔV 2 − ΔV 2 = σΔV

2 ,
C3 = ΔV 3 − 3 ΔV 2 ΔV + 2 ΔV 3 .

(14)

When the boost potential follows near-Gaussian distribution, cumulant expansion to the 

second order (or “Gaussian Approximation”) provides the accurate approximation for free 

energy calculations43. The reweighted free energy F(A) = − kBT ln p(A) is calculated as:

F(A) = F* A − 1
β ∑

k = 1

2 βk

k!Ck + Fc, (15)

where F*(A) = − kBT ln p*(A) is the modified free energy obtained from GaMD simulation 

and Fc is a constant.

To characterize the extent to which ΔV follows a Gaussian distribution, its distribution 

anharmonicity γ is calculated as43:

γ = Smax − SΔV = 1
2 ln 2πeσΔV

2 + ∫
0

∞
p(ΔV ) ln (p(ΔV ))dΔV , (16)

where ΔV is dimensionless as divided by kBT with kB and T being the Boltzmann constant 

and system temperature, respectively, and Smax = 1
2 ln 2πeσΔV

2  is the maximum entropy of 

ΔV43. When γ is zero, ΔV follows exact Gaussian distribution with sufficient sampling. 

Reweighting by approximating the exponential average term with cumulant expansion to 

the second order is able to accurately recover the original free energy landscape. As γ 
increases, the ΔV distribution becomes less harmonic and the reweighted free energy profile 
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obtained from cumulant expansion to the second order would deviate from the original. 

The anharmonicity of ΔV distribution serves as an indicator of the enhanced sampling 

convergence and accuracy of the reweighted free energy. Nevertheless, with the GaMD 

theoretical framework, the GaMD boost potential does not change shape of the biomolecular 

overall energy landscape. A near Gaussian distribution is achieved for the GaMD boost 

potential. A toolkit of Python scripts for GaMD/aMD reweighting “PyReweighting”43 is 

developed and distributed free of charge at http://miao.compbio.ku.edu/PyReweighting/.

2.3. Replica Exchange-GaMD

Replica exchange and GaMD have been combined in a rex-GaMD approach to further 

improve the sampling and free energy calculations of biomolecules60. According to 

Equation (11), both the threshold energy E and the effective force constant k0 could 

adjust the boost potential. Therefore, two versions of rex-GaMD were proposed: force 

constant rex-GaMD and threshold energy rex-GaMD. During simulations of force constant 

rex-GaMD, the boost potential can be exchanged between replicas, in which the threshold 

energy is fixed and harmonic force constants are different. Whereas the algorithm of 

threshold energy rex-GaMD tends to switch the threshold energy between lower and upper 

bounds for generating different levels of boost potential.

The rex-GaMD simulations allow replicas exchanged between each pair of neighboring σ0P 

or threshold energy based on the probability that meets the Metropolis criterion. In the 

simulation system, each state x can be weighted by the Boltzmann factor,

W B x = exp 1
kBT H x , (17)

where kB is the Boltzmann constant, T is the system temperature and H(x) is the system 

Hamiltonian. The weight factor for the state X here is given by the product of the Boltzmann 

factor of each replica:

W RE X = exp −∑i = 1
N 1

kBT H xi , (18)

where N is the number of total states. Thus, the replica exchange probability can be written 

as w(Xi → Xj), which needs to meet the Metropolis criterion to calculate the exchange 

probability:

w Xi Xj = min 1.0, eΔ , (19)

where Xi and Xj are the states of the two nearby replicas, and Δ = 1
kBT V i* − V j*  and 

V*i and V*j are the total modified system potential energies calculated from the last 

conformation of the GaMD simulations at replica i and j. These exchange processes will 

keep repeating until the end of the simulation. The rex-GaMD simulations were tested 

on three model systems, including the alanine dipeptide, chignolin, and HIV protease, 

demonstrating that the distribution width of the boost potential is narrowed down, and the 

system conformational space is enhanced sampled.
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Recently, Sugita et al.61 proposed another approach (GaREUS) that combined GaMD with 

replica exchange umbrella sampling (REUS). GaREUS was successfully demonstrated 

on accurate calculations of free energy landscapes underlying the N-glycan equilibration, 

conformational change of adenylate kinase and chignolin folding. The computational 

resource for GaREUS was the same as that required for REUS, while the sampling in 

GaREUS was more efficient than REUS or GaMD.

2.4. Ligand Gaussian Accelerated Molecular Dynamics (LiGaMD)

Based on GaMD, LiGaMD62 has been proposed to more efficiently simulate both binding 

and dissociation of small-molecule ligands for calculating the ligand binding free energies 

and kinetics. For such simulations, the system contains ligand L, protein P and the biological 

environment E. The system comprises of N atoms with their coordinates r ≡ r⃑1, ⋯, r⃑N   and 

momenta p ≡ p⃑1, ⋯, p⃑N  . The system Hamiltonian can be expressed as:

H r, p = K p + V r , (20)

where K(p) and V(r) are the system kinetic and total potential energies, respectively. Then, 

the potential energy could be decomposed into the following terms:

V r = V P, b rP + V L, b rL + V E, b rE + V PP, nb rP + V LL, nb rL
+ V EE, nb rE + V PL, nb rPL + V PE, nb rPE + V LE, nb rLE ). (21)

where VP,b, VL,b and VE,b are the bonded potential energies in protein P, ligand L and 

environment E, respectively. VPP,nb, VLL,nb and VEE,nb are the self non-bonded potential 

energies in protein P, ligand L and environment E, respectively. VPL,nb, VPE,nb and VLE,nb 

are the non-bonded interaction energies between P-L, P-E and L-E, respectively. According 

to molecular mechanics force fields,106, 107 the non-bonded potential energies are usually 

calculated as:

V nb = V elec + V vdW , (22)

where Velec and VvdW are the system electrostatic and van der Waals potential energies. 

Presumably, ligand binding mainly involves the non-bonded interaction energies of the 

ligand, VL,nb(r) = VLL,nb(rL) + VPL,nb(rPL) + VLE,nb(rLE). Therefore, we add a boost 

potential selectively to the ligand non-bonded potential energy according to the GaMD 

algorithm:

ΔV L, nb r =
1
2kL, nb EL, nb − V L, nb r 2, V L, nb r < EL, nb

0, V L, nb r ≥ EL, nb  
(23)

where EL,nb is the threshold energy for applying boost potential and kL,nb is the harmonic 

constant. These parameters in LiGaMD are derived similarly as in the GaMD algorithm.

Next, one can add multiple ligand molecules in the solvent to facilitate ligand binding to 

proteins in MD simulations. This is based on the fact that the average ligand unbound time 
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τU is inversely proportional to the ligand concentration [L], i.e., τU = 1
kon ∙ L  with kon being 

the ligand binding rate constant. The higher the ligand concentration, the faster the ligand 

binds, provided that the ligand concentration is still within its solubility limit. In addition 

to selectively boosting the bound ligand, another boost potential could thus be applied on 

the unbound ligand molecules, protein, and solvent to facilitate both ligand dissociation and 

rebinding. The second boost potential is calculated using the total system potential energy 

other than the non-bonded potential energy of the bound ligand as:

ΔV D r =
1
2kD ED − V D r 2, V D r < ED

0, V D r ≥ ED
(24)

where VD is the total system potential energy other than the non-bonded potential energy 

of the bound ligand, ED is the corresponding threshold energy for applying the second 

boost potential and kD is the harmonic constant. This leads to dual-boost LiGaMD 

(LiGaMD_Dual) with the total boost potential ΔV(r) = ΔVL,nb(r) + ΔVD(r).

2.5. Peptide Gaussian Accelerated Molecular Dynamics (Pep-GaMD)

Large conformational changes of peptides often occur via peptides binding to the target 

proteins, being distinct from small-molecule ligand binding or protein-protein interactions 

(PPIs). We have developed another algorithm called peptide GaMD or “Pep-GaMD” that 

enhances sampling of peptide-protein interactions63.

In Pep-GaMD, we consider a system of ligand peptide L binding to a target protein P 
in a biological environment E. We decompose the potential energy into similar terms as 

in Equation (21). Presumably, peptide binding mainly involves in both the bonded and non-

bonded interaction energies of the peptide since peptides often undergo large conformational 

changes during binding to the target proteins. Thus, the essential peptide potential energy 

is VL(r) = VLL,b(rL) + VLL,nb(rL) + VPL,nb(rPL) + VPL,nb(rLE). In Pep-GaMD, we add 

boost potential selectively to the essential peptide potential energy according to the GaMD 

algorithm:

ΔV L r =
1
2kL EL − V L r 2, V L r < EL

0, V L r ≥ EL

 
  (25)

where EL is the threshold energy for applying boost potential and kL is the harmonic 

constant.

