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Abstract: In the search for novel anti-infectives from natural sources, fungi, in particular basid-
iomycetes, have proven to still harbor so much potential in terms of secondary metabolites diversity.
There have been numerous reports on isolating numerous secondary metabolites from genus Laeti-
porus. This study reports on two new triterpenoids, laetiporins C and D, and four known triterpenes
from the fruiting body of L. sulphureus. The structures of the isolated compounds were elucidated
based on their 1D and 2D nuclear magnetic resonance (NMR) spectroscopic data in combination
with high-resolution electrospray mass spectrometric (HR-ESIMS) data. Laetiporin C exhibited weak
antifungal activity against Mucor hiemalis. Furthermore, the compounds showed weak antiprolifera-
tive activity against the mouse fibroblast L929 and human cancer cell lines, including KB-3-1, A431,
MCF-7, PC-3 and A549.

Keywords: Laetiporus sp.; triterpenoids; antimicrobial; antiproliferative

1. Introduction

Fungi are a valuable group of organisms that have come under a role of study due
to their potential for biological activity [1]. Mushroom-forming fungi (mostly belonging
to the phylum Basidiomycota) are known to be prolific producers of bioactive secondary
metabolites with economic importance [2,3]. Some of these metabolites have potential
benefits with emphasis on their anti-Alzheimer, antidiabetic, anti-malarial, anti-microbial,
anti-oxidant, antitumor, anti-viral and hypocholesterolemic activities which are important
medicinal targets in terms of drug discovery today [3–5].

The genus Laetiporus belongs to the Fomitopsidaceae (Polyporales) [6] and its species
form conspicuous basidiomes on wood. Laetiporus spp. are considered to be forest
pathogens, but some taxa are reported to be edible or to contain medicinal valuable
compounds [7–9]. The genus is geographically distributed world-wide, and its species
can be found in cold temperate to tropical zones. They are most often associated with
angiosperm hosts belonging to the Fabaceace, Meliaceae, and Salicaceae families [10]. There
are 15 species that have been accepted in the genus worldwide and 11 species have been
confirmed in the L. sulphureus complex by phylogenetic analyses [11].

In the present study, Laetiporus sulphureus, a fungus whose fruiting bodies commonly
occur in Germany, was investigated. This species is also known under its trivial names
such as ‘Chicken-of-the-Woods’ or ‘Chicken Mushroom’ [12,13]. It has been used tradition-
ally as food and for its medicinal properties. In recent years, there have been extensive
examinations and research into the biologically active compounds and extracts from the
species from this genus and their benefits on human health [12,13]. We have recently
come across fresh specimens from German and found interesting metabolite patterns in
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its fruitbody extracts by HPLC analysis. Hence, we decided to isolate and identified the
respective metabolites. This study reports the isolation of two new compounds, for which
we propose the trivial names laetiporins C and D, as well as their structure elucidation and
biological activities.

2. Results and Discussion
2.1. Structure Elucidation of Compound 1 and 2

Investigation of the chemical composition of the fruiting body of Laetiporus sulphureus
and subsequent fractionation and purification by reverse phase HPLC (Figure 1) led to
the isolation of two previously undescribed lanostane triterpenoids for which the trivial
names laetiporins C (1) and D (2) were assigned. In addition, four known compounds:
fomefficinic acid (3) [14], eburicoic acid (4) [15], 15 α-hydroxytrametenolic acid (5) [16] and
trametenolic acid (6) [17] were also isolated from the same crude extract (Figure 2). The
above-mentioned known compounds except compound 3 were previously isolated from
the liquid culture of a Kenyan Laetiporus sp. [12]. The structures of the known compounds
were elucidated by comparison of their NMR spectroscopic data and HR-ESIMS with those
reported in the literature.
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Figure 1. LC–UV/Vis chromatogram of the crude extract from the fruiting body (diode array detection at 200–640 nm).
Stationary phase: C18 Acquity UPLC BEH column; for gradient and other details on the experimental setup, see the
Experimental section; 1–6: Major metabolites detected (chemical structures see Figure 2) The green diagonal line indicates
the gradient (% of acetonitrile).