In addition to selectively boosting the peptide, another boost potential is applied on the 

protein and solvent to enhance conformational sampling of the protein and facilitate peptide 

rebinding. The second boost potential is calculated using the total system potential energy 

other than the peptide potential energy as:
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ΔV D r =
1
2kD ED − V D r 2, V D r < ED

0, V D r ≥ ED
(26)

where VD is the total system potential energy other than the peptide potential energy, ED 

is the corresponding threshold energy for applying the second boost potential and kD is the 

harmonic constant. This leads to dual-boost Pep-GaMD (Pep-GaMD_Dual) with the total 

boost potential ΔV(r) = ΔVL(r) + ΔVD(r).

3. Applications

Without the need to set predefined reaction coordinates or CVs, GaMD enables a wide range 

of applications in enhanced sampling of biomolecules. Furthermore, accurate reweighting 

using cumulant expansion to the 2nd order could be achieved in GaMD simulations 

because the boost potential exhibits a Gaussian distribution, allowing recovery of the 

original free energy landscapes even for large biomolecules48, 51, 52. Depending on the 

system size, orders of magnitude speedup for biomolecular simulations could be achieved 

in GaMD. As demonstrated on alanine dipeptide, GaMD simulations achieved ~36–67 

times speedup for sampling of the backbone dihedral transitions compared with the long 

cMD simulations108. Higher acceleration could be potentially achieved for larger systems 

with greater boost potential applied in the GaMD simulations. Hundreds-of-nanosecond 

to microsecond GaMD simulations could capture millisecond timescale events. Here, we 

summarize recent application studies of GaMD.

3.1 Protein-nucleic acid interactions

CRISPR-Cas9 system is a bacterial immune system that has introduced a powerful genome 

editing technology, which has revolutionized life sciences109. At the molecular level, 

CRISPR-Cas9 is a protein/nucleic acid complex, composed of the Cas9 protein associated 

with a guide RNA and matching sequences of DNA110. Cas9 site-specifically recognizes 

the DNA by binding its Protospacer-Adjacent Motif (PAM), a short trinucleotide that 

enables the selection of the DNA across the genome. Upon PAM binding, the DNA 

binds Cas9 by matching the RNA with one strand (the target strand, TS), such forming 

an RNA:DNA heteroduplex structure. The second non-target strand (NTS) of the DNA 

gets displaced and also accommodated within the protein. Structures of the Streptococcus 
Pyogenes Cas9 (SpCas9) revealed a bilobed architecture (Fig. 2A). One lobe – viz., 

the recognition lobe (REC) – includes three regions that mediate nucleic acid binding 

(REC1–3), while the second is the nuclease lobe (NUC)111–113. The latter comprises two 

catalytic domains, HNH and RuvC, which cleave the DNA TS and NTS, respectively. X-ray 

crystallography and cryo-EM studies portrayed the structure of SpCas9 in different states, 

as apo protein113, in complex with RNA114 and upon DNA binding111, 112. These structural 

studies have been a stepping stone to understand the mechanism of action of CRISPR-Cas9. 

However, although critical, this information could not access the dynamics and the complex 

conformational transitions of this ribonucleoprotein, raising fundamental questions on the 

system’s biological function. In this regard, we have successfully applied GaMD to decipher 
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the molecular mechanism of nucleic acid processing and selectivity of this genome editing 

tool.

3.1.1 Conformational changes underlying RNA binding to CRISPR-Cas9—
Based on structural data, large structural transitions of the protein have been hypothesized 

to enable RNA binding113, 114. To characterize this process, we applied a GaMD in 

combination with Targeted MD (TMD) approach, which reduces the RMSD between an 

initial and final target conformations115. By using TMD, we obtained an initial pathway 

of the conformational change from the apo protein to the RNA-bound form. We observed 

that the REC1–3 regions of the protein moved in opposite directions relative to each other, 

leading to the closure of the REC lobe to accommodate RNA. This observation agreed well 

with previous hypotheses based on cryo-EM113, 114. Then, we used GaMD to precisely 

describe the energetic landscape associated to this conformational change (Fig. 2B). The free 

energy landscape described three local minima: M1 corresponds to the crystallographic apo 
structure, M2 is the RNA-bound structure, while M3 is an intermediate state, characterized 

by the solvent exposure of an arginine-rich helix. The latter directly binds the RNA guide 

in both RNA-bound and DNA-bound structures of Cas9114, suggesting a mechanism for the 

recruitment of RNA, in which the electrostatics could play a key role. By further computing 

the ensemble averaged electrostatic potential, we found that a positively charged cavity is 

formed at the level of the arginine-rich helix and is suitable for RNA binding (Fig. 2B). 

Overall, these simulations indicated that the arginine helix is critical for the recruitment of 

RNA, and that the formation of positively charged cavity allows for the formation of the 

Cas9:RNA binary complex.

3.1.2 Conformational activation of the Cas9 protein for DNA cleavage—The 

process of conformational activation of the Cas9 protein toward DNA cleavages involves 

a critical transition of the catalytic HNH domain. The latter undergoes a structural change 

from an inactive form to the active state prone to perform DNA cleavages111, 112, 116. 

Our first study based on cMD highlighted a “striking plasticity” of the catalytic HNH 

nuclease117. That study revealed the critical dynamic interplay between the DNA NTS 

and HNH, suggesting that the binding of the NTS would allow increased dynamics of 

HNH and, thereby, its activation toward DNA cleavage. After this first computational study, 

single-molecule Förster Resonance Energy Transfer (FRET) experiments have investigated 

the large scale dynamics of the system, showing that the dynamical docking of HNH at 

the cleavage site critically requires the presence of the NTS,118 and thereby confirming the 

predictions of molecular simulations. Overall, that early MD study has been instrumental 

in characterizing the atomic level details of the CRISPR-Cas9 dynamics. Nevertheless, 

considering that cMD simulations are limited to short timescales (i.e., ns–to–μs), that 

investigation could not fully address the activation mechanism of the catalytic HNH 

domain. To overcome the inherent timescale limits of cMD and characterize the HNH 

activation process, we performed GaMD simulations, capturing multiple states of the 

HNH conformational landscape115. As expected, the simulations broadly sampled various 

possible configurations of the HNH domain. Energetic reweighting of the conformational 

landscape revealed that the energetic minima identified through GaMD correspond to the 

conformational states found by FRET experiments112, 114, 116, 119 and structural studies111 
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(Fig. 3A). Notably, this extensive GaMD sampling (collecting >20 μs) identified a “bona-

fide” conformation of the active state (viz., active #4 in Fig. 3A), which was shown 

to be thermodynamically stable. This conformation predicted the active state two years 

before structural data was made available111, allowing also to start in-depth studies of the 

catalysis though hybrid quantum-classical methods120, 121. Moreover, to better describe 

the conformational change from the pre-active state (captured in PDB ID: 5f9r) to the 

active configuration where HNH catalytic residue (H983) docks at the DNA TS (Fig. 

3B, top panel), the specialized supercomputer Anton-2122 has been used to carry out 

continuous multi-μs cMD simulations123. These simulations captured the late step of HNH 

activation over ~16 μs of continuous simulations (Fig. 3B, bottom panel). The dynamical 

docking of HNH at the cleavage site on the TS occurred by following the same pathway 

previously observed over multiple GaMD replicas (Fig. 3B, central panel). Indeed, while 

the continuous simulation performed on Anton-2 recovered the transition over ~16 μs, 

GaMD captured the conformational change by running ~400 ns and in three replicas. This 

finding indicates that GaMD reliably captures structural transitions of biomolecules that 

occur over longer time scales. Finally, it is notable that the activated state, which was 

early identified though GaMD115 and later refined using Anton-2 simulations123, resulted 

in notable agreement with the cryo-EM structure of the active complex111. This showed the 

reliability of the early predictions that have been obtained based on GaMD.

3.1.3 Molecular mechanism of off-target effects of CRISPR-Cas9—An 

important mechanistic question relates to the onset of off-target effects, which arise from the 

binding of DNA sequences that do not fully match the guide RNA, resulting in RNA:DNA 

hybrids containing mismatched pairs. Off-target effects result in cleavages at DNA sites, 

representing a limitation for the application of CRISPR-Cas9 for in vivo and ex vivo 
genome editing. Kinetic and single-molecule FRET studies provided critical hints on the 

molecular basis of off-target effects. Indeed, it has been shown that DNAs containing 

one to three mismatches located at the RNA:DNA hybrid ends result in a flexible and 

catalytically active HNH domain118, 124, 125. Contrariwise, four (or more) mismatches 

result in decreased flexibility of HNH and in its catalytic inactivation. The single-molecule 

experiments, however, could not explain how a different number of DNA mismatches at 

the RNA:DNA hybrid ends could affect the activation of HNH. Knowing the molecular 

basis of this mechanism is of critical importance, as it could help in developing more 

specific CRISPR-Cas9 systems, in which a single base pair mismatch is sufficient for 

reducing the HNH dynamics and catalytic function, thereby inhibiting the cleavage of 

incorrect DNA sequences. Considering that GaMD has been successful in describing the 

activation mechanism of HNH115 (Fig. 3), we employed the method to investigate the effect 

of base pair mismatches on its conformational dynamics68, 126. For this application, we 

employed GaMD without carrying out energetic reweighting, increasing the sampling of 

low-energy states and providing a semi-quantitative ranking of the associated probabilities. 

This enabled us to broadly explore the system’s conformational dynamics in the presence 

of base pair mismatches. The simulations revealed that four or more mismatches induce 

a broad opening of the RNA:DNA hybrid (Fig. 4A), which results in newly formed 

interactions between the TS and the L2 loop. These interactions importantly reduce the 

HNH flexibility, hampering its conformational activation. On the other hand, one to three 
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base pair mismatches do not result in sensible openings of the heteroduplex, as evinced by 

the minor groove width (measured at position 17, Fig. 4B), resulting in a negligible effect 

on the HNH conformational dynamics and thereby not affecting its activation for cleavage. 

Overall, the simulations could discriminate the different effects of base pair mismatches 

on the HNH activation, providing a mechanistic rationale to previous kinetic and single-

molecule experiments. Building on the outcomes of GaMD simulations, we suggested that 

altering the TS-L2 interactions could reduce off-target binding. This speculation has been 

supported by the experimental engineering of the L2 loop in several variants of the Cas9 

enzyme125, 127, 128, which increase the system’s specificity toward on-target sequences.

3.1.4 Allosteric effects across the CRISPR-Cas9 complex—Multiple evidences 

including experiments and computations have indicated that CRISPR-Cas9 is also an 

intriguing “allosteric engine”125, 129–131. Indeed, CRISPR-Cas9 requires an intricate 

allosteric activation to accomplish DNA cleavages. Biochemical experiments have indicated 

that the central element of the CRISPR-Cas9 allosteric signaling is the HNH domain, 

since its high flexibility can allow the signal transmission. To describe the allosteric 

signaling across HNH and how it transfers the information of DNA binding (occurring 

within the REC lobe) to the catalytic sites for cleavage, GaMD was combined with graph 

theory132. This combination allowed inclusion of long timescale motions in the calculation 

of the allosteric pathways67. Specifically, while GaMD characterized the long timescale 

system’s dynamics, network models derived from graph theory accurately described the 

allosteric network and information transfer. This approach revealed the existence of a 

millisecond timescale dynamic pathway across HNH, which connects the RuvC nuclease 

domain to the recognition lobe REC. This allosteric route was validated through NMR 

relaxation experiments, showing that a contiguous pathway of slow residues overlaps with 

the prediction from GaMD and graph theory-based analysis. In summary, the combination of 

GaMD simulations with graph theory provided a useful approach for determining the signal 

transduction in CRISPR-Cas9, laying the foundations for characterizing allostery in other 

protein/nucleic acid complexes whose biological function relies on slow dynamical motions 

associated to the (re)organization of protein domains and long-range effects.

3.2 Protein-protein/peptide interactions

Protein–protein interactions (PPIs) and protein-peptide interactions are central to biological 

functions and have thus been targeted to design novel therapeutic drugs133–137. Here, we 

will summarize recent GaMD applications in simulation studies of PPIs and protein-peptide 

interactions.

3.2.1 Protein-protein interactions—The recognition of T cell receptor (TCR) and 

peptides presented by major histocompatibility molecules (pMHC) initiates adaptive 

immune responses. The pMHC binding affinity often correlates with the TCR-signaling 

strength. However, frequent high-affinity of pMHC in the human T cell repertoire are not 

stimulatory. Recently, enhanced sampling methods including GaMD, ABF and SMD were 

performed to distinguish stimulators from non-stimulatory ligands by simulating the TCR-

pMHC disengagement71. The GaMD was first performed to reveal the structural flexibility 

of the complex and identify important CVs, including the orientation angle of the TCR about 
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the pMHC assembly, salt bridges and hydrogen bonds. Then, the identified CVs were used 

for free energy calculation using the ABF method. Constant velocity SMD simulations were 

performed starting from the free energy minima identified by ABF. The simulations revealed 

that dynamic interactions in the TCR-pMHC interface play a critical role in determining 

the TCR specificity. One collective property of the entire TCR-pMHC interface is the 

formation of a catch or slip bond, being consistent with the results from single-molecule 

force measurements. In addition to simulations of PPIs with globular proteins such as the 

TCR-pMHC complex, GaMD have also been successfully applied to investigate PPIs with 

membrane proteins such as GPCR-G protein interactions69, 70, which will be described in 

Section 3.5. In summary, GaMD is suitable to study large biomolecular complexes and 

provide important insights into functionally important PPIs.

3.2.2 Protein-peptide interactions—Petrizzelli et. al.73 applied GaMD to investigate 

the pathogenic mechanisms caused by missense mutations of KDM6A on the histone H3, 

including P941S, D980V, S1025G, H1060L, L1200F, G1223D, Q1248R and R1255W. 

GaMD simulations showed that the interaction between the linker and JmjC domains was 

significantly impacted by residue mutations, leading to a loss of function. All mutants 

exhibited movements of the disordered linker domain, leading to increased flexibility of the 

KDM6A-H3 complex, which induced wrong exposure and orientation of the trimethylated 

lysine in the catalytic site. Therefore, GaMD simulations revealed important pathogenic 

mechanisms of the KDM6A-H3 interaction73.

We developed a novel approach, namely PeptiDock+GaMD, in which the global peptide 

docking-ClusPro PeptiDock and GaMD simulations were combined for improving modeling 

of protein-peptide interactions138. For three model peptides (peptide 1–3), docking models 

generated with PeptiDock139 showed 3.3 Å, 3.5 Å and 4.8 Å RMSD of the peptide backbone 

relative to their experimental structures. The peptide docking poses were refined by GaMD 

simulations. Then, the PyReweighting toolkit43 was applied to reweight and calculate free 

energies of the peptide structural clusters obtained from GaMD simulations. RMSDs of 

Peptides 1 and 2 in the 1st top-ranked cluster were 0.9 Å and 0.6 Å, respectively. The 

3rd top-ranked cluster in Peptide 3 exhibited the smallest RMSD of 2.7 Å. Thus, the 

PeptiDock+GaMD could be used to accurately predict the peptide-protein interaction. In 

comparison, cMD simulations with same simulation time were much less efficient in 

refining the peptide docking poses.139 Only 1 among 4 cMD simulations of Peptide 2 

improved the peptide binding pose. RMSD decrease was not observed in any of cMD 

simulations of Peptide 3. The top-ranked models obtained by clustering of cMD snapshots 

were of high quality for only Peptide 1 but medium for both Peptides 2 and 3. Therefore, 

GaMD simulations refined peptide docking poses and provided significantly improved 

sampling than cMD.

The PeptiDock+GaMD approach was further applied to model interactions of cyclic 

peptides with proteins, including peptide binding to MDM2/MDMX140 and Tsg101 UEV 

protein72. Compared with the linear peptides, cyclic peptides often possess longer lifetime 

and better biological activity. To facilitate cyclic peptide design, the PeptiDock+GaMD 

approach was applied to investigate binding interactions between the UEV domain protein 

and three cyclic peptides72. The predicted peptide binding mode identified from GaMD 
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simulations was further validated by binding free energy calculations, which agreed well 

with the experimental binding affinities. Therefore, GaMD simulations provided important 

insights to protein-peptide interactions and were applicable to both linear and cyclic 

peptides.

3.2.3 Binding thermodynamics and kinetics of peptide—Pep-GaMD63 has been 

developed to simulate both peptide binding and dissociation, which allows us to calculate 

the binding free energies and kinetics of flexible peptides. It has been demonstrated on 

binding of three model peptides to the SH3 domains141, 142, which include “PPPVPPRR” 

(PDB: 1CKB), “PPPALPPKK” (PDB: 1CKA) and “PAMPAR” (PDB: 1SSH) (Figs. 5A–

5C). Repetitive peptide binding and unbinding events were captured in independent 1 

μs Pep-GaMD simulations, allowing us to calculate peptide binding thermodynamics and 

kinetics (Figs. 5D–5I). Peptide kinetics especially the dissociation rate was accelerated 

by ~3–4 orders of magnitude in the Pep-GaMD simulations. The predicted values from 

Pep-GaMD were in good agreement with available experimental data. Furthermore, the 

Pep-GaMD simulations revealed the important role of long-range electrostatics in peptide 

binding and the binding mainly followed a conformational selection model.