Compound 1 was isolated as a dark brown solid with the molecular formula C31H50O5
and 7 degrees of unsaturation established from HR-ESIMS data (positive mode), which
displayed molecular ion peaks [M+H-H2O]+ at m/z 485.3628 and [M+Na]+ at m/z 525.3552.
The 1H-NMR spectrum exhibited signals of five methyl groups singlet at δ 0.70 (H-30, s),
δ 0.70 (H-18, s), δ 0.81 (H-31, s), δ 0.90 (H-29, s), δ 0.90 (H-19, s), two methyl groups doublet
at δ 0.94 (H-26/H-27, d, J = 6.8), two hydroxymethine at δ 3.00 (H-3, td, J = 6.02, 10.76)
and δ 4.01 (H-15, br dd, J = 5.81, 10.54), two diasteriotopic protons corresponding to one
oxymethylene at δ 3.98 (H-28a, br d, J = 12.1) and δ 3.85 (H-28b, br d, J = 12.2), one olefinic
protons at δ 5.09 (H-23, t, J = 7.31) and two hydroxy groups doublet at δ 4.30 (OH-3/OH-15,
d, J = 5.3). The 13C NMR spectroscopic data revealed the presence of 31 carbons signals
further identified based on combined analysis of 1D and 1H-13C HSQC spectra as seven
methyl groups, eight methylenes, one oxymethylene, four methines, two hydroxymethines,
one carboxylic carbon, one olefinic carbon, three non-protonated C-sp2 hybridized carbons
and four quaternary C-sp3 hybridized carbons (Table 1).
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Figure 2. Chemical structures of compounds 1–6 isolated from Laetiporus sulphureus. 
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Analysis of its HMBC spectrum showed correlations of H-18 (δ 0.70) to C-12 (δ 29.0)/C-
13 (δ 44.1)/C-14 (δ 50.8)/C-17 (δ 45.3), H-19 (δ 0.90) to C-1 (δ 35.2)/C-5 (δ 50.0)/C-9
(δ 133.9)/C-10 (δ 36.6), H-29 (δ 0.90) and H-30 (δ 0.70) to C-3 (δ 76.7) /C-4 (δ 38.5)/C-5
(δ 50.0) and H-31 (δ 0.81) to C-13 (δ 44.1)/C-14 (δ 50.8)/C-15 (δ 71.0) which suggested the
presence of a lanostane skeleton as previously reported by [12]. The position of the double
bond ∆8–9 was confirmed on the HMBC spectrum where correlations between H-31 (δ 0.81)
and C-8 (δ 133.9) and between H-19 (δ 0.90) and C-9 (δ 134.0) was observed. The side chain
connection was established from the HMBC correlation of H-20 (δ 2.02) to C-17 (δ 45.3).
Further 3J-HMBC correlation between the methylene group H-22 (δ 2.15) and C-21 (δ 176.8)
confirmed the position of the carboxylic group connected at C-20. Moreover, combined
analysis of HMBC, COSY and ROESY spectroscopic data of compound 1 confirmed the
positioning and assignment of protons and carbons of the side chains (Figure 3). Most
particularly, the HMBC correlations observed between H-28a/H-28b and C-23/C-24/C-25
allowed the positioning of the oxymethylene C-28 placed at C-24. The Z-configuration of
the ∆23–24 double bond was established based on ROESY correlations observed between
H-28a/H-28b and H-22 and between H-23 and H-25. In the COSY spectrum, correlations
of H-20 to H-17/H-22, H-22 to H-23, H-25 to H-26/H-27 were observed. Further COSY
correlations between H-1 and H-2, H-3 and H-2, H-6 and H-5/H-7, H-11 and H-12, H-14
and H-15 were also recorded. A network ROESY correlations, which gave an indication of
the orientation in space of some groups at various stereocenters were observed and further
allowed the establishment of the absolute configuration of compound 1. The α-orientation
of H-3 was suggested based on the ROESY correlations of H-3 to H-5/H-29, as well as
the coupling constant J = 5.30 and 10.54 Hz observed for this proton. Therefore, the S
configuration was assigned at C-3 as previously reported by [12]. By using the orientation
of H-3 and the S configuration assigned to C-3 as reference, the configuration of the other
stereocenters was determined based on ROESY correlations observed between H-5 to
H-29, H-30 to Hβ-6 (1.61)/H-19, H-19 to Hβ-11, H-18 to Hβ-11 (1.94)/H-19/H-20/H-15,
H-31 to Hα-16 (1.82)/H-17. These correlations allowed the assignment of the absolute
configuration of compound 1 as 3S, 5R, 10S, 13R, 14R, 15S, 17R, 20S and the trivial name
laetiporin C was attributed to it.
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Table 1. 13C and 1H-NMR spectroscopic data (1H 700 MHZ, 13C 175 MHZ in DMSO-d6, δ in ppm) for compounds 1 and 2.

Pos.
1 2

δC, Type δH (J in Hz) δC, Type δH (J in Hz)

1 35.2, CH2
α:1.10 (m) a

β:1.62 (m) a 35.4, CH2
α: 1.52 (m) a

β: 1.89 (m) a

2 27.6, CH2 1.48 (m) a 34.0, CH2
α: 2.52(m) b

β: 2.33 (m) a

3 76.7, CH 3.00 (br dd), J = 5.30, 10.54 216.3, C -
4 38.5, C - 46.6, C -
5 50.0, CH 0.92 (m) a 50.5, CH 1.50, m

6 17.9, CH2
α:1.41 (m) a

β:1.61 (m) a 19.0, CH2
α:1.50 (m) a

β:1.58 (m) a

7 26.5, CH2 2.11 (m)a 26.4, CH2 2.15 (m) a

8 133.9, C - 134.7, C -
9 134.0, C - 132.7, C -
10 36.6, C - 36.5, C -

11 20.1, CH2
α: 1.87 (m) a

β: 1.94 (m) a 20.2, CH2
1.94 (m) a

12 29.0, CH2
α:1.29 (m) a

β:1.64 (m) a 29.1, CH2
α:1.28 (m) a

β:1.64 (m) a

13 44.1, C - 44.1, C -
14 50.8, C - 50.9, C -
15 71.0, CH 4.01, (dd), J = 10.54, 5.81 71.0, CH 4.04, (br dd), J = 10.53, 5.80

16 37.7, CH2
α: 1.82 (m) a

β: 1.65 (m) a 37.7, CH2
α: 1.84 (m) a

β: 1.64(m) a

17 45.3, CH 2.01 (m) a 45.3, CH 2.03 (m) a

18 15.8, CH3 0.70 (s) 16.2, CH3 0.74 (s)
19 18.9, CH3 0.90 (s) 18.3, CH3 1.02 (s)
20 48.1, CH 2.02 (m) a 48.0, CH 2.04 (m) a

21 176.8,C - 176.8,C -
22 29.9, CH 2.15 (m) a 29.9, CH 2.15 (m) a

23 120.6, CH 5.09 (t), J = 7.31 120.6, CH 5.11 (t), J = 7.17
24 146.3, C - 146.4, C -
25 31.4, CH 2.36 (sep) J = 7.32 31.4, CH 2.36 (m)
26 21.9, CH3 0.94 (d), J = 6.80 21.9, CH3 0.94 (d) J = 6.71
27 21.8, CH3 0.94 (d), J = 6.80 21.8, CH3 0.94 (d) J = 6.71

28 57.5, CH2
3.98 (br d), J = 12.05
3.85 (br d), J = 12.21 57.5, CH2

3.99 (dd) J = 12.21, 5.19
3.86 (dd) J = 12.21, 5.34

29 28.1, CH3 0.90 (s) 26.1, CH3 1.00 (s)
30 15.8, CH3 0.70 (s) 20.9, CH3 0.96 (s)
31 17.4, CH3 0.81 (s) 17.5, CH3 0.85 (s)

3-OH - 4.30 (d) J = 5.30 - -
15-OH - 4.30 (d) J = 5.30 - 4.34 (d) J = 5.65

a Signals partially obscured, b Overlapping with solvent peak.