3.3 Protein-ligand binding

3.3.1 Protein-ligand interactions—Use of EGFR tyrosine kinase inhibitors is a 

promising approach to improve progression-free survival in cancer patients. Osimertinib was 

approved as a third generation EGFR mutant selective inhibitor. Unfortunately, resistances 

were detected against the osimertinib therapy. Brown et al.80 identified G724S as an 

osimertinib resistance mutation. Microsecond GaMD simulations were performed on EGFR 

mutants in presence and absence of osimertinib to investigate the underlying mechanism. 

The GaMD simulations showed that the G724S mutation disrupts the osimertinib binding 

to the enzyme with exon 19 in-frame deletion (Ex19Del) mutation, while does not affect 

the enzyme with exon 21 missense mutation (L858R). The G724S mutation induces hyper 

stabilization of glycine-rich P-loop in β-bend conformation. It disrupts the interaction 

between indole ring of osimertinib and phenyl ring of F723. These results were further 

verified in animal cell culture experiments and in cancer patients. Overall, GaMD 

simulations elucidated the molecular mechanisms of ligand binding in EGFR mutations 

for treatment of non-small cell lung carcinomas, as well as many other protein-ligand 

interactions56, 57, 74–77.

3.3.2 Ligand binding thermodynamics and kinetics characterized by LiGaMD
—LiGaMD has been proposed to quantitatively characterize ligand binding thermodynamics 

and kinetics62. Host-guest and protein-ligand binding model systems have been used to 

validate the LiGaMD algorithm. Hundreds-of-nanosecond LiGaMD simulations captured 

repetitive guest binding and unbinding in the β-cyclodextrin host. The calculated guest 

binding free energies were in good agreement with experimental data, for which the errors 

were <1.0 kcal/mol. The sampling errors of LiGaMD simulations were < 1.0 kcal/mol 

in comparison with converged μs-timescale cMD simulations. Additionally, ligand kinetic 

rate constants were accurately predicted using Kramers’ rate theory. Furthermore, repetitive 

binding and unbinding of the benzamidine inhibitor in trypsin was observed in 1 μs LiGaMD 
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simulations, allowing us to accurately calculate ligand binding free energy and kinetic rate 

constants. The ligand dissociation rate was remarkably accelerated by 7 orders of magnitude 

in the LiGaMD simulations. The predicted values were in excellent agreement with the 

experimental data62.

3.4 Protein enzymes

3.4.1 Structural dynamics of protein kinases—Casein kinase 1δ (CK1δ) has been 

regarded as an important component in metazoan circadian rhythms regulation. Despite 

its importance, little was known about substrate selectivity and activity of the enzyme in 

molecular detail. Philpott et. al.90 performed GaMD simulations on wildtype and tau mutant 

CK1δ systems and discovered a conformational switching mechanism of the activation loop. 

The switch regulates two different regions of the PER2 protein, which in turn regulates 

the protein stability and circadian timings in eukaryotes. The GaMD simulations further 

revealed that anion binding to a highly conserved site monitors the conformation in the 

activation loop and thereby regulating the overall conformation of the substrate binding 

cleft. The tau mutant, on the other hand, disrupts the allosteric regulation between the 

anionic sites. This disturbs the conformational flexibility of the activation loop and affects 

the stability of the PER2 protein. GaMD simulations thus provided molecular basis of the 

decreased activity in the tau mutant CK1δ.

Brassinosteroid insensitive 1-associated kinase 1 (BAK1) is an important receptor like 

kinase which initiates numerous immune and growth signaling pathways in plants. Moffett 

et al.89 applied GaMD simulations to explore physiochemical basis of BAK1 activation 

through phosphorylation. GaMD simulations revealed the effects of various phosphorylation 

patterns and ATP binding on the enzyme conformation. GaMD simulations identified a 

metastable inactive enzyme conformation using activation-loop cracking. This activation 

loop conformation had been also found in other kinases like the ERK2. Phosphorylation 

of residues T450 and T455 played important roles in stabilizing the active-like activation 

loop without cracking. During the GaMD simulations, phosphorylation helped αC helix 

of the enzyme maintain its position near the N-lobe. In contrast, the αC helix of the 

unphosphorylated systems switched to an inactive state as the activation loop changed 

into a “cracked” conformation. Overall, GaMD simulations revealed the mechanism of 

phosphorylation controlled BAK1 activation. In another study, Koh et. al.88 performed 

GaMD simulations for mechanistic insights into the flux-dependent transport signaling by 

Bce-like antibiotic resistance systems. They found that the transport activity is directly 

related to histidine kinase activity even with different antibiotic concentrations.

3.4.2 Active site dynamics of protein enzymes—The oncoprotein AlkB homolog 

5 (Alkbh5) is involved in cancers such as leukemia, brain cancer and breast cancer. NMR 

experiments and GaMD simulations were combined to generate the structural model of the 

apo human Alkbh581. The Alkbh5 active site was observed to be more disordered than that 

in the x-ray structure (PDB:4NJ4). It was likely due to the absence of the Cys230–Cys267 

disulfide bond in solution, which limited the protein conformational accessibility. GaMD 

simulations captured breathing motions of the protein, which expands the α-ketoglutarate 

binding pocket and permits binding of small molecules.
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FabA and FabZ are two Escherichia coli dehydratases involved in production of the 

unsaturated fatty acids (UFAs) from fatty acid biosynthesis83. Both FabA and FabZ 

are known to catalyze dehydration reactions, however, only FabA can further catalyze 

isomerization reaction. A combined approach involving chemical biology, structural biology 

and GaMD simulations was applied to understand the substrate selectivity and divergent 

activity of the two enzymes. Cross-linking experiments were performed to produce the 

acyl-AcpP•FabA and acyl-AcpP•FabZ complexes, which were used for GaMD simulations 

to elucidate the dehydration mechanism catalyzed by FabA and FabZ. GaMD simulations 

revealed dynamic mechanism of the unique isomerase activity of FabA and successfully 

differentiated the substrate preferences of FabA and FabZ. Moreover, GaMD simulations 

showed that only FabA selectively sampled the (−) gauche conformer of trans-2-decenoyl-

AcpP for allylic rearrangement.

Furthermore, GaMD was successfully applied on simulations of protein enzymes for 

structure-based drug design of anti-malarial drugs,82 design of inhibitors targeting 

Staphylococcus aureus enzyme MnaA,85 investigation of soybean lecithin–gallic acid 

complex formation to aid in alcoholic liver disease (ALD),87 usefulness of antioxidative 

agent for treating vascular endothelial deficits,86 and understanding of drug resistance 

mechanism of rifampin92. Simulations using GaMD and replica exchange solute tempering 

(REST2)143 were performed to understand mechanism of the transactivation of estrogen 

receptor79.

3.4.3 Protein allostery—The interaction between HCV NS5A-D2 and human prolyl 

isomerase cyclophilin A (CypA) plays an essential role in viral RNA replication. Dujardin 

et al.84 employed GaMD simulations and NMR to investigate the role of a short 

structural motif PW-turn (314PXWA317) on the structural disorder in NS5A-D2. There is 

a conformational equilibrium between folded and disordered states in the PW-turn motif, 

which is allosterically regulated by the cis/trans isomerization of 5 prolines residues (P306, 

P310, P315, P319 and P320). Moreover, the HCV RNA replication efficiency correlates well 

with the fraction of the structured PW-turn obtained from GaMD simulations.

Another study by Sztain et al.91 employed GaMD to identify cryptic pockets of the 

SARS-CoV-2 main protease (Mpro), which are far away from the active site. Four systems 

including the monomer and dimer of Mpro in the absence and presence of the co-crystalized 

N3 inhibitor were built to perform GaMD simulations. Three regions including the distal 

allosteric site, active site and dimer interface region were identified as potential drug pockets 

using the PockDrug webserver.144 Virtual screening against the above-mentioned pockets 

allowed to identify more hit molecules than using only the active site in the crystal structure. 

Furthermore, correlation analysis suggested that the three pockets could be allosterically 

regulated by each other. Therefore, the above identified pockets could be useful in virtual 

screening to identify novel inhibitors of SARS-CoV-2.