Compound 2 was obtained as a dark brown solid. The molecular formula of C31H48O5
(eight degrees of unsaturation) were deduced from the HR-ESIMS data (positive mode)
where molecular ion peaks [M+H-H2O]+ at m/z 483.3466, [M+H]+ at m/z 501.3572 and
[M+Na]+ at m/z 523.3394 were observed. The molecular formula assigned to compound 2
showed a deficiency of two hydrogens compared to compound 1 suggesting that an
oxidation occurred. Extensive analysis of the 1D and 2D-NMR spectroscopic data of 2
indicated its close similarity with compound 1 with the only difference being the presence
in its structure of a keto carbonyl group at position C-3 instead of the hydroxyl group as in 1.
This was confirmed on its 1H-NMR and 13C-NMR spectra, where the oxygenated methine
signal resonating at δ 3.00 (H-3, br dd, J = 5.3, 10.54) and δ 76.74 (C-3) in compound 1 was
missing and instead a keto carbonyl group was observed at δ 216.3. HMBC correlations
of diasteriotopic protons Hα-1 (δ 1.52), Hβ -1 (δ 1.89), Hα-2 (δ 2.52) and Hβ -2 (δ 2.33) as
well as correlations of H-29 (δ 1.00), H-30 (δ 0.96) to carbon C-3 (δ 216.3) further supported
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the assignment of the structure of compound 2, for which we propose the trivial name
laetiporin D.
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2.2. Physico-Chemical Characteristics of Compounds 1 and 2

Laetiporin C (1): Dark brown solid. [α]20
D = +85◦, UV (DMSO) λmax (log ε) 256 (3.69)

HR-ESIMS m/z 485.3628 [M+H-H2O]+, m/z 525.3552 [M+Na]+ (calcd. for C31H50NaO5,
525.3550). For NMR data, see Table 1.

Laetiporin D (2): Dark brown solid. [α]20
D = +62.8◦, UV (DMSO) λmax (log ε) 256

(3.67) HR-ESIMS m/z 483.3466 [M+H-H2O]+, m/z 501.3572 [M+H]+, m/z 523.3394 [M+Na]+

(calcd. for C31H48NaO5, 523.3394). For NMR data, see Table 1.

2.3. Biological Assays

The new lanostanoids laetiporins C (1) and D (2) were subjected to both, antimicrobial
and cytotoxicity assays. For the antimicrobial assay with a wide array of organisms,
only laetiporin C showed weak inhibitory effect against Mucor hiemalis (DSM 2656) with
MIC 66 µg/mL. On the other hand, no inhibition was observed against the other test
organisms with both compounds. The isolation of triterpenoids from both edible and
inedible mushrooms and their activities has been widely documented in recent years [12,18].
Compounds from mushrooms, for instance, are known to have antimicrobial activity [19].

On the other hand, despite there being numerous reports on the biological activities
of the natural lanostane-type triterpenoids like inhibit tumor cell growth, induce apoptosis,
and inhibit angiogenesis and metastasis [20,21], these compounds did not have cytotoxic
activity in all 6 cell lines. However, there was cell growth inhibition illustrated by five
cell lines including L929, A431, A549, PC-3, and MCF-7 with later showing most cell
growth inhibited by both compounds. Compound 3 was inactive and the other known
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metabolites 4–6 were not tested, as their activities have previously been reported [12]. A
detailed report on their activity is given in the SI (Table S3).

3. Materials and Methods
3.1. General Information

HPLC-DAD/MS measurements were performed using an amaZon speed ETD (elec-
tron transfer dissociation) ion trap mass spectrometer (Bruker Daltonics, Bremen, Germany)
and measured in positive and negative ion modes simultaneously. HPLC system (column
C18 Acquity UPLC BEH (Waters, Milford, MA USA), solvent A: H2O; solvent B: acetoni-
trile (ACN) supplemented with 0.1% formic acid, gradient conditions: 5% B for 0.5 min,
increasing to 100% B in 20 min, maintaining isocratic conditions at 100% B for 10 min, flow
rate 0.6 mL/min, UV/Vis detection 200–600 nm).