3.5 Membrane proteins

Membrane proteins including GPCRs, intramembrane proteases and ion channels play 

essential roles in cellular signaling and serve as important drug targets. Here, we will 
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summarize recent applications of GaMD in studies of GPCRs (including muscarinic 

acetylcholine, adenosine, opioid and chemokine receptors), γ-secretase, etc.

3.5.1 Binding mechanism of G protein mimetic nanobody to M2 muscarinic 
GPCR—GaMD simulations were performed to capture the spontaneous binding of 

nanobody Nb9–8, a G protein mimetic, to the M2 muscarinic GPCR145. The agonist and 

nanobody in the X-ray structure of the active M2 receptor were placed to be >20 Å far 

away from the receptor to build the starting model. Five independent GaMD simulations 

lasting ~4500 ns were performed. One GaMD simulation successfully captured the binding 

of the nanobody to the receptor G-protein coupling site of M2 with a minimum RMSD 

of 2.48 Å in the nanobody core domain relative to the X-ray conformation, although 

the agonist still not reached its binding site (Figs. 6A and 6B). Both the orthosteric 

ligand-binding pocket and intracellular domains of the M2 receptor involved conformational 

change along with the binding of the nanobody (Fig. 6B). The orthosteric pocket in the 

X-ray structures of antagonist-bound and agonist nanobody-bound receptor are “open” and 

“closed”, respectively. Binding of the nanobody induced the orthosteric pocket from the 

“open” to “closed” state. Moreover, activation of the M2 receptor was occurred during the 

binding of the nanobody, as measured by the distance between intracellular transmembrane 

helix 3 and 6 (TM3–TM6 distance) (Fig. 6B). Free energy profile of the nanobody RMSD 

relative to the 4MQS X-ray conformation and the receptor Arg1213.50-Thr3866.34 distance 

were calculated to characterize the nanobody binding pathways (Fig. 6C). Three low-energy 

conformational states including the unbound (“U”), intermediate 1 (“I1”), and intermediate 

2 (“I2”) were identified from the potential of mean force (PMF) profile. The bound (“B”) 

conformation identified in the GaMD simulations is similar to that sampled in previous 

simulations of the 4MQS X-ray structure.145 On the intracellular side, the nanobody core 

domain especially the β2, β3, β6, β7 and β8 strands overlapped well with the 4MQS X-ray 

structure when the nanobody RMSD decreased to 2.48 Å (Fig. 6D). Therefore, the GaMD 

provided important insights into the binding mechanism of the nanobody to the M2 receptor.

3.5.2 Mechanism of specific G protein coupling to adenosine receptors—
There are four subtypes of adenosine receptors (A1, A2A, A2B, and A3) in human, which 

mediate the effects of adenosine (ADO). The odd ARs including A1AR and A3AR mainly 

couple to the Gi/o proteins, while the even ARs (A2AAR and A2BAR) preferentially couple 

to the Gs proteins. In one of our recent studies69, we employed GaMD simulations on four 

AR-G protein models, including the native structures of ADO-A1AR-Gi with ADO and Gi 

protein bound146 and the NECA-A2AAR-Gs with 5’-N-ethylcarboxamidoadenosine (NECA) 

and an engineered Gs protein bound147, as well as “decoy” complexes ADO-A1AR-Gs 

and NECA-A2AAR-Gi generated by switching the G proteins. In the ADO-A1AR-Gi and 

NECA-A2AAR-Gs complexes, GaMD identified only one stable low-energy conformation, 

which is similar to the cryo-EM structure (Figs. 7A and 7B). Similarly, only one low-energy 

conformation was identified in the NECA-A2AAR-Gi complex, suggesting that agonist 

NECA binding in the A2AAR could be still stabilized by coupling to the Gi protein (Fig. 

7C). While the binding of Gs protein in the A1AR led to increased fluctuations of both the 

receptor and ADO (Fig. 7D). The ADO agonist exhibited high fluctuations and sampled 

two different binding poses (“L1” and “L2”) in the ADO-A1AR-Gs complex. In the “L2” 
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binding pose, ADO interacted with residues Tyr121.35 and Tyr2717.36 in the sub-pocket 2 of 

the A1AR, which is described earlier148. GaMD simulations indicated that coupling with the 

Gi protein was preferred to the Gs in the A1AR (Fig. 7E), while both the Gs and Gi proteins 

could be coupled with the A2AAR (Fig. 7F), being well agreement with experimental 

data of the ARs149–151. In summary, the dynamic mechanism of specific GPCR-G protein 

interactions could be obtained from the GaMD simulations.

3.5.3 GPCR-membrane interactions depend on the receptor activation state
—The phospholipid membrane bilayer plays an important role in GPCR transiting among 

different conformational states. Elucidation of the lipid-protein interactions could facilitate 

to understand the functional mechanism of GPCRs. In one of our recent study96, the cryo-

EM structure of the active ADO-A1AR-Gi146 and the X-ray structure148, 152 of the inactive 

antagonist PSB36-bound A1AR (PSB36-A1AR) were used to perform GaMD simulations. 

They were embedded in a 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC) lipid 

bilayer. GaMD simulations revealed important role of the membrane lipids in stabilizing 

different states of the A1AR. Different structural flexibility profiles of the inactive and 

active A1AR were obtained by the GaMD simulations. In comparison with the inactive 

state, higher fluctuations of the A1AR ECL2 region, intracellular ends of TM6 and TM5 

were found in the active state. Furthermore, the -SCD order parameter values obtained from 

GaMD simulations were consistent with experimental data.153 Particularly, the inactive and 

active A1AR systems exhibited similar values of the -SCD order parameters of sn-2 acyl 

chains of POPC in the upper leaflet. However, the active A1AR exhibited smaller value 

of the same -SCD order parameters in the lower leaflet than those in the inactive A1AR, 

suggesting that POPC lipids in the lower leaflet of the active A1AR system were more fluid 

than in the inactive A1AR system. One reliable explanation is that the outward movement 

of TM6 in the active A1AR could induce higher inclination of the C-H bonds to be aligned 

along the bilayer normal. Thus, GaMD simulations showed that the protein-membrane 

interactions depended on different conformational states of the A1AR.

3.5.4 Mechanism of allosteric drug lead binding to an adenosine GPCR—
Preclinical studies suggest that the A1AR is an important drug target for treating diseases 

including reduce neuropathic pain and ischemia-reperfusion injury154–156. However, 

off-target side effects have hindered the therapeutic development of A1AR agonists, 

which mainly originated from the high conservation of the endogenous agonist binding 

(“orthosteric”) site across different AR subtypes157. Positive allosteric modulators (PAMs), 

which bind to a less conserved “allosteric” site, have the potential to develop high subtype 

selective A1AR therapeutics158. Using the X-ray structure of the A1AR (PDB: 5UEN)148 

as a model, GaMD simulations159 were performed to investigate binding mechanisms of 

two PAMs, VCP171 and PD81723. Each PAM was initially placed at >20 Å away from the 

receptor. Spontaneous binding of PAMs to the A1AR was captured in GaMD simulations 

using both AMBER48 and NAMD52 at different acceleration levels (dihedral and dual 

boost).

GaMD simulations identified similar binding modes of PD81723 and VCP171 that bound 

to a site around ECL2 in the A1AR from different acceleration levels of GaMD simulations 
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performed using different software packages. They were in highly agreement with 

experimental results of site-directed mutagenesis obtained by the Christopoulos group160. In 

the mutagenesis experiments, numerous ECL2 residues including Asn148ECL2, Glu153ECL2, 

Ser161ECL2, Ile167ECL2 and Glu172ECL2 were mutated to alanine, which caused significant 

alterations in PAM binding affinity, efficacy, and cooperativity160, 161. These residues were 

found to interact with the bound PAMs in the GaMD simulations. Additionally, agonist 

binding affinity was enhanced by PAM binding. In the absence of PAM, the agonist sampled 

a large conformational space in the receptor orthosteric pocket without binding of PAM. 

Upon PAM binding at the ECL2, movement of agonist was significantly reduced.

3.5.5 Mechanism of drug binding to a chemokine GPCR—Chemokine receptors 

are regarded as one of the important GPCRs with implications in human health and 

therapeutics. CXCR4 is an important subtype with involvement in different human diseases 

including cancer and HIV infection. Despite its important, less is known about the 

mechanism of drug interaction with the receptor. GaMD simulations74 were performed to 

study the binding mechanism of the drug Plerixafor (PLX) and its pathway to CXCR4. 