HR-MS (high-resolution mass spectrometry) data were recorded on a MaXis ESI-
TOF (electrospray ionization-time of flight) mass spectrometer (Bruker Daltonics) coupled
to an Agilent (Santa Clara, CA, USA) 1260 series HPLC-UV system and equipped with
C18 Acquity UPLC BEH (ultraperformance liquid chromatography) (ethylene bridged
hybrid) (Waters) column; DAD-UV detection at 200–600 nm; solvent A (H2O) and solvent
B (ACN) supplemented with 0.1% formic acid as a modifier; flowrate 0.6 mL/min, 40 °C,
gradient elution system with the initial condition 5% B for 0.5 min, increasing to 100% B in
19.5 min and holding at 100% B for 5 min. To determine the molecular formula, Compass
DataAnalysis 4.4 SR1 was used using the Smart Formula algorithm (Bruker Daltonics).

NMR spectra were collected on a Bruker 700 MHz Avance III spectrometer equipped
with a 5 mm TCI cryoprobe (1H: 700 MHz, 13C: 175 MHz), locked to the respective
deuterium signal of the solvent. Optical rotations were measured using Anton Paar MCP-
150 Polarimeter (Graz, Austria) with 100 mm path length and sodium D line at 589 nm. The
UV spectra were measured on a Shimadzu (Kyoto, Japan) UV/Vis 2450 spectrophotometer
using DMSO (Uvasol, Merck, Darmstadt, Germany) as a solvent.

3.2. Fungal Material

Laetiporus sulphureus was collected in Braunschweig-Riddagshausen, nature reserve.
Plane-table sheet 3729 (1:25,000), 80 m NHN. Hosts plants were Salix spec, Fagus sylvatica,
and Robinia pseudoacacia. The species, which is the only one of the genus known from
Central Europe, was identified by Harry Andersson based on morphological data and the
identify was confirmed by one of the authors (M.S). A voucher specimen is deposited in
the fungarium of the HZI, Braunschweig.

3.3. Extraction of the Crude Extract

The fresh specimen (in total 0.8 kg) were submerged in 4L acetone crushed by a
homogenizer and left overnight before extraction [22]. The material was then put in
ultrasonic bath for 30 min before it was filtered, and the solvent evaporated. The remaining
aqueous phase (50 mL) was suspended in an equal amount of distilled water then added
to an equal amount (100 mL) of ethyl acetate, which was later separated by filtration. The
supernatant was extracted and filtered through anhydrous sodium sulphate. The resulting
ethyl acetate extract was evaporated to dryness by means of rotary evaporator yielding a
yellow solid 2.1 g of crude extract.

3.4. Isolation of Compounds

The crude extract was fractionated using preparative reverse phase liquid chromatog-
raphy (PLC 2020, Gilson, Middleton, WI, USA). VP Nucleodur 100-5C 18 ec column
(250 × 40 mm, 7 µm: Macherey-Nagel) used as stationary phase. Deionized water (Milli-Q,
Millipore, Schwalbach, Germany) (solvent A) and acetonitrile (solvent B) with 0.05% TFA
was used as eluent with rate of 40 mL/min. The elution gradient used was 5–100% solvent
B in 60 min and thereafter isocratic condition at 100% solvent B for 5 min. UV detection was
carried out at 210–600 nm. Nine fractions were collected according to the observed peaks.
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Out of those, Fractions F3–F5 were combined and further subjected to preparative
HPLC with an elution gradient 20–80% solvent B for 40 min 80–100% for 5 min and finally
isocratic condition at 100% solvent B for 5 min. Five fractions A1-A5 were collected from
this experiment. Fraction A3 was further purified with elution gradient of 40−60% solvent
B in 35 min to give compound 2 (4.8 mg). A similar gradient was applied to fraction
A2 to give compound 1 (2.3 mg). Fraction A4 was also purified by reverse phase LC
(solvent A/solvent B), elution gradient 45−70% solvent B for 47 min, followed by a
gradient shift from 70% to 100% in 5 min, and finally isocratic condition at 100% solvent
B for 5 min to afford 1.21 mg of compound 3, compound 4 (2.66 mg) and compound 5
(2.38 mg). Compound 6 (4.57 mg), was obtained from F6 with an elution gradient 75−90%
solvent B for 25 min, followed by a gradient shift from 90% to 100% in 5 min, and finally
isocratic condition at 100% solvent B for 5 min.