Simulation systems were built by placing ten unbound ligand molecules at a distance >15 

Å away from the receptor. GaMD_Dual_NB boost scheme was used in which system 

nonbonded and dihedral energy terms were boosted. The GaMD_Dual_NB simulations 

captured spontaneous binding of the PLX from the bulk solvent to the receptor orthosteric 

site in one of five production runs. The complete binding of PLX was observed at ~480 

ns timescale with minimum RMSD relative to the bound conformation of 2.76 Å. In 

the binding pocket of CXCR4, the positively charged PLX formed stable salt bridges 

with residues Asp972.63, Asp2626.58 and Glu2887.39 occupying both the minor and major 

sub-pockets of the receptor. In 2D PMF profile calculated from the GaMD simulations, 

“unbound”, “intermediate 1” (I1), “intermediate 2” (I2) and “bound” PLX low-energy 

conformational states were identified. In the intermediate conformational states I1 and 

I2, same polar and charged residues in the receptor ECL2-TM5-TM6 region, namely 

Asp187ECL2, Asp1935.32 and Asp2626.58, formed favorable interactions with the positively 

charged nitrogen atoms of PLX. Thus, the ECL2-TM5-TM6 region of CXCR4 formed a 

novel intermediate drug binding site. Furthermore, GaMD simulations identified PLX drug 

binding pathway to the CXCR4. These studies are expected to greatly facilitate drug design 

of CXCR4.

3.5.6 Mechanisms of γ-secretase activation and substrate processing—The 

mechanism of activation of γ-secretase bound to amyloid precursor protein (APP) was 

investigated using GaMD simulations98. The Cryo-EM structures of two substrates App 

and Notch bounded γ-secretase were simulated to investigate substrate processing by γ-

secretase of wildtype and APP mutant causing the familial Alzheimer’s disease (FAD)162 

(Fig. 8A). Mutations in the cryo-EM structure introduced unnatural enzyme-substrate 

interactions and hindered the activation process. With a combined study of GaMD 

simulations, mass spectrometry and western blotting, a model highlighting the process of 

intramembrane proteolysis of APP by γ-secretase was presented.
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Spontaneous activation of γ-secretase in complex with wildtype APP in the presence of a 

water molecule was captured by GaMD simulations (Figs. 8A and 8D). The water molecule 

that entered the presenilin active site was trapped between two catalytic Asp residues that 

were ~7 Å apart forming stable hydrogen bonds. A carbonyl oxygen of the scissile amide 

bond present between Leu49 and Val50 residues of the APP substrate formed a hydrogen 

bond with γ-secretase residue Asp257. During activation of γ-secretase, TM1, TM2 and 

TM8 helices of catalytic PS1 subunit showed some flexibility while TM6a was observed 

interacting directly with the substrate. Free energy profiles revealed four low-energy 

conformations of γ-secretase bound to wildtype APP, namely “Inactive”, “Intermediate”, 

“Inhibited” and “Active” (Fig. 8D). The active conformational state resembled the activation 

of the enzyme whereas the inactive state correlated with the starting cryo-EM structure 

(Figs. 8A & 8B). The active conformational state resembled the activation of the enzyme 

whereas the inactive state correlated with the starting cryo-EM structure. The inhibited 

conformational state closely resembled the γ-secretase structure in complex with DAPT 

inhibitor163. The intermediate conformational state resembled the transitional structure in 

between these states.

In addition to wildtype, GaMD simulations were performed on the APP mutants namely 

I45F, T48P and M51F that lead to FAD. The I45F and T48P system systems revealed 

faster activation compared to the wildtype system which were in good agreement with 

the experimental mass spectrometry data of APP intracellular domain (AICD) proteolytic 

products that showed greater AICD50–99/AICD49–99 ratio in comparison to the wildtype. 

Four low-energy conformations, similar to those observed in wildtype, were identified in 

the FAD mutant systems. Furthermore, the GaMD simulation of M51F mutant shifted the ε 
cleavage between Thr48-Leu49 (Figs. 8C & 8E). The mass spectrometry analysis validated 

the AICD products formed as a result of proteolysis cleavage between Thr48-Leu49 was 

observed higher. In vitro assay showed significant high production of AICD in M51F system 

as compared to other systems. This was consistent with the GaMD free energy landscape 

as the inhibited state was observed in wildtype, I45F and T48P system but not in M51F 

system. The experimental validations strongly correlated with the GaMD simulation model 

of γ-secretase.

GaMD simulations of the wildtype and FAD mutant APPs of the different γ-secretase 

enzyme systems were analyzed with respect to their secondary structures. In particular, 

the M51F mutant APP shifted ~4 Å downwards with Thr48 and Leu49 residues flipping 

its side chain. The C-terminus of APP lost its β-sheet conformation as required for local 

rearrangements during the shift in ε cleavage. The sub-pockets S1’, S2’ and S3’ in the active 

site could also be visualized in the wildtype and FAD mutant APPs bound to γ-secretase 

via GaMD simulations. Overall, the combination of GaMD simulations, mass spectrometry 

and western blots enabled deep understanding of substrate processing by γ-secretase and its 

activation.

3.5.7 Structural dynamics of cytochrome P450—Cytochrome P450 3A4 

(CYP34A) enzyme plays a crucial role in mammalian metabolic pathways including 

synthesis and breakdown of fatty acids and hormones. It undergoes large conformational 

changes in the active site and other structural components of the enzyme. Redhair et. 
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al.93 performed GaMD simulations to understand the protein dynamics and protein-ligand 

interactions induced by allosteric drug benzodiazepine midazolam (MDZ) in a lipid bilayer. 

The GaMD simulations showed that F- and G-helical regions could be a possible allosteric 

site for MDZ drug, which were further verified by hydrogen-deuterium exchange mass 

spectrometry. The GaMD simulations showed that the local environment at the Phe-cluster 

comprising the region between the active site and the lipid bilayer was dynamic and could 

be a possible allosteric site. Even in the presence of a ligand at the active site, the enzyme 

generated flexible allosteric site nearby. Overall, GaMD simulations provided the molecular 

basis of enzyme activity and allosteric drug interaction in cytochrome CYP34A.

3.6 Carbohydrates

Here, we summarize recent GaMD studies of carbohydrates, fundamental components of 

cells that engage in energy functions and form structural components. We review how 

GaMD has been applied to describe the dynamic interplay of carbohydrates with DNA101 

and proteins,59 and how the method has been used to facilitate the development of 

carbohydrate force field parameters.99

3.6.1 The importance of carbohydrates conformation on DNA triplex—DNA 

triplexes are higher-order structural arrangements important for gene regulation and 

biotechnological applications. GaMD simulations were recently employed to examine the 

impact of substituting deoxyribose sugars by conformationally locked sugars on the DNA 

triplex structure.101 Multiple GaMD simulations were performed on both 3’–5’ and 5’–3’ 

modified triplexes, as well as on an unmodified DNA triplex, which was used as a control. 

The simulations revealed that the DNA triplexes, in which the deoxyribose was replaced by 

locked sugar, lost their structural integrity, and disintegrated resembling the structure of a 

duplex. On the other hand, the control DNA triplex preserved the structural integrity during 

the simulations. As a notable observation, both modified triplexes changed conformation 

reaching duplex structures containing a modified strand and a regular strand, while the third 

DNA strand was dissociated from the complex. In-depth analysis of the trajectories indicated 

a significant reduction in the major groove width and diminished solvent accessible surface 

area in the modified triplexes, as compared to reference systems. On this basis, the authors 

suggested that the newly introduced locked sugars impose a remarkable steric constraint, 

which alters the DNA structure and results in the inefficient binding of the third DNA strand. 

Overall, the authors concluded that knowledge of the structural changes induced by modified 

sugars could be leveraged for the design of new antisense oligonucleotides, as well as to 

understand the role of modified oligonucleotides in anticancer therapy.

3.6.2 Carbohydrate-protein interactions—Protein glycosylation is a post-

translational modification that is involved in several cellular and biological processes.59 

Glycosyltransferases (GTs) catalyze the transfer of a sugar moiety to acceptor amino acids, 

such as serine, threonine (O-linked glycosylation) and asparagine (N-linked glycosylation). 

The glycosylation process also occurs in bacterial proteins, where it plays a critical 

role in the immune response against pathogens. Some bacterial effectors leverage the 

glycosylation process to suppress the nuclear factor NF-κB, which is central in regulating 

the immune response. The non-locus of enterocyte effacement effector protein B (NleB) 
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has glycosyltransferase activity and inhibits NF-κB by transferring N-acetyl glucosamine 

(GlcNAc). To further understand the glycosylation process, Park and co-authors59 focused 

on the SseK1 and SseK2 effectors, which are orthologs of NleB from Salmonella 
typhimurium. The authors combined X-ray crystallography, NMR, enzyme kinetics, GaMD 

simulations and in vivo experiments. Structural evidences revealed a glycosyltransferase 

architecture displaying a helix-loop-helix (HLH) domain relevant to protein substrate 

recognition and a catalytic core, which includes the conserved catalytic triad (His-Glu-Asn) 

critical for enzyme catalysis and bacterial virulence. GaMD simulations showed large 

amplitude motions of the HLH domain, with significant differences in SseK1 and SseK2 

that affect the HLH approach toward the substrate binding pocket. Specifically, SseK1 was 

considerably more flexible than SseK2 in the loop region connecting the HLH, in line with 

the increased specificity toward the substrate that has been measured experimentally.59 The 

simulations also suggested a possible conformation of the catalytically competent active site, 

showing that the binding of GlcNAc properly orients the substrate, viz., an arginine residue 

target of the glycosylation process, for the chemical reaction.

3.6.3 Development of carbohydrate force field parameters with GaMD 
simulations—Heparin is a highly sulphated, linear polysaccharide belonging to the 

family of glycosaminoglycans. Endogenous heparin critically regulates blood coagulation 

by interacting with the small protein antithrombin (AT), through the pentasaccharide domain 

responsible for the heparin activity.99, 164 The capability of a heparin penta-saccharide to 

bind AT is determined by the conformational dynamics of the sugar rings, and particular 

by the conformation of the L-iduronic acid residue. On this basis, idraparinux derivatives, 

which are non-glycosaminoglycan analogues of the heparin penta-saccharide, are promising 

anticoagulant drug candidates. However, computational simulations of carbohydrates for 

drug discovery are difficult due to their high flexibility. Moreover, the difficulty of 

computationally modelling idraparinux derivatives is increased by the presence of sulfonato-

methyl moieties, which are highly charged. Therefore, to attain a proper description of 

heparin and idraparinux derivatives, Balogh and co-authors assessed the performance 

of the GAFF1,165 GLYCAM06166, 167 and CHARMM168, 169 force fields using GaMD 

simulations.99 This enabled enhancing the conformational landscape of the pentasaccharide 

domain obtaining agreement with NMR experiments. The analysis of simulations and their 

comparison with NMR demonstrated that the CHARMM force field was better reproducing 

best the experimental data on the ring conformations, producing also good agreement with 

the Nuclear Overhauser Effects (NOE) distances on L-iduronic acid ring conformations. 

Therefore, the use of the CHARMM force field was proposed for the exhaustive and 

comparative conformational analyses of idraparinux derivatives.

3.7 Drug Design

3.7.1 Retrospective ensemble docking of allosteric modulators of A1AR—
Virtual screening has been widely used for agonist/antagonist design targeting GPCRs.170 

The success rate for virtual screening of GPCRs in the orthosteric pocket is mostly >20%, 

which is even higher than that of globular proteins.171 However, it is rather challenging to 

apply virtual screening to identify allosteric modulators due to their low affinity compared 

with the agonist/antagonist. In a recent study103, we tested whether receptor structural 
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ensembles obtained from GaMD simulations could be used to increase docking performance 

of known PAMs using the A1AR as a model GPCR. Retrospective ensemble docking 

calculations of PAMs to the A1AR combining GaMD simulations and Autodock172 were 

performed.

The GaMD simulations implemented in AMBER and NAMD were applied to generate 

receptor ensemble. The flexible docking and rigid-body docking at different levels (short, 

medium, and long) were all evaluated. Docking scores corrected by the GaMD reweighted 

free energy of the receptor structural cluster further improved the docking performances. 

The calculated docking enrichment factors (EFs) and the area under the receiver operating 

characteristic curves (AUC) are increased using ranking by the average binding energy 

(BEavg) in comparison with the minimum binding energy (BEmin). Ensemble obtained 

from AMBER dual-boost GaMD simulations of the VCP171-bound ADO-A1AR-Gi 

complex outperformed other ensembles for docking. Interactions between the PAM and 

receptor ECL2 in the VCP171-bound ADO-A1AR-Gi complex might induce more suitable 

conformations for PAM binding, which were difficult to be sampled in the simulations 

of PAM-free (apo) A1AR. Dual-boost GaMD with higher boost potential was observed 

to perform better than the dihedral-boost GaMD for ensemble docking. Overall, flexible 

docking performed significantly better than the rigid-body docking at different levels with 

AutoDock, suggesting that the flexibility of protein side chains is also important in ensemble 

docking. In summary, the docking performance has been highly improved by combining 

GaMD simulations and flexible docking, which effectively account for the flexibility of 

backbone and side chain in receptors. Such an ensemble docking protocol will greatly 

facilitate future PAM design of the A1AR and other GPCRs.

3.7.2 Discovery of Novel Small-Molecule Calcium Sensitizers for Cardiac 
Troponin C—Cardiac troponin C (TnC) is a calcium-dependent protein in the troponin 

complex responsible for the activation of muscle contraction. Disorder of TnC may trigger 

heart diseases and then cause death. One of the current therapies173 is to design small 

molecules that can stabilize an open structure of the TnC and facilitate binding of the TnC 

switch peptide. To identify potential small molecules for the treatment, Coldren et al.102 

combined GaMD and high-throughput virtual screening to predict binding conformations 

and affinities of small molecules in TnC. The simulations were compared with experiments 

for the TnC protein structures in complex with calcium sensitivity modulators. 300 ns 

GaMD simulations were performed on each system to obtain protein conformations. The 

simulation trajectory snapshots were clustered into ten most representative conformations 

based on an agglomerative hierarchical algorithm, which were the structures used for virtual 

screening and docking studies. The work identified a number of novel compounds that 

reduced the calcium dissociation rate and showed an overall calcium sensitization effect. 

One of the compounds exhibited high binding affinity in TnC and was further verified by the 

stopped-flow kinetic experiment.

4. Software

GaMD has been implemented in the common MD simulation packages, including both 

GPU and CPU versions of AMBER48, 174, NAMD52 and GENESIS61 (Table 1). All the 
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above-mentioned GaMD algorithms have been incorporated into the latest GPU version of 

AMBER 20175.

5. Conclusions

Without the need to set predefined reaction coordinates or collective variables, GaMD can be 

advantageous for exploring biomolecular conformational space and complex biomolecular 

interactions without a priori knowledge or constraints. Additionally, the boost potential in 

GaMD simulations exhibits a Gaussian distribution, allowing for accurate reweighting of the 

simulations using cumulant expansion to the second order. Thus, GaMD is applicable to a 

wide range of biological systems as described in this review.

Based on GaMD, novel approaches including rex-GaMD60, GaREUS61 and selective 

GaMD (LiGaMD and Pep-GaMD)62, 63 have been developed. The selective LiGaMD 

and Pep-GaMD algorithms appear to be more efficient and easier to use as compared 

with other existing methods, including the cMD176, 177, replica exchange178–180 and 

metadynamics180, 181. For example, a binding event of drug Dasatinib to its binding site 

of Src Kinase was captured in a total of 35 μs Anton cMD simulation177. Repetitive binding 

and unbinding of an IDP peptide was captured in 200 μs Anton cMD simulations at elevated 

temperature (400 K)176. Replica exchange algorithm needs to simultaneously simulate many 

replicas to model ligand/peptide binding and dissociation178–180. In comparison, LiGaMD 

and Pep-GaMD simulations was able to capture multiple events of ligand/peptide binding 

and unbinding within microsecond simulation time. These highly efficient simulations 

allowed us to accurately characterize the ligand/peptide binding thermodynamics and 

kinetics62, 63.

Finally, more efficient GaMD algorithms and enhanced sampling methods in general are still 

needed to characterize the thermodynamics and kinetics of important protein-protein/nucleic 

acid interactions, which could involve difficult simulations of both binding and dissociation 

of large biomolecular complexes. Moreover, structural dynamics in systems of increasing 

sizes such as viruses and cells present grand challenges for computational modelling and 

enhanced sampling simulations. Continued innovations in both supercomputing hardware 

and method developments may help us to address these challenges in the future.
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Figure 1. 
Scheme illustration of Gaussian accelerated molecular dynamics (GaMD). When the 

threshold energy is set to the maximum potential (E=Vmax), the system potential energy 

surface is smoothened by adding a harmonic boost potential that follows Gaussian 

distribution. The coefficient k0 in the range of 0−1 determines the magnitude of the applied 

boost potential. With greater k0, higher boost potential is added to the original energy 

surface in conventional molecular dynamics (cMD), which provides enhanced sampling of 

biomolecules across decreased energy barriers. Adapted with permission from Miao et al. 