3.5. Cytotoxicity Assay

A panel of six mammalian cell lines including mouse fibroblast L929, HeLa (KB-3-1),
epidermoid carcinoma cells A431, breast cancer cells MCF-7, prostate cancer cells PC-
3 and adenocarcinomic human alveolar basal epithelial cells A549 were chosen in this
assay to determine in vitro cytotoxicity (IC50) of compounds 1 and 2. The cell lines were
purchased from the DSMZ collection (Braunschweig, Germany). The cell lines L929, A549
and KB-3-1 were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Gibco; Termo
Fisher Scientific, Dreieich, Germany); MCF-7 and A431 cells were cultured in RPMI-1640
medium (Gibco) and PC-3 cells in F12K (Gibco) medium. All media were supplemented
with 10% fetal bovine serum (FBS; Gibco) and incubated under 5% CO2 at 37 ◦C for
5 days. The cytotoxicity assay was performed using the MTT (3-(4,5-dimethylthiazol-2-
yl)-2, 5 diphenyltetrazolium bromide) test in 96-well microplates in accordance with our
standard protocol which have been well previously described [23–25]. Methanol was used
as negative control, and epothilone B as the positive control. A detailed protocol and
parameters used is given in the Supplementary Materials.

3.6. Antimicrobial Assay

The minimum inhibition concentrations (MIC) were determined in serial dilution
assay against various test organisms including bacteria: Bacillus subtilis (DSM 10), Staphylo-
coccus aureus (DSM 346), Acinetobacter baumanii (DSM 30008), Chromobacterium violaceum
(DSM 30191), Escherichia coli (DSM 1116), Pseudomonas aeruginosa (PA14); Mycobacteria:
Mycolicibacterium smegmatis (ATCC 700084); Fungi: Candida albicans (DSM1665), Schizosac-
charomyces pombe (DSM 70572), Mucor hiemalis (DSM 2656), Pichia anomala (DSM 6766), and
Rhodotorula glutinis (DSM 10134). The assay was excecuted in accordance with literature
descriptions [25] and a detailed protocol can be found in the Supplementary Materials.

4. Conclusions

Two new triterpenes from L. sulphureus fruiting body, denoted as laetiporins C and D
(1 and 2), were isolated in this study. In addition, four known triterpenoids, fomefficinic
acid, eburicoic acid, 15 α-hydroxytrametenolic acid and trametenolic acid (3–6) were also
isolated and characterized. The latter compounds except for fomeffinic acid were already
isolated previously by Chepkirui et al. [12] from cultures of an African Laetiporus sp. but
found devoid of antimicrobial effects and had weak cytotoxicity. Several other triterpenes
like laetiposides A–D, laetiporins A–B, sulphurenic acid and dehydroeburicoic acid just to
mention these few, have also been isolated previously from Laetiporus spp. This genus could
therefore be considered as a prolific source for isolation of lanostanoids-like triterpenes.
Although the triterpenes isolated exhibited no cytotoxic effect against the cancer cell
lines, the compounds showed antiproliferative activity against the cancer cell lines tested.
Laetiporin C (1) only showed weak antifungal activity against the sensitive non-pathogenic
zygomycete Mucor hiemalis. Even though the observed activities were relatively weak, the
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isolated compounds are now available for the first time to be tested as pure compounds in
a library of fungal metabolites and can be tested for further biological activities.

Supplementary Materials: The following are available online, Figures S1–S37: ESIMS, HR-ESIMS,
1D and 2D NMR spectra of compounds 1–6, Tables S1–S3: Results of biological assays, protocols.
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