(2015). Copyright 2015 American Chemical Society. https://pubs.acs.org/doi/abs/10.1021/

acs.jctc.5b00436. Further permissions related to the material excerpted should be directed to 

the American Chemical Society.
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Figure 2. 
(A) Overview of the Streptococcus pyogenes CRISPR-Cas9 system. The Cas9 protein is 

represented in molecular surface, showing individual domains in different colors. The RNA 

(yellow), target DNA (TS, violet), and non-target DNA (NTS, cyan) are also shown. (B) 

Energetic landscape associated to the conformational transition of the Cas9 protein from 

the apo form to the RNA-bound state, computed using GaMD. The potential of mean force 

(PMF), which describes the free energy landscape, was computed along the E945-D435 

FRET distance and the root mean square deviation (RMSD) with respect to the apo state. 

The simulations identified three minima: M1 corresponding to the crystallographic apo, 

M2 that is the RNA-bound structure and M3, which is an intermediate characterized by 

the solvent exposure of an arginine-rich helix. For selected states, the ensemble averaged 

electrostatic potential has been computed, revealing the formation of a positively charged 

cavity (blue) in the intermediate states. Adapted with permission from Palermo et al. (2017). 

https://www.pnas.org/content/114/28/7260. Copyright 2017 National Academy of Sciences.
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Figure 3. 
(A) Conformations of the HNH domain (green) in its inactive (#1, #2), pre-active (#3) 

and active (#4) states, as experimentally determined through single-molecule FRET and 

structural approaches (top panel). The free energy landscape (i.e., Potential of Mean Force, 

PMF) associated to the conformational changes of the HNH domain from its inactive to 

active states is shown in the bottom panel. The minima correspond to the four states 

experimentally found (top). The PMF was computed along the S867-S355 and N1054-S867 

FRET distances. Adapted with permission from Palermo et al. (2017). https://www.pnas.org/

content/114/28/7260. Copyright 2017 National Academy of Sciences. (B) Conformational 

change of the HNH domain from its pre-active conformation (captured in the PDB ID: 

5F9R, left) to the active state identified through GaMD (right). The active state displays 

the catalytic residue H983 close to the DNA target strand (TS). The distance between the 

catalytic H840 and the scissile phosphate (H840–PDNA) has been computed along ~400 ns 

GaMD (central panel) and ~16 μs of continuous MD using the specialized supercomputer 

Anton-2 (bottom panel). The black dashed line indicates the pre-active conformation (PDB 

ID: 5F9R) used as a starting point for MD simulations, while the magenta dashed line 

indicates the active conformation more recently captured through cryo-EM (PDB ID: 

6O0Y). Reprinted with permission from Palermo et al. (2018). Copyright 2018 Cambridge 

University Press. https://doi.org/10.1017/S0033583518000070.
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Figure 4. 
(A) Extended opening of the RNA:DNA hybrid and newly formed interactions with the 

L2 loop (magenta) of the HNH domain (green), observed during GaMD simulations of 

CRISPR-Cas9 in the presence of four base pair mismatches at the RNA:DNA hybrid ends. 

(B) RNA:DNA minor groove width computed along MD simulations of CRISPR-Cas9 

bound to an on-target DNA (black) and in the presence of one to four mismatches at the 

hybrid ends. A vertical bar indicates the experimental minor groove width (i.e., 11 Å from 

X-ray crystallography). The minor groove width has been measured at the level of base 

pair 17 (shown on the right). Adapted with permission from Ricci et al. (2019). Copyright 

2019 American Chemical Society. https://pubs.acs.org/doi/full/10.1021/acscentsci.9b00020. 

Further permissions related to the material excerpted should be directed to the American 

Chemical Society.
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Figure 5. 
Pep-GaMD simulations have captured repetitive dissociation and binding of three model 

peptides to the SH3 domains: (A-C) X-ray structures of the SH3 domains bound by peptides 

(A) “PAMPAR” (PDB: 1SSH), (B) “PPPALPPKK” (PDB: 1CKA) and (C) “PPPVPPRR” 

(PDB: 1CKB). The SH3 domains and peptides are shown in green and magenta cartoon, 

respectively. Key protein residues Asp19 and Trp40 in the 1SSH structure and Asp150 

and Trp169 in the 1CKA and 1CKB structures, and peptide residues Arg10 in the 1SSH 

structure, Lys8 in the 1CKA structure and Arg7 in the 1CKB structure are highlighted 

in sticks. The “N” and “C” labels denote the N-terminus and C-terminus of the peptides. 

(D–F) time courses of peptide backbone RMSDs relative to X-ray structures with the 

protein aligned calculated from three independent 1 μs Pep-GaMD simulations of the (D) 

1SSH, (E) 1CKA and (F) 1CKB structures. (G–I) The corresponding PMF profiles of the 

peptide backbone RMSDs averaged over three Pep-GaMD simulations of the (G) 1SSH, (H) 

1CKA and (I) 1CKB structures. Error bars are standard deviations of the free energy values 

calculated from three Pep-GaMD simulations. Reprinted from “Jinan Wang, Yinglong Miao, 

J Chem Phys 2020, 153:154109”, with the permission of AIP Publishing.
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Figure 6. 
Binding of agonist IXO and Gi protein mimetic nanobody Nb9–8 to the M2 muscarinic 

GPCR was captured in one of five GaMD simulations: (A) Trajectories of a nitrogen 

atom in IXO (beads) and the β8 strand of Nb9–8 (ribbons) colored by simulation time 

in a blue (0 ns)–white (2250 ns)–red (4500 ns) scale. (B) RMSDs of the IXO and Nb9–

8 relative to the X-ray structure, Tyr1043.33-Tyr4036.51-Tyr4267.39 triangle perimeter and 

Arg1213.50-Thr3866.34 distance calculated from the simulation. Dashed lines indicate X-ray 

structural values of the M2 receptor (3UON: green and 4MQS: red). (C) Binding pose of 

IXO (spheres) in the receptor extracellular vestibule with 13.84 Å RMSD relative to the 

X-ray conformation (yellow spheres). Residues found within 5 Å of IXO are highlighted in 

sticks. (D) Binding of Nb9–8 (cyan), which exhibits only 2.48 Å RMSD in the protein core 

(the β2, β3, β6, β7 and β8 strands). X-ray conformations of the M2 receptor and nanobody 

are shown in orange and purple ribbons, respectively. Adapted with permission from Miao et 

al. (2018). https://www.pnas.org/content/115/12/3036. Copyright 2018 National Academy of 

Sciences.
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Figure 7. 
2D potential of mean force (PMF) profiles of the (A) ADO-bound A1AR-Gi, (B) NECA 

bound A2AAR-Gs, (C) NECA bound A2AAR-Gi and (D) ADO bound A1AR-Gs complex 

systems regarding the agonist RMSD relative to the cryo-EM conformation and AR:NPxxY-

G:α5 distance. The white triangles indicate the cryo-EM or simulation starting structures. 

Summary of specific AR-G protein interactions: (E) the ADO-bound A1AR prefers to 

bind the Gi protein to the Gs. The latter could not stabilize binding of agonist ADO 

in the A1AR and tended to dissociate from the receptor. (F) The A2AAR could bind 

both the Gs and Gi proteins, which adopted distinct conformations in the complexes. 

Adapted with permission from Wang et al. (2019). Copyright 2019 American Chemical 

Society. https://pubs.acs.org/doi/10.1021/acs.jpcb.9b04867. Further permissions related to 

the material excerpted should be directed to the American Chemical Society.
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Figure 8. 
GaMD simulations revealed the activation and its ε cleavage mechanisms of γ-secretase 

in the wildtype and mutant APP substrates. Summary of the (A) inactive cryo-EM, (B) 

active (wildtype), and (C) shifted active (M51F) conformational states of the APP-bound γ-

secretase. Distinct AICD products were generated from the wildtype and M51F mutant APP. 

GaMD free energy profiles of (D) wildtype and (E) M51F APP-bound γ-secretase regarding 

the Asp257:Cγ–Asp385:Cγ and Asp257:protonated O–Leu49:O distances. Adapted with 

permission from Bhattarai et al. (2020). Copyright 2020 American Chemical Society. https://

pubs.acs.org/doi/abs/10.1021/acscentsci.0c00296. Further permissions related to the material 

excerpted should be directed to the American Chemical Society.
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Table 1

The implemented GaMD algorithms in different MD software packages.

AMBER CPU version AMBER GPU version NAMD GENESIS

Dihedral GaMD X X X X

Total boost GaMD X X X X

Dual boost GaMD X X X X

Nonbonded dual-boost GaMD X X

Selective GaMD (LiGaMD & Pep-GaMD) X
